Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 508
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Semin Immunol ; 59: 101606, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35691882

RESUMEN

Inflammation is a multifactorial process and various biological mechanisms and pathways participate in its development. The presence of inflammation is involved in pathogenesis of different diseases such as diabetes mellitus, cardiovascular diseases and even, cancer. Non-coding RNAs (ncRNAs) comprise large part of transcribed genome and their critical function in physiological and pathological conditions has been confirmed. The present review focuses on miRNAs, lncRNAs and circRNAs as ncRNAs and their potential functions in inflammation regulation and resolution. Pro-inflammatory and anti-inflammatory factors are regulated by miRNAs via binding to 3'-UTR or indirectly via affecting other pathways such as SIRT1 and NF-κB. LncRNAs display a similar function and they can also affect miRNAs via sponging in regulating levels of cytokines. CircRNAs mainly affect miRNAs and reduce their expression in regulating cytokine levels. Notably, exosomal ncRNAs have shown capacity in inflammation resolution. In addition to pre-clinical studies, clinical trials have examined role of ncRNAs in inflammation-mediated disease pathogenesis and cytokine regulation. The therapeutic targeting of ncRNAs using drugs and nucleic acids have been analyzed to reduce inflammation in disease therapy. Therefore, ncRNAs can serve as diagnostic, prognostic and therapeutic targets in inflammation-related diseases in pre-clinical and clinical backgrounds.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , ARN Circular/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Inflamación/genética , Citocinas
2.
Cancer Metastasis Rev ; 43(1): 29-53, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37453022

RESUMEN

The metastasis is a multistep process in which a small proportion of cancer cells are detached from the colony to enter into blood cells for obtaining a new place for metastasis and proliferation. The metastasis and cell plasticity are considered major causes of cancer-related deaths since they improve the malignancy of cancer cells and provide poor prognosis for patients. Furthermore, enhancement in the aggressiveness of cancer cells has been related to the development of drug resistance. Metastasis of pancreatic cancer (PC) cells has been considered one of the major causes of death in patients and their undesirable prognosis. PC is among the most malignant tumors of the gastrointestinal tract and in addition to lifestyle, smoking, and other factors, genomic changes play a key role in its progression. The stimulation of EMT in PC cells occurs as a result of changes in molecular interaction, and in addition to increasing metastasis, EMT participates in the development of chemoresistance. The epithelial, mesenchymal, and acinar cell plasticity can occur and determines the progression of PC. The major molecular pathways including STAT3, PTEN, PI3K/Akt, and Wnt participate in regulating the metastasis of PC cells. The communication in tumor microenvironment can provide by exosomes in determining PC metastasis. The components of tumor microenvironment including macrophages, neutrophils, and cancer-associated fibroblasts can modulate PC progression and the response of cancer cells to chemotherapy.


Asunto(s)
Neoplasias Pancreáticas , Fosfatidilinositol 3-Quinasas , Humanos , Plasticidad de la Célula , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Pronóstico , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Línea Celular Tumoral , Microambiente Tumoral
3.
Cancer Metastasis Rev ; 43(1): 229-260, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38374496

RESUMEN

Prostate cancer (PCa) is a malignant disorder of prostate gland being asymptomatic in early stages and high metastatic potential in advanced stages. The chemotherapy and surgical resection have provided favourable prognosis of PCa patients, but advanced and aggressive forms of PCa including CRPC and AVPC lack response to therapy properly, and therefore, prognosis of patients is deteriorated. At the advanced stages, PCa cells do not respond to chemotherapy and radiotherapy in a satisfactory level, and therefore, therapy resistance is emerged. Molecular profile analysis of PCa cells reveals the apoptosis suppression, pro-survival autophagy induction, and EMT induction as factors in escalating malignant of cancer cells and development of therapy resistance. The dysregulation in molecular profile of PCa including upregulation of STAT3 and PI3K/Akt, downregulation of STAT3, and aberrant expression of non-coding RNAs are determining factor for response of cancer cells to chemotherapy. Because of prevalence of drug resistance in PCa, combination therapy including co-utilization of anti-cancer drugs and nanotherapeutic approaches has been suggested in PCa therapy. As a result of increase in DNA damage repair, PCa cells induce radioresistance and RelB overexpression prevents irradiation-mediated cell death. Similar to chemotherapy, nanomaterials are promising for promoting radiosensitivity through delivery of cargo, improving accumulation in PCa cells, and targeting survival-related pathways. In respect to emergence of immunotherapy as a new tool in PCa suppression, tumour cells are able to increase PD-L1 expression and inactivate NK cells in mediating immune evasion. The bioinformatics analysis for evaluation of drug resistance-related genes has been performed.


Asunto(s)
Antineoplásicos , Neoplasias de la Próstata , Masculino , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Antineoplásicos/uso terapéutico , Apoptosis , Tolerancia a Radiación , Línea Celular Tumoral
4.
Cell Mol Life Sci ; 81(1): 78, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334807

RESUMEN

Hematological malignancies (HM) represent a subset of neoplasms affecting the blood, bone marrow, and lymphatic systems, categorized primarily into leukemia, lymphoma, and multiple myeloma. Their prognosis varies considerably, with a frequent risk of relapse despite ongoing treatments. While contemporary therapeutic strategies have extended overall patient survival, they do not offer cures for advanced stages and often lead to challenges such as acquisition of drug resistance, recurrence, and severe side effects. The need for innovative therapeutic targets is vital to elevate both survival rates and patients' quality of life. Recent research has pivoted towards nuclear receptors (NRs) due to their role in modulating tumor cell characteristics including uncontrolled proliferation, differentiation, apoptosis evasion, invasion and migration. Existing evidence emphasizes NRs' critical role in HM. The regulation of NR expression through agonists, antagonists, or selective modulators, contingent upon their levels, offers promising clinical implications in HM management. Moreover, several anticancer agents targeting NRs have been approved by the Food and Drug Administration (FDA). This review highlights the integral function of NRs in HM's pathophysiology and the potential benefits of therapeutically targeting these receptors, suggesting a prospective avenue for more efficient therapeutic interventions against HM.


Asunto(s)
Neoplasias Hematológicas , Mieloma Múltiple , Humanos , Estudios Prospectivos , Calidad de Vida , Neoplasias Hematológicas/patología , Receptores Citoplasmáticos y Nucleares
5.
J Cell Biochem ; 125(4): e30537, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38358093

RESUMEN

Mitogen-activated protein kinase (MAPK) activation by natural compounds is known to be involved in the induction of apoptosis, paraptosis, and autophagy. Cannabidiol (CBD), a bioactive compound found in Cannabis sativa, is endowed with many pharmacological activities. We investigated the cytotoxic effect of CBD in a panel of colorectal cancer (CRC) cells (HT-29, SW480, HCT-116, and HCT-15). CBD induced significant cytotoxicity as evidenced by the results of MTT  assay, live-dead assay, and flow cytometric analysis. Since CBD displayed cytotoxicity against CRC cells, we examined the effect of CBD on apoptosis, paraptosis, and autophagy. CBD decreased the expression of antiapoptotic proteins and increased the Annexin-V-positive as well as TUNEL-positive cells suggesting that CBD induces apoptosis. CBD increased the expression of ATF4 (activating transcription factor 4) and CHOP (CCAAT/enhancer-binding protein homologous protein), elevated endoplasmic reticulum stress, and enhanced reactive oxygen species levels indicating that CBD also promotes paraptosis. CBD also induced the expression of Atg7, phospho-Beclin-1, and LC3 suggesting that CBD also accelerates autophagy. Since, the MAPK pathway is a common cascade that is involved in the regulation of apoptosis, paraptosis, and autophagy, we investigated the effect of CBD on the activation of JNK, p38, and ERK pathways. CBD activated all the forms of MAPK proteins and pharmacological inhibition of these proteins reverted the observed effects. Our findings implied that CBD could induce CRC cell death by activating apoptosis, paraptosis, and autophagy through the activation of the MAPK pathway.


Asunto(s)
Cannabidiol , Neoplasias Colorrectales , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Cannabidiol/farmacología , Línea Celular Tumoral , Paraptosis , Apoptosis , Autofagia , Neoplasias Colorrectales/tratamiento farmacológico
6.
Cancer Metastasis Rev ; 42(3): 741-764, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36547748

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common cancers with a relatively high cancer-related mortality. The uncontrolled proliferation of HCC consumes a significant amount of oxygen, causing the development of a hypoxic tumor microenvironment (TME). Hypoxia-inducible factors (HIFs), crucial regulators in the TME, activate several cancer hallmarks leading to the hepatocarcinogenesis of HCC and resistance to current therapeutics. As such, HIFs and their signaling pathways have been explored as potential therapeutic targets for the future management of HCC. This review discusses the current understanding of the structure and function of HIFs and their complex relationship with the various cancer hallmarks. To address tumor hypoxia, this review provides an insight into the various potential novel therapeutic agents for managing HCC, such as hypoxia-activated prodrugs, HIF inhibitors, nanomaterials, antisense oligonucleotides, and natural compounds, that target HIFs/hypoxic signaling pathways in HCC. Because of HCC's relatively high incidence and mortality rates in the past decades, greater efforts should be put in place to explore novel therapeutic approaches to improve the outcome for HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Hipoxia , Transducción de Señal , Hipoxia de la Célula , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/uso terapéutico , Línea Celular Tumoral , Microambiente Tumoral
7.
Cancer Metastasis Rev ; 42(3): 765-822, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36482154

RESUMEN

Human nuclear receptors (NRs) are a family of forty-eight transcription factors that modulate gene expression both spatially and temporally. Numerous biochemical, physiological, and pathological processes including cell survival, proliferation, differentiation, metabolism, immune modulation, development, reproduction, and aging are extensively orchestrated by different NRs. The involvement of dysregulated NRs and NR-mediated signaling pathways in driving cancer cell hallmarks has been thoroughly investigated. Targeting NRs has been one of the major focuses of drug development strategies for cancer interventions. Interestingly, rapid progress in molecular biology and drug screening reveals that the naturally occurring compounds are promising modern oncology drugs which are free of potentially inevitable repercussions that are associated with synthetic compounds. Therefore, the purpose of this review is to draw our attention to the potential therapeutic effects of various classes of natural compounds that target NRs such as phytochemicals, dietary components, venom constituents, royal jelly-derived compounds, and microbial derivatives in the establishment of novel and safe medications for cancer treatment. This review also emphasizes molecular mechanisms and signaling pathways that are leveraged to promote the anti-cancer effects of these natural compounds. We have also critically reviewed and assessed the advantages and limitations of current preclinical and clinical studies on this subject for cancer prophylaxis. This might subsequently pave the way for new paradigms in the discovery of drugs that target specific cancer types.


Asunto(s)
Neoplasias , Receptores Citoplasmáticos y Nucleares , Humanos , Factores de Transcripción , Neoplasias/tratamiento farmacológico , Transducción de Señal
8.
J Pharmacol Exp Ther ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955492

RESUMEN

Oxidative stress, fibrosis, and inflammasome activation from AGE-RAGE interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of ß-caryophyllene (BCP) on activating CB2 receptors against diabetes complications and investigated the underlying cell signaling pathways in mice. The murine model of DCM was developed by feeding high-fat diet with streptozotocin injections. After the development of diabetes, the animals received a 12-week oral BCP treatment at a dosage of 50 mg/kg/body weight. BCP treatment showed significant improvement in glucose tolerance, insulin resistance, and enhanced serum insulin levels in diabetic animals. BCP treatment effectively reversed the heart remodeling and restored the phosphorylated troponin I and SERCA2a expression. Ultrastructural examination showed reduced myocardial cell injury in DCM mice treated with BCP. The preserved myocytes were found associated with reduced expression of AGE/RAGE in DCM mice hearts. BCP treatment mitigated oxidative stress by inhibiting expression of NOX4 and activating PI3K/AKT/Nrf2 signaling. BCP suppressed cardiac fibrosis and endothelial-to-mesenchymal transition (EndMT) in DCM mice by inhibiting TGF-ß/Smad signaling. Further, BCP treatment suppressed NLRP3 inflammasome activation in DCM mice and alleviated cellular injury to the pancreatic tissues evidenced by significant elevation of the number of insulin-positive cells. To demonstrate CB2 receptor dependent mechanism of BCP, another group of DCM mice were pretreated with AM630, a CB2 receptor antagonist AM630 and AM630 was observed to abrogate the beneficial effects of BCP in DCM mice. Taken together, BCP showed the potential to protect the myocardium and pancreas of DCM mice mediating CB2 receptor dependent mechanisms. Significance Statement 1. ß-caryophyllene (BCP), a cannabinoid type 2 receptor (CB2R) agonist. 2. BCP attenuates diabetic cardiomyopathy via activating CB2R in mice 3. CB2R activation by BCP shows strong protection against fibrosis and inflammasome activation 4. It regulates AGE/RAGE and PI3K/Nrf2/Akt signaling in mice.

9.
Cell Commun Signal ; 22(1): 251, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698424

RESUMEN

Anticancer immune surveillance and immunotherapies trigger activation of cytotoxic cytokine signaling, including tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) pathways. The pro-inflammatory cytokine TNF-α may be secreted by stromal cells, tumor-associated macrophages, and by cancer cells, indicating a prominent role in the tumor microenvironment (TME). However, tumors manage to adapt, escape immune surveillance, and ultimately develop resistance to the cytotoxic effects of TNF-α. The mechanisms by which cancer cells evade host immunity is a central topic of current cancer research. Resistance to TNF-α is mediated by diverse molecular mechanisms, such as mutation or downregulation of TNF/TRAIL receptors, as well as activation of anti-apoptotic enzymes and transcription factors. TNF-α signaling is also mediated by sphingosine kinases (SphK1 and SphK2), which are responsible for synthesis of the growth-stimulating phospholipid, sphingosine-1-phosphate (S1P). Multiple studies have demonstrated the crucial role of S1P and its transmembrane receptors (S1PR) in both the regulation of inflammatory responses and progression of cancer. Considering that the SphK/S1P/S1PR axis mediates cancer resistance, this sphingolipid signaling pathway is of mechanistic significance when considering immunotherapy-resistant malignancies. However, the exact mechanism by which sphingolipids contribute to the evasion of immune surveillance and abrogation of TNF-α-induced apoptosis remains largely unclear. This study reviews mechanisms of TNF-α-resistance in cancer cells, with emphasis on the pro-survival and immunomodulatory effects of sphingolipids. Inhibition of SphK/S1P-linked pro-survival branch may facilitate reactivation of the pro-apoptotic TNF superfamily effects, although the role of SphK/S1P inhibitors in the regulation of the TME and lymphocyte trafficking should be thoroughly assessed in future studies.


Asunto(s)
Inmunoterapia , Neoplasias , Transducción de Señal , Esfingolípidos , Factor de Necrosis Tumoral alfa , Humanos , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Neoplasias/patología , Esfingolípidos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Resistencia a Antineoplásicos/efectos de los fármacos , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos
10.
Pharmacol Res ; 200: 107056, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38228256

RESUMEN

Sepsis is a dysregulated response to infection that can result in life-threatening organ failure, and septic cardiomyopathy is a serious complication involving ferroptosis. Olaparib, a classic targeted drug used in oncology, has demonstrated potential protective effects against sepsis. However, the exact mechanisms underlying its action remain to be elucidated. In our study, we meticulously screened ferroptosis genes associated with sepsis, and conducted comprehensive functional enrichment analyses to delineate the relationship between ferroptosis and mitochondrial damage. Eight sepsis-characterized ferroptosis genes were identified in sepsis patients, including DPP4, LPIN1, PGD, HP, MAPK14, POR, GCLM, and SLC38A1, which were significantly correlated with mitochondrial quality imbalance. Utilizing DrugBank and molecular docking, we demonstrated a robust interaction of Olaparib with these genes. Lipopolysaccharide (LPS)-stimulated HL-1 cells and monocytes were used to establish an in vitro sepsis model. Additionally, an in vivo model was developed using mice subjected to cecal ligation and perforation (CLP). Intriguingly, low-dose Olaparib (5 mg/kg) effectively targeted and mitigated markers associated with ferroptosis, concurrently improving mitochondrial quality. This led to a marked enhancement in cardiac function and a significant increase in survival rates in septic mice (p < 0.05). The mechanism through which Olaparib ameliorates ferroptosis in cardiac and leukocyte cells post-sepsis is attributed to its facilitation of mitophagy, thus favoring mitochondrial integrity. In conclusion, our findings suggest that low-dose Olaparib can improve mitochondrial quality by accelerating mitophagy flux, consequently inhibiting ferroptosis and preserving cardiac function after sepsis.


Asunto(s)
Ferroptosis , Ftalazinas , Piperazinas , Sepsis , Humanos , Ratones , Animales , Mitofagia/fisiología , Simulación del Acoplamiento Molecular , Fosfatidato Fosfatasa
11.
Pharmacol Res ; 205: 107228, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810904

RESUMEN

Coronavirus disease 2019 (COVID-19) affected people worldwide, and fever is one of the major symptoms of this disease. Although Acetaminophen (APAP) is a common fever-reducing medication, it can also mediate liver injury. However, the role of PGC-1α in regulating mitochondrial quality control by lactate dehydrogenase B (LDHB), a vital enzyme catalyzing the conversion of lactate to pyruvate, in APAP-induced hepatotoxicity, is unclear. Here, gene expression omnibus data of patients with APAP-induced liver injury were used to explore gene expression profiles. AML12 cells and C57/BL6 mice were used to establish models of APAP-induced acute liver injury. SIRT1 and PGC-1α were overexpressed in vitro via lentiviral transfection to establish stable cell lines. The results showed that APAP treatment decreased SIRT1/PGC-1α/LDHB expression and increased protein lactylation, mitochondrial lactate levels, and pathological damage in liver mitochondria. PGC-1α upregulation or activation ameliorated APAP-induced damage in the cells and liver. Furthermore, PGC-1α overexpression increased LDHB synthesis, reduced lactylation, and induced a switch from lactate to pyruvate production. These results suggest that PGC-1α and LDHB play a role in APAP-induced liver injury by regulating mitochondrial quality control and lactate metabolic reprogramming. Therefore, the PGC-1α/LDHB axis is a potential therapeutic target for APAP-induced liver injury.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , L-Lactato Deshidrogenasa , Ratones Endogámicos C57BL , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Animales , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Ratones , Humanos , Masculino , L-Lactato Deshidrogenasa/metabolismo , Ácido Láctico/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Línea Celular , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Sirtuina 1/metabolismo , Sirtuina 1/genética , Isoenzimas
12.
Pharmacol Res ; 203: 107167, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599470

RESUMEN

Cancer has become a burgeoning global healthcare concern marked by its exponential growth and significant economic ramifications. Though advancements in the treatment modalities have increased the overall survival and quality of life, there are no definite treatments for the advanced stages of this malady. Hence, understanding the diseases etiologies and the underlying molecular complexities, will usher in the development of innovative therapeutics. Recently, YAP/TAZ transcriptional regulation has been of immense interest due to their role in development, tissue homeostasis and oncogenic transformations. YAP/TAZ axis functions as coactivators within the Hippo signaling cascade, exerting pivotal influence on processes such as proliferation, regeneration, development, and tissue renewal. In cancer, YAP is overexpressed in multiple tumor types and is associated with cancer stem cell attributes, chemoresistance, and metastasis. Activation of YAP/TAZ mirrors the cellular "social" behavior, encompassing factors such as cell adhesion and the mechanical signals transmitted to the cell from tissue structure and the surrounding extracellular matrix. Therefore, it presents a significant vulnerability in the clogs of tumors that could provide a wide window of therapeutic effectiveness. Natural compounds have been utilized extensively as successful interventions in the management of diverse chronic illnesses, including cancer. Owing to their capacity to influence multiple genes and pathways, natural compounds exhibit significant potential either as adjuvant therapy or in combination with conventional treatment options. In this review, we delineate the signaling nexus of YAP/TAZ axis, and present natural compounds as an alternate strategy to target cancer.


Asunto(s)
Neoplasias , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP , Animales , Humanos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal/efectos de los fármacos , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Proteínas Señalizadoras YAP/metabolismo
13.
Phytother Res ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38353331

RESUMEN

Chemoresistance is the adaptation of cancer cells against therapeutic agents. When exhibited by cancer cells, chemoresistance helps them to avoid apoptosis, cause relapse, and metastasize, making it challenging for chemotherapeutic agents to treat cancer. Various strategies like dosage modification of drugs, nanoparticle-based delivery of chemotherapeutics, antibody-drug conjugates, and so on are being used to target and reverse chemoresistance, one among such is combination therapy. It uses the combination of two or more therapeutic agents to reverse multidrug resistance and improve the effects of chemotherapy. Phytochemicals are known to exhibit chemosensitizing properties and are found to be effective against various cancers. Tocotrienols (T3) and tocopherols (T) are natural bioactive analogs of vitamin E, which exhibit important medicinal value and potential curative properties apart from serving as an antioxidant and nutrient supplement. Notably, T3 exhibits a variety of pharmacological activities like anticancer, anti-inflammatory, antiproliferative, and so on. The chemosensitizing property of tocotrienol is exhibited by modulating several signaling pathways and molecular targets involved in cancer cell survival, proliferation, invasion, migration, and metastasis like NF-κB, STATs, Akt/mTOR, Bax/Bcl-2, Wnt/ß-catenin, and many more. T3 sensitizes cancer cells to chemotherapeutic drugs including cisplatin, doxorubicin, and paclitaxel increasing drug concentration and cytotoxicity. Discussed herewith are the chemosensitizing properties of tocotrienols on various cancer cell types when combined with various drugs and biological molecules.

14.
Semin Cancer Biol ; 80: 157-182, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-32325172

RESUMEN

Signal transducer and activator of transcription (STAT) proteins are latent transcription factors that reside in the cytoplasm of several types of cells. In canonical signaling, upon stimulation by cytokines and growth factors, STATs get activated and translocate into the nucleus to transcribe target genes. Among STATs, the STAT3 variant has been studied extensively and implicated in diverse human malignancies. Transcriptionally, STAT3 can upregulate the expression of genes associated with cell proliferation, antiapoptosis, prosurvival, angiogenesis, metastasis, and immune evasion. STAT3 can be constitutively activated in a broad range of human cancers including solid as well as hematological tumors and overexpression of STAT3 has been observed in a wide-range of patient-derived tumor tissue samples that may contribute to dismal prognosis. In contrast, blockade of STAT3 activation using inhibitors or knockdown systems can markedly suppress tumor progression, thus highlighting the significance of abrogating STAT3 signaling cascade in cancer therapy. In this review, we have provided a comprehensive overview of mechanisms of STAT3 signal transduction and its endogenous negative modulators, the role of STAT3 in oncogenesis, the interplay of miRNAs in STAT3 signaling, and mechanisms involved in persistent activation of STAT3. Furthermore, the review also provides a detailed overview of STAT3 signaling inhibition by selected natural compounds, which have displayed potent activity in various preclinical cancer model.


Asunto(s)
Neoplasias , Transducción de Señal , Carcinogénesis , Proliferación Celular , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neovascularización Patológica , Factor de Transcripción STAT3/genética , Transducción de Señal/fisiología
15.
Semin Cancer Biol ; 86(Pt 2): 998-1013, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-33979675

RESUMEN

Cancer stands in the frontline among leading killers worldwide and the annual mortality rate is expected to reach 16.4 million by 2040. Humans suffer from about 200 different types of cancers and many of them have a small number of approved therapeutic agents. Moreover, several types of major cancers are diagnosed at advanced stages as a result of which the existing therapies have limited efficacy against them and contribute to a dismal prognosis. Therefore, it is essential to develop novel potent anticancer agents to counteract cancer-driven lethality. Natural sources such as bacteria, plants, fungi, and marine microorganisms have been serving as an inexhaustible source of anticancer agents. Notably, over 13,000 natural compounds endowed with different pharmacological properties have been isolated from different bacterial sources. In the present article, we have discussed about the importance of natural products, with special emphasis on bacterial metabolites for cancer therapy. Subsequently, we have comprehensively discussed the various sources, mechanisms of action, toxicity issues, and off-target effects of clinically used anticancer drugs (such as actinomycin D, bleomycin, carfilzomib, doxorubicin, ixabepilone, mitomycin C, pentostatin, rapalogs, and romidepsin) that have been derived from different bacteria. Furthermore, we have also discussed some of the major secondary metabolites (antimycins, chartreusin, elsamicins, geldanamycin, monensin, plicamycin, prodigiosin, rebeccamycin, salinomycin, and salinosporamide) that are currently in the clinical trials or which have demonstrated potent anticancer activity in preclinical models. Besides, we have elaborated on the application of metagenomics in drug discovery and briefly described about anticancer agents (bryostatin 1 and ET-743) identified through the metagenomics approach.


Asunto(s)
Antineoplásicos , Productos Biológicos , Neoplasias , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Hongos/metabolismo , Bacterias
16.
Semin Cancer Biol ; 86(Pt 3): 682-692, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34051351

RESUMEN

Pancreatic carcinoma is associated with one of the worst clinical outcomes throughout the globe because of its aggressive, metastatic, and drug-resistant nature. During the past decade, several studies have shown that oral, gut, and tumor microbiota play a critical role in the modulation of metabolism and immune responses. Growing pieces of evidence have proved beyond a doubt that the microbiota has a unique ability to influence the tumor microenvironment as well as the metabolism of chemotherapeutic agents or drugs. Given this, microbiota, known as the ecological community of microorganisms, stands to be an avenue of quality research. In this review, we provide detailed and critical information on the role of oral, gut, and pancreatic microbiota disruptions in the development of pancreatic carcinoma. Moreover, we comprehensively discuss the different types of microbiota, their potential role, and mechanism associated with pancreatic carcinoma. The microbiome provides the unique opportunity to enhance the effectiveness of chemotherapeutic agents and immunotherapies for pancreatic cancer by maintaining the right type of microbiota and holds a promising future to enhance the clinical outcomes of patients with pancreatic carcinoma.


Asunto(s)
Antineoplásicos , Microbioma Gastrointestinal , Microbiota , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patología , Inmunoterapia , Microambiente Tumoral , Neoplasias Pancreáticas
17.
Semin Cancer Biol ; 80: 87-106, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-32068087

RESUMEN

Plant lectins, a natural source of glycans with a therapeutic potential may lead to the discovery of new targeted therapies. Glycans extracted from plant lectins are known to act as ligands for C-type lectin receptors (CLRs) that are primarily present on immune cells. Plant-derived glycosylated lectins offer diversity in their N-linked oligosaccharide structures that can serve as a unique source of homogenous and heterogenous glycans. Among the plant lectins-derived glycan motifs, Man9GlcNAc2Asn exhibits high-affinity interactions with CLRs that may resemble glycan motifs of pathogens. Thus, such glycan domains when presented along with antigens complexed with a nanocarrier of choice may bewilder the immune cells and direct antigen cross-presentation - a cytotoxic T lymphocyte immune response mediated by CD8+ T cells. Glycan structure analysis has attracted considerable interest as glycans are looked upon as better therapeutic alternatives than monoclonal antibodies due to their cost-effectiveness, reduced toxicity and side effects, and high specificity. Furthermore, this approach will be useful to understand whether the multivalent glycan presentation on the surface of nanocarriers can overcome the low-affinity lectin-ligand interaction and thereby modulation of CLR-dependent immune response. Besides this, understanding how the heterogeneity of glycan structure impacts the antigen cross-presentation is pivotal to develop alternative targeted therapies. In the present review, we discuss the findings on structural analysis of glycans from natural lectins performed using GlycanBuilder2 - a software tool based on a thorough literature review of natural lectins. Additionally, we discuss how multiple parameters like the orientation of glycan ligands, ligand density, simultaneous targeting of multiple CLRs and design of antigen delivery nanocarriers may influence the CLR targeting efficacy. Integrating this information will eventually set the ground for new generation immunotherapeutic vaccine design for the treatment of various human malignancies.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Presentación de Antígeno , Células Dendríticas , Humanos , Inmunoterapia , Lectinas Tipo C/química , Ligandos , Neoplasias/terapia , Lectinas de Plantas , Polisacáridos/química
18.
Semin Cancer Biol ; 80: 205-217, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-32450139

RESUMEN

Autophagy is an intracellular catabolic self-cannibalism that eliminates dysfunctional cytoplasmic cargos by the fusion of cargo-containing autophagosomes with lysosomes to maintain cyto-homeostasis. Autophagy sustains a dynamic interlink between cytoprotective and cytostatic function during malignant transformation in a context-dependent manner. The antioxidant and immunomodulatory phyto-products govern autophagy and autophagy-associated signaling pathways to combat cellular incompetence during malignant transformation. Moreover, in a close cellular signaling circuit, autophagy regulates aberrant epigenetic modulation and inflammation, which limits tumor metastasis. Thus, manipulating autophagy for induction of cell death and associated regulatory phenomena will embark on a new strategy for tumor suppression with wide therapeutic implications. Despite the prodigious availability of lead pharmacophores in nature, the central autophagy regulating entities, their explicit target, as well as pre-clinical and clinical assessment remains a major question to be answered. In addition to this, the stage-specific regulation of autophagy and mode of action with natural products in regulating the key autophagic molecules, control of tumor-specific pathways in relation to modulation of autophagic network specify therapeutic target in caner. Moreover, the molecular pathway specificity and enhanced efficacy of the pre-existing chemotherapeutic agents in co-treatment with these phytochemicals hold high prevalence for target specific cancer therapeutics. Hence, the multi-specific role of phytochemicals in a cellular and tumor context dependent manner raises immense curiosity for investigating of novel therapeutic avenues. In this perspective, this review discusses about diverse implicit mechanisms deployed by the bioactive compounds in diagnosis and therapeutics approach during cancer progression with special insight into autophagic regulation.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapéutico , Autofagia , Transformación Celular Neoplásica/metabolismo , Humanos , Lisosomas/patología , Neoplasias/patología , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico
19.
Med Res Rev ; 43(5): 1263-1321, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36951271

RESUMEN

Gastrointestinal (GI) tumors (cancers of the esophagus, gastric, liver, pancreas, colon, and rectum) contribute to a large number of deaths worldwide. STAT3 is an oncogenic transcription factor that promotes the transcription of genes associated with proliferation, antiapoptosis, survival, and metastasis. STAT3 is overactivated in many human malignancies including GI tumors which accelerates tumor progression, metastasis, and drug resistance. Research in recent years demonstrated that noncoding RNAs (ncRNAs) play a major role in the regulation of many signaling pathways including the STAT3 pathway. The major types of endogenous ncRNAs that are being extensively studied in oncology are microRNAs, long noncoding RNAs, and circular RNAs. These ncRNAs can either be tumor-promoters or tumor-suppressors and each one of them imparts their activity via different mechanisms. The STAT3 pathway is also tightly modulated by ncRNAs. In this article, we have elaborated on the tumor-promoting role of STAT3 signaling in GI tumors. Subsequently, we have comprehensively discussed the oncogenic as well as tumor suppressor functions and mechanism of action of ncRNAs that are known to modulate STAT3 signaling in GI cancers.


Asunto(s)
Neoplasias Gastrointestinales , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , Neoplasias Gastrointestinales/genética , Transducción de Señal , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
20.
Med Res Rev ; 43(4): 1141-1200, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36929669

RESUMEN

Epithelial-mesenchymal transition (EMT) is a complex process with a primordial role in cellular transformation whereby an epithelial cell transforms and acquires a mesenchymal phenotype. This transformation plays a pivotal role in tumor progression and self-renewal, and exacerbates resistance to apoptosis and chemotherapy. EMT can be initiated and promoted by deregulated oncogenic signaling pathways, hypoxia, and cells in the tumor microenvironment, resulting in a loss-of-epithelial cell polarity, cell-cell adhesion, and enhanced invasive/migratory properties. Numerous transcriptional regulators, such as Snail, Slug, Twist, and ZEB1/ZEB2 induce EMT through the downregulation of epithelial markers and gain-of-expression of the mesenchymal markers. Additionally, signaling cascades such as Wnt/ß-catenin, Notch, Sonic hedgehog, nuclear factor kappa B, receptor tyrosine kinases, PI3K/AKT/mTOR, Hippo, and transforming growth factor-ß pathways regulate EMT whereas they are often deregulated in cancers leading to aberrant EMT. Furthermore, noncoding RNAs, tumor-derived exosomes, and epigenetic alterations are also involved in the modulation of EMT. Therefore, the regulation of EMT is a vital strategy to control the aggressive metastatic characteristics of tumor cells. Despite the vast amount of preclinical data on EMT in cancer progression, there is a lack of clinical translation at the therapeutic level. In this review, we have discussed thoroughly the role of the aforementioned transcription factors, noncoding RNAs (microRNAs, long noncoding RNA, circular RNA), signaling pathways, epigenetic modifications, and tumor-derived exosomes in the regulation of EMT in cancers. We have also emphasized the contribution of EMT to drug resistance and possible therapeutic interventions using plant-derived natural products, their semi-synthetic derivatives, and nano-formulations that are described as promising EMT blockers.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias , Humanos , Transición Epitelial-Mesenquimal/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Hedgehog/metabolismo , Neoplasias/metabolismo , Factores de Transcripción , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA