Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Proteome Res ; 22(5): 1406-1418, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-36603205

RESUMEN

Isobaric chemical tag labeling (e.g., TMT) is a commonly used approach in quantitative proteomics, and quantification is enabled through detection of low-mass reporter ions generated after MS2 fragmentation. Recently, we have introduced and optimized an intact protein-level TMT labeling platform that demonstrated >90% labeling efficiency in complex samples with top-down proteomics. Higher-energy collisional dissociation (HCD) is commonly utilized for isobaric tag-labeled peptide fragmentation because it produces accurate reporter ion intensities and avoids loss of low mass ions. HCD energies have been optimized for isobaric tag labeled-peptides but have not been systematically evaluated for isobaric tag-labeled intact proteins. In this study, we report a systematic evaluation of normalized HCD fragmentation energies (NCEs) on TMT-labeled HeLa cell lysate using top-down proteomics. Our results suggested that reporter ions often result in higher ion intensities at higher NCEs. Optimal fragmentation of intact proteins for identification, however, required relatively lower NCE. We further demonstrated that a stepped NCE scheme with energies from 30% to 50% resulted in optimal quantification and identification of TMT-labeled HeLa proteins. These parameters resulted in an average reporter ion intensity of ∼4E4 and average proteoform spectrum matches (PrSMs) of >1000 per RPLC-MS/MS run with a 1% false discovery rate (FDR) cutoff.


Asunto(s)
Péptidos , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Células HeLa , Proteínas , Indicadores y Reactivos , Iones
2.
Artículo en Inglés | MEDLINE | ID: mdl-39072225

RESUMEN

Functional proteomics aims to elucidate biological functions, mechanisms, and pathways of proteins and proteoforms at the molecular level to examine complex cellular systems and disease states. A series of stability proteomics methods have been developed to examine protein functionality by measuring the resistance of a protein to chemical or thermal denaturation or proteolysis. These methods can be applied to measure the thermal stability of thousands of proteins in complex biological samples such as cell lysate, intact cells, tissues, and other biological fluids to measure proteome stability. Stability proteomics methods have been popularly applied to observe stability shifts upon ligand binding for drug target identification. More recently, these methods have been applied to characterize the effect of structural changes in proteins such as those caused by post-translational modifications (PTMs) and mutations, which can affect protein structures or interactions and diversify protein functions. Here, we discussed the current application of a suite of stability proteomics methods, including thermal proteome profiling (TPP), stability of proteomics from rates of oxidation (SPROX), and limited proteolysis (LiP) methods, to observe PTM-induced structural changes on protein stability. We also discuss future perspectives highlighting the integration of top-down mass spectrometry and stability proteomics methods to characterize intact proteoform stability and understand the function of variable protein modifications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA