Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(38): e2205682119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36095211

RESUMEN

Understanding and predicting the relationship between leaf temperature (Tleaf) and air temperature (Tair) is essential for projecting responses to a warming climate, as studies suggest that many forests are near thermal thresholds for carbon uptake. Based on leaf measurements, the limited leaf homeothermy hypothesis argues that daytime Tleaf is maintained near photosynthetic temperature optima and below damaging temperature thresholds. Specifically, leaves should cool below Tair at higher temperatures (i.e., > ∼25-30°C) leading to slopes <1 in Tleaf/Tair relationships and substantial carbon uptake when leaves are cooler than air. This hypothesis implies that climate warming will be mitigated by a compensatory leaf cooling response. A key uncertainty is understanding whether such thermoregulatory behavior occurs in natural forest canopies. We present an unprecedented set of growing season canopy-level leaf temperature (Tcan) data measured with thermal imaging at multiple well-instrumented forest sites in North and Central America. Our data do not support the limited homeothermy hypothesis: canopy leaves are warmer than air during most of the day and only cool below air in mid to late afternoon, leading to Tcan/Tair slopes >1 and hysteretic behavior. We find that the majority of ecosystem photosynthesis occurs when canopy leaves are warmer than air. Using energy balance and physiological modeling, we show that key leaf traits influence leaf-air coupling and ultimately the Tcan/Tair relationship. Canopy structure also plays an important role in Tcan dynamics. Future climate warming is likely to lead to even greater Tcan, with attendant impacts on forest carbon cycling and mortality risk.


Asunto(s)
Ciclo del Carbono , Carbono , Bosques , Hojas de la Planta , Carbono/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/metabolismo , Temperatura
2.
PLoS Comput Biol ; 19(6): e1011075, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37289841

RESUMEN

Interactions between stressed organisms and their microbiome environments may provide new routes for understanding and controlling biological systems. However, microbiomes are a form of high-dimensional data, with thousands of taxa present in any given sample, which makes untangling the interaction between an organism and its microbial environment a challenge. Here we apply Latent Dirichlet Allocation (LDA), a technique for language modeling, which decomposes the microbial communities into a set of topics (non-mutually-exclusive sub-communities) that compactly represent the distribution of full communities. LDA provides a lens into the microbiome at broad and fine-grained taxonomic levels, which we show on two datasets. In the first dataset, from the literature, we show how LDA topics succinctly recapitulate many results from a previous study on diseased coral species. We then apply LDA to a new dataset of maize soil microbiomes under drought, and find a large number of significant associations between the microbiome topics and plant traits as well as associations between the microbiome and the experimental factors, e.g. watering level. This yields new information on the plant-microbial interactions in maize and shows that LDA technique is useful for studying the coupling between microbiomes and stressed organisms.


Asunto(s)
Microbiota , Interacciones Microbianas , Fenotipo
3.
New Phytol ; 238(3): 952-970, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36694296

RESUMEN

Wildfires are a global crisis, but current fire models fail to capture vegetation response to changing climate. With drought and elevated temperature increasing the importance of vegetation dynamics to fire behavior, and the advent of next generation models capable of capturing increasingly complex physical processes, we provide a renewed focus on representation of woody vegetation in fire models. Currently, the most advanced representations of fire behavior and biophysical fire effects are found in distinct classes of fine-scale models and do not capture variation in live fuel (i.e. living plant) properties. We demonstrate that plant water and carbon dynamics, which influence combustion and heat transfer into the plant and often dictate plant survival, provide the mechanistic linkage between fire behavior and effects. Our conceptual framework linking remotely sensed estimates of plant water and carbon to fine-scale models of fire behavior and effects could be a critical first step toward improving the fidelity of the coarse scale models that are now relied upon for global fire forecasting. This process-based approach will be essential to capturing the influence of physiological responses to drought and warming on live fuel conditions, strengthening the science needed to guide fire managers in an uncertain future.


Asunto(s)
Incendios , Incendios Forestales , Plantas , Fenómenos Fisiológicos de las Plantas , Agua , Carbono , Ecosistema
4.
Plant Physiol ; 189(4): 2061-2071, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35588257

RESUMEN

Understanding mass transport of photosynthates in the phloem of plants is necessary for predicting plant carbon allocation, productivity, and responses to water and thermal stress. Several hypotheses about optimization of phloem structure and function and limitations of phloem transport under drought have been proposed and tested with models and anatomical data. However, the true impact of radial water exchange of phloem conduits with their surroundings on mass transport of photosynthates has not been addressed. Here, the physics of the Munch mechanism of sugar transport is re-evaluated to include local variations in viscosity resulting from the radial water exchange in two dimensions (axial and radial) using transient flow simulations. Model results show an increase in radial water exchange due to a decrease in sap viscosity leading to increased sugar front speed and axial mass transport across a wide range of phloem conduit lengths. This increase is around 40% for active loaders (e.g. crops) and around 20% for passive loaders (e.g. trees). Thus, sugar transport operates more efficiently than predicted by previous models that ignore these two effects. A faster front speed leads to higher phloem resiliency under drought because more sugar can be transported with a smaller pressure gradient.


Asunto(s)
Floema , Azúcares , Transporte Biológico , Carbohidratos , Floema/fisiología , Plantas , Agua
5.
Environ Microbiol ; 23(11): 6676-6693, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34390621

RESUMEN

Leaf litter decomposition is a major carbon input to soil, making it a target for increasing soil carbon storage through microbiome engineering. We expand upon previous findings to show with multiple leaf litter types that microbial composition can drive variation in carbon flow from litter decomposition and specific microbial community features are associated with synonymous patterns of carbon flow among litter types. Although plant litter type selects for different decomposer communities, within a litter type, microbial composition drives variation in the quantity of dissolved organic carbon (DOC) measured at the end of the decomposition period. Bacterial richness was negatively correlated with DOC quantity, supporting our hypothesis that across multiple litter types there are common microbial traits linked to carbon flow patterns. Variation in DOC abundance (i.e. high versus low DOC) driven by microbial composition is tentatively due to differences in bacterial metabolism of labile compounds, rather than catabolism of non-labile substrates such as lignin. The temporal asynchrony of metabolic processes across litter types may be a substantial impediment to discovering more microbial features common to synonymous patterns of carbon flow among litters. Overall, our findings support the concept that carbon flow may be programmed by manipulating microbial community composition.


Asunto(s)
Microbiota , Microbiología del Suelo , Carbono , Ciclo del Carbono , Ecosistema , Hojas de la Planta , Suelo/química
6.
Plant Cell Environ ; 44(12): 3623-3635, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34506038

RESUMEN

Short-term plant respiration (R) increases exponentially with rising temperature, but drought could reduce respiration by reducing growth and metabolism. Acclimation may alter these responses. We examined if species with different drought responses would differ in foliar R response to +4.8°C temperature and -45% precipitation in a field experiment with mature piñon and juniper trees, and if any differences between species were related to differences in photosynthesis rates, shoot growth and nonstructural carbohydrates (NSCs). Short-term foliar R had a Q10 of 1.6 for piñon and 2.6 for juniper. Piñon foliar R did not respond to the +4.8°C temperatures, but R increased 1.4× for juniper. Across treatments, piñon foliage had higher growth, lower NSC content, 29% lower photosynthesis rates, and 44% lower R than juniper. Removing 45% precipitation had little impact on R for either species. Species differences in the response of R under elevated temperature were related to substrate availability and stomatal response to leaf water potential. Despite not acclimating to the higher temperature and having higher R than piñon, greater substrate availability in juniper suggests it could supply respiratory demand for much longer than piñon. Species responses will be critical in ecosystem response to a warmer climate.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Sequías , Calor , Juniperus/fisiología , Fotosíntesis , Pinus/fisiología , Hojas de la Planta/fisiología , Juniperus/crecimiento & desarrollo , Pinus/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo
7.
Oecologia ; 197(4): 921-938, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34657177

RESUMEN

Heat and drought affect plant chemical defenses and thereby plant susceptibility to pests and pathogens. Monoterpenes are of particular importance for conifers as they play critical roles in defense against bark beetles. To date, work seeking to understand the impacts of heat and drought on monoterpenes has primarily focused on young potted seedlings, leaving it unclear how older age classes that are more vulnerable to bark beetles might respond to stress. Furthermore, we lack a clear picture of what carbon resources might be prioritized to support monoterpene synthesis under drought stress. To address this, we measured needle and woody tissue monoterpene concentrations and physiological variables simultaneously from mature piñon pines (Pinus edulis) from a unique temperature and drought manipulation field experiment. While heat had no effect on total monoterpene concentrations, trees under combined heat and drought stress exhibited ~ 85% and 35% increases in needle and woody tissue, respectively, over multiple years. Plant physiological variables like maximum photosynthesis each explained less than 10% of the variation in total monoterpenes for both tissue types while starch and glucose + fructose measured 1-month prior explained ~ 45% and 60% of the variation in woody tissue total monoterpene concentrations. Although total monoterpenes increased under combined stress, some key monoterpenes with known roles in bark beetle ecology decreased. These shifts may make trees more favorable for bark beetle attack rather than well defended, which one might conclude if only considering total monoterpene concentrations. Our results point to cumulative and synergistic effects of heat and drought that may reprioritize carbon allocation of specific non-structural carbohydrates toward defense.


Asunto(s)
Escarabajos , Pinus , Animales , Sequías , Calor , Asignación de Recursos , Árboles
9.
Plant Cell Environ ; 41(7): 1551-1564, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29569276

RESUMEN

Plants close their stomata during drought to avoid excessive water loss, but species differ in respect to the drought severity at which stomata close. The stomatal closure point is related to xylem anatomy and vulnerability to embolism, but it also has implications for phloem transport and possibly phloem anatomy to allow sugar transport at low water potentials. Desiccation-tolerant plants that close their stomata at severe drought should have smaller xylem conduits and/or fewer and smaller interconduit pits to reduce vulnerability to embolism but more phloem tissue and larger phloem conduits compared with plants that avoid desiccation. These anatomical differences could be expected to increase in response to long-term reduction in precipitation. To test these hypotheses, we used tridimensional synchroton X-ray microtomograph and light microscope imaging of combined xylem and phloem tissues of 2 coniferous species: one-seed juniper (Juniperus monosperma) and piñon pine (Pinus edulis) subjected to precipitation manipulation treatments. These species show different xylem vulnerability to embolism, contrasting desiccation tolerance, and stomatal closure points. Our results support the hypothesis that desiccation tolerant plants require higher phloem transport capacity than desiccation avoiding plants, but this can be gained through various anatomical adaptations in addition to changing conduit or tissue size.


Asunto(s)
Juniperus/anatomía & histología , Floema/anatomía & histología , Pinus/anatomía & histología , Árboles/anatomía & histología , Xilema/anatomía & histología , Deshidratación , Juniperus/fisiología , Juniperus/ultraestructura , Microscopía , Floema/fisiología , Floema/ultraestructura , Pinus/fisiología , Pinus/ultraestructura , Estomas de Plantas/fisiología , Estomas de Plantas/ultraestructura , Árboles/fisiología , Árboles/ultraestructura , Microtomografía por Rayos X , Xilema/fisiología , Xilema/ultraestructura
10.
Plant Cell Environ ; 41(11): 2627-2637, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29974965

RESUMEN

Climate warming should result in hotter droughts of unprecedented severity in this century. Such droughts have been linked with massive tree mortality, and data suggest that warming interacts with drought to aggravate plant performance. Yet how forests will respond to hotter droughts remains unclear, as does the suite of mechanisms trees use to deal with hot droughts. We used an ecosystem-scale manipulation of precipitation and temperature on piñon pine (Pinus edulis) and juniper (Juniperus monosperma) trees to investigate nitrogen (N) cycling-induced mitigation processes related to hotter droughts. We found that while negative impacts on plant carbon and water balance are manifest after prolonged drought, performance reductions were not amplified by warmer temperatures. Rather, increased temperatures for 5 years stimulated soil N cycling under piñon trees and modified tree N allocation for both species, resulting in mitigation of hotter drought impacts on tree water and carbon functions. These findings suggest that adjustments in N cycling are likely after multi-year warming conditions and that such changes may buffer reductions in tree performance during hotter droughts. The results highlight our incomplete understanding of trees' ability to acclimate to climate change, raising fundamental questions about the resistance potential of forests to long-term, compound climatic stresses.


Asunto(s)
Ciclo del Nitrógeno , Árboles/fisiología , Carbono/metabolismo , Deshidratación , Sequías , Calor , Juniperus/metabolismo , Juniperus/fisiología , Nitrógeno/metabolismo , Ciclo del Nitrógeno/fisiología , Pinus/metabolismo , Pinus/fisiología , Árboles/metabolismo
11.
Plant Cell Environ ; 41(8): 1926-1934, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29761501

RESUMEN

We investigated stem radial growth and water storage dynamics of 2 conifer species differing in hydraulic carbon strategies, Juniperus monosperma and Pinus edulis, under conditions of ambient, drought (∼45% reduction in precipitation), heat (∼4.8 °C temperature increase), and the combination of drought + heat, in 2013 and 2014. Juniper maintained low growth across all treatments. Overall, the relatively isohydric piñon pine showed significantly greater growth and water storage recharge than the relatively anisohydric juniper across all treatments in the average climate year (2014) but no differences in the regionally dry year (2013). Piñon pine ceased growth at a constant predawn water potential across all treatments and at a less negative water potential threshold than juniper. Heat has a greater negative impact on piñon pines' growth and water storage than drought, whereas juniper was, in contrast, unaffected by heat but strongly impacted by drought. The whole-plant hydraulic carbon strategies, in this case captured using the isohydric/anisohydric concept, translate into alternative growth and water storage strategies under drought and heat conditions.


Asunto(s)
Juniperus/crecimiento & desarrollo , Pinus/crecimiento & desarrollo , Tallos de la Planta/crecimiento & desarrollo , Deshidratación , Respuesta al Choque Térmico , Juniperus/metabolismo , Juniperus/fisiología , Pinus/metabolismo , Pinus/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Tallos de la Planta/metabolismo , Tallos de la Planta/fisiología , Agua/metabolismo
12.
New Phytol ; 213(2): 584-596, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27612306

RESUMEN

The persistence of vegetation under climate change will depend on a plant's capacity to exploit water resources. We analyzed water source dynamics in piñon pine and juniper trees subjected to precipitation reduction, atmospheric warming, and to both simultaneously. Piñon and juniper exhibited different and opposite shifts in water uptake depth in response to experimental stress and background climate over 3 yr. During a dry summer, juniper responded to warming with a shift to shallow water sources, whereas piñon pine responded to precipitation reduction with a shift to deeper sources in autumn. In normal and wet summers, both species responded to precipitation reduction, but juniper increased deep water uptake and piñon increased shallow water uptake. Shifts in the utilization of water sources were associated with reduced stomatal conductance and photosynthesis, suggesting that belowground compensation in response to warming and water reduction did not alleviate stress impacts for gas exchange. We have demonstrated that predicted climate change could modify water sources of trees. Warming impairs juniper uptake of deep sources during extended dry periods. Precipitation reduction alters the uptake of shallow sources following extended droughts for piñon. Shifts in water sources may not compensate for climate change impacts on tree physiology.


Asunto(s)
Cambio Climático , Lluvia , Árboles/fisiología , Agua/fisiología , Deuterio/metabolismo , Marcaje Isotópico , Modelos Teóricos , Isótopos de Oxígeno/metabolismo , Estaciones del Año , Suelo/química , Especificidad de la Especie
13.
Plant Cell Environ ; 40(2): 290-303, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27861997

RESUMEN

Substantial uncertainty surrounds our knowledge of tree stem growth, with some of the most basic questions, such as when stem radial growth occurs through the daily cycle, still unanswered. We employed high-resolution point dendrometers, sap flow sensors, and developed theory and statistical approaches, to devise a novel method separating irreversible radial growth from elastic tension-driven and elastic osmotically driven changes in bark water content. We tested this method using data from five case study species. Experimental manipulations, namely a field irrigation experiment on Scots pine and a stem girdling experiment on red forest gum trees, were used to validate the theory. Time courses of stem radial growth following irrigation and stem girdling were consistent with a-priori predictions. Patterns of stem radial growth varied across case studies, with growth occurring during the day and/or night, consistent with the available literature. Importantly, our approach provides a valuable alternative to existing methods, as it can be approximated by a simple empirical interpolation routine that derives irreversible radial growth using standard regression techniques. Our novel method provides an improved understanding of the relative source-sink carbon dynamics of tree stems at a sub-daily time scale.


Asunto(s)
Modelos Biológicos , Corteza de la Planta/química , Tallos de la Planta/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Agua/análisis , Riego Agrícola , Australia , Eucalyptus/fisiología , Ósmosis , Tallos de la Planta/fisiología , Suiza , Árboles/fisiología
14.
Plant Cell Environ ; 40(9): 1861-1873, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28556263

RESUMEN

Disentangling the relative impacts of precipitation reduction and vapour pressure deficit (VPD) on plant water dynamics and determining whether acclimation may influence these patterns in the future is an important challenge. Here, we report sap flux density (FD ), stomatal conductance (Gs ), hydraulic conductivity (KL ) and xylem anatomy in piñon pine (Pinus edulis) and juniper (Juniperus monosperma) trees subjected to five years of precipitation reduction, atmospheric warming (elevated VPD) and their combined effects. No acclimation occurred under precipitation reduction: lower Gs and FD were found for both species compared to ambient conditions. Warming reduced the sensibility of stomata to VPD for both species but resulted in the maintenance of Gs and FD to ambient levels only for piñon. For juniper, reduced soil moisture under warming negated benefits of stomatal adjustments and resulted in reduced FD , Gs and KL . Although reduced stomatal sensitivity to VPD also occurred under combined stresses, reductions in Gs , FD and KL took place to similar levels as under single stresses for both species. Our results show that stomatal conductance adjustments to high VPD could minimize but not entirely prevent additive effects of warming and drying on water use and carbon acquisition of trees in semi-arid regions.


Asunto(s)
Calentamiento Global , Árboles/fisiología , Agua/fisiología , Desecación , Exudados de Plantas/metabolismo , Estomas de Plantas/fisiología , Estaciones del Año , Estrés Fisiológico , Árboles/crecimiento & desarrollo , Presión de Vapor , Madera/anatomía & histología
15.
Plant Cell Environ ; 39(4): 709-25, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26147312

RESUMEN

Despite the crucial role of carbon transport in whole plant physiology and its impact on plant-environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem-phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment.


Asunto(s)
Adaptación Fisiológica , Carbono/metabolismo , Fenómenos Ecológicos y Ambientales , Floema/fisiología , Estrés Fisiológico , Transporte Biológico
16.
Plant Cell Environ ; 39(1): 38-49, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26081870

RESUMEN

Relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co-occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance and assimilation by heat and drought were more frequent during relatively moist periods, but these effects were not exacerbated in the combined heat and drought treatment. Counter to expectations, both species exhibited similar gs temporal dynamics in response to drought. Further, whereas P. edulis exhibited chronic embolism, J. monosperma showed very little embolism due to its conservative stomatal regulation and maintenance of xylem water potential above the embolism entry point. This tight stomatal control and low levels of embolism experienced by juniper refuted the notion that very low water potentials during drought are associated with loose stomatal control and with the hypothesis that anisohydric species are more prone to hydraulic failure than isohydric species. Because direct association of stomatal behaviour with embolism resistance can be misleading, we advocate consideration of stomatal behaviour relative to embolism resistance for classifying species drought response strategies.


Asunto(s)
Carbono/metabolismo , Juniperus/fisiología , Pinus/fisiología , Transpiración de Plantas/fisiología , Sequías , Modelos Biológicos , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Árboles , Agua/fisiología , Xilema/fisiología
17.
Plant Cell Environ ; 39(9): 2085-94, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27037757

RESUMEN

Water plays a central role in plant biology and the efficiency of water transport throughout the plant affects both photosynthetic rate and growth, an influence that scales up deterministically to the productivity of terrestrial ecosystems. Moreover, hydraulic traits mediate the ways in which plants interact with their abiotic and biotic environment. At landscape to global scale, plant hydraulic traits are important in describing the function of ecological communities and ecosystems. Plant hydraulics is increasingly recognized as a central hub within a network by which plant biology is connected to palaeobiology, agronomy, climatology, forestry, community and ecosystem ecology and earth-system science. Such grand challenges as anticipating and mitigating the impacts of climate change, and improving the security and sustainability of our food supply rely on our fundamental knowledge of how water behaves in the cells, tissues, organs, bodies and diverse communities of plants. A workshop, 'Emerging Frontiers in Plant Hydraulics' supported by the National Science Foundation, was held in Washington DC, 2015 to promote open discussion of new ideas, controversies regarding measurements and analyses, and especially, the potential for expansion of up-scaled and down-scaled inter-disciplinary research, and the strengthening of connections between plant hydraulic research, allied fields and global modelling efforts.


Asunto(s)
Ecosistema , Árboles/fisiología , Agua/fisiología , Ciclo Hidrológico
18.
New Phytol ; 206(1): 411-421, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25412472

RESUMEN

Leaf hydraulics, gas exchange and carbon storage in Pinus edulis and Juniperus monosperma, two tree species on opposite ends of the isohydry-anisohydry spectrum, were analyzed to examine relationships between hydraulic function and carbohydrate dynamics. Leaf hydraulic vulnerability, leaf water potential (Ψl ), leaf hydraulic conductance (Kleaf ), photosynthesis (A), stomatal conductance (gs) and nonstructural carbohydrate (NSC) content were analyzed throughout the growing season. Leaf hydraulic vulnerability was significantly lower in the relatively anisohydric J. monosperma than in the more isohydric P. edulis. In P. edulis, Ψl dropped and stayed below 50% loss of leaf hydraulic conductance (P50) early in the day during May, August and around midday in September, leading to sustained reductions in Kleaf . In J. monosperma, Ψl dropped below P50 only during August, resulting in the maintenance of Kleaf during much of the growing season. Mean A and gs during September were significantly lower in P. edulis than in J. monosperma. Foliar total NSC was two to three times greater in J. monosperma than in P. edulis in June, August and September. Consistently lower levels of total NSC in P. edulis suggest that its isohydric strategy pushes it towards the exhaustion of carbon reserves during much of the growing season.


Asunto(s)
Juniperus/fisiología , Pinus/fisiología , Transpiración de Plantas/fisiología , Metabolismo de los Hidratos de Carbono , Carbono/metabolismo , Fotosíntesis , Hojas de la Planta/fisiología , Estaciones del Año , Árboles , Agua/fisiología
19.
Plant Cell Environ ; 38(4): 729-39, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25159277

RESUMEN

Drought-induced forest mortality is an increasing global problem with wide-ranging consequences, yet mortality mechanisms remain poorly understood. Depletion of non-structural carbohydrate (NSC) stores has been implicated as an important mechanism in drought-induced mortality, but experimental field tests are rare. We used an ecosystem-scale precipitation manipulation experiment to evaluate leaf and twig NSC dynamics of two co-occurring conifers that differ in patterns of stomatal regulation of water loss and recent mortality: the relatively desiccation-avoiding piñon pine (Pinus edulis) and the relatively desiccation-tolerant one-seed juniper (Juniperus monosperma). Piñon pine experienced 72% mortality after 13-25 months of experimental drought and juniper experienced 20% mortality after 32-47 months. Juniper maintained three times more NSC in the foliage than twigs, and converted NSC to glucose and fructose under drought, consistent with osmoregulation requirements to maintain higher stomatal conductance during drought than piñon. Despite these species differences, experimental drought caused decreased leaf starch content in dying trees of both species (P < 0.001). Average dry-season leaf starch content was also a good predictor of drought-survival time for both species (R(2) = 0.93). These results, along with observations of drought-induced reductions to photosynthesis and growth, support carbon limitation as an important process during mortality of these two conifer species.


Asunto(s)
Pinus/fisiología , Carbohidratos , Carbono , Sequías , Ecosistema , Bosques , Juniperus/fisiología , Modelos Biológicos , Fotosíntesis , Pinus/crecimiento & desarrollo , Hojas de la Planta/fisiología , Transpiración de Plantas/fisiología , Lluvia , Estaciones del Año , Suelo , Árboles/crecimiento & desarrollo , Agua/fisiología
20.
Glob Chang Biol ; 21(11): 4210-20, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26149972

RESUMEN

Higher temperatures associated with climate change are anticipated to trigger an earlier start to the growing season, which could increase the terrestrial C sink strength. Greater variability in the amount and timing of precipitation is also expected with higher temperatures, bringing increased drought stress to many ecosystems. We experimentally assessed the effects of higher temperature and drought on the foliar phenology and shoot growth of mature trees of two semiarid conifer species. We exposed field-grown trees to a ~45% reduction in precipitation with a rain-out structure ('drought'), a ~4.8 °C temperature increase with open-top chambers ('heat'), and a combination of both simultaneously ('drought + heat'). Over the 2013 growing season, drought, heat, and drought + heat treatments reduced shoot and needle growth in piñon pine (Pinus edulis) by ≥39%, while juniper (Juniperus monosperma) had low growth and little response to these treatments. Needle emergence on primary axis branches of piñon pine was delayed in heat, drought, and drought + heat treatments by 19-57 days, while secondary axis branches were less likely to produce needles in the heat treatment, and produced no needles at all in the drought + heat treatment. Growth of shoots and needles, and the timing of needle emergence correlated inversely with xylem water tension and positively with nonstructural carbohydrate concentrations. Our findings demonstrate the potential for delayed phenological development and reduced growth with higher temperatures and drought in tree species that are vulnerable to drought and reveal potential mechanistic links to physiological stress responses. Climate change projections of an earlier and longer growing season with higher temperatures, and consequent increases in terrestrial C sink strength, may be incorrect for regions where plants will face increased drought stress with climate change.


Asunto(s)
Cambio Climático , Sequías , Calor , Juniperus/fisiología , Pinus/fisiología , Juniperus/crecimiento & desarrollo , New Mexico , Pinus/crecimiento & desarrollo , Estrés Fisiológico , Árboles/crecimiento & desarrollo , Árboles/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA