Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 74(17): 5104-5123, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37386914

RESUMEN

Xyloglucan, a major hemicellulose, interacts with cellulose and pectin to assemble primary cell walls in plants. Loss of the xyloglucan galactosyltransferase MURUS3 (MUR3) leads to the deficiency of galactosylated xyloglucan and perturbs plant growth. However, it is unclear whether defects in xyloglucan galactosylation influence the synthesis of other wall polysaccharides, cell wall integrity, cytoskeleton behaviour, and endomembrane homeostasis. Here, we found that in mur3-7 etiolated seedlings cellulose was reduced, CELLULOSE SYNTHASE (CESA) genes were down-regulated, the density and mobility of cellulose synthase complexes (CSCs) were decreased, and cellulose microfibrils become discontinuous. Pectin, rhamnogalacturonan II (RGII), and boron contents were reduced in mur3-7 plants, and B-RGII cross-linking was abnormal. Wall porosity and thickness were significantly increased in mur3-7 seedlings. Endomembrane aggregation was also apparent in the mur3-7 mutant. Furthermore, mutant seedlings and their actin filaments were more sensitive to Latrunculin A (LatA) treatment. However, all defects in mur3-7 mutants were substantially restored by exogenous boric acid application. Our study reveals the importance of MUR3-mediated xyloglucan galactosylation for cell wall structural assembly and homeostasis, which is required for the stabilization of the actin cytoskeleton and the endomembrane system.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Xilanos/química , Celulosa , Pared Celular/química , Citoesqueleto de Actina , Pectinas , Plantones
2.
BMC Cardiovasc Disord ; 23(1): 480, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37759159

RESUMEN

BACKGROUND: The aim of this study was to investigate the relationship between Hypersensitive C-reactive protein (hs-CRP) and left ventricular hypertrophy (LVH) in elderly community-dwelling patients with hypertension. METHODS: A cross-sectional study was conducted, involving the recruitment of 365 elderly hypertensive residents ≥ 65 years of age from five communities. The participants were divided into two groups: an LVH group (n = 134) and a non-LVH group (n = 231), based on the left ventricular mass index (LVMI) determined by echocardiography. Spearman correlation analysis was used to assess the relationship between hs-CRP and LVH. Univariate and Multivariate analysis was performed to detect variables associated with LVH. The diagnostic value of hs-CRP for LVH was expressed as the area under the receiver operating characteristic (ROC) curve. RESULTS: The incidence of LVH in elderly hypertension patients in the community was 36.7%. The hs-CRP levels were significantly higher in subjects with LVH compared to those without LVH (1.9 [0.8, 2.9] vs. 0.7 [0.4, 1.4], P = 0.002). Spearman correlation analysis demonstrated a positive correlation between hs-CRP and LVMI (r = 0.246, P < 0.001), as well as with IVST (r = 0.225, P < 0.001) and LVPWT (r = 0.172, P = 0.001). Among elderly hypertensive residents in the community, the cut-off value of hs-CRP for diagnosing LVH was 1.25 mg/L (sensitivity: 57.5%; specificity: 78.4%), and the area under the ROC curve for hs-CRP to predict LVH was 0.710 (95%CI: 0.654-0.766; P < 0.001). In the final model, hs-CRP ≥ 1.25 mg/L (OR = 3.569; 95%CI, 2.153-5.916; P<0.001) emerged as an independent risk factor for LVH. This association remained significant even after adjusting for various confounding factors (adjusted OR = 3.964; 95%CI, 2.323-6.765; P < 0.001). CONCLUSIONS: This community-based cohort of elderly hypertensive individuals demonstrates a strong association between hs-CRP levels and the presence of LVH. The hs-CRP ≥ 1.25 mg/L may serve as an independent predictor for LVH in hypertensive subjects and exhibit good diagnostic efficacy for LVH.


Asunto(s)
Proteína C-Reactiva , Hipertensión , Anciano , Humanos , Proteína C-Reactiva/análisis , Estudios Transversales , Hipertensión/diagnóstico , Hipertensión/epidemiología , Hipertensión/complicaciones , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/epidemiología
3.
Environ Monit Assess ; 194(2): 114, 2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35064834

RESUMEN

To clarify the characteristics and interannual variation of air pollution since the implementation of China's clean air actions, hourly in situ measurements of six gaseous and particulate criteria pollutants at 100 sites in Shandong Province were studied during 2014-2018. General decreasing trends in the concentrations of PM2.5, PM10, NO2, SO2, and CO were observed, while O3 increased continuously. In 2018, the annual average PM2.5, PM10, NO2, SO2, and CO concentration in Shandong was 50, 100, 35, 16 µg m-3, and 1.5 mg m-3, representing decreases of 39%, 30%, 24%, 73%, and 35% from 2014, respectively. These decreases occurred throughout the province. Seven "2 + 26" cities (in Beijing-Tianjin-Hebei and its surrounds) in western Shandong had higher average concentrations and greater reductions than other areas. In contrast, O3 concentration rose, with occurrences of the 90th percentile of all daily maximum 8-h averages increasing by 12% from 159 to 181 µg m-3, during 2014-2018. From May to September, O3 pollution dominated as the sole primary pollutant on non-attainment days, and PM2.5 contributed to more than 90% of polluted days in wintertime months. Population exposures were investigated based on high-resolution monitoring data and population distribution, and high exposure to pollution was displayed. The population-weighted exposure to PM2.5 in Shandong was 50 µg m-3, a decrease of 33%. Eighty-nine percentage of the provincial population was exposed to PM2.5 > 35 µg m-3, while for 99.2% of population in the seven "2 + 26" cities, PM2.5 exposure exceeded 50 µg m-3.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China , Ciudades , Monitoreo del Ambiente , Material Particulado/análisis
4.
Ecotoxicol Environ Saf ; 119: 106-15, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25988436

RESUMEN

Polybrominated diphenyl ethers (PBDEs) are highly persistent anthropogenic contaminants found in the environment, posing a risk to aquatic ecosystems, whereas there is a lack of data concerning their impacts on marine invertebrates. The objective of this study was to assess the relative lethal and sublethal aquatic toxicity effects of two PBDEs, BDE-47 and BDE-209 congeners, on marine zooplankton rotifer Brachionus plicatilis associated with PBDE concentrations and time of exposure. Gas chromatography-mass spectrometry (GC-MS) analyses were performed to determine actual PBDE concentrations. Rotifer population demographic parameters from life tables, including age-specific survivorship (lx), age-specific fecundity (mx), net reproductive rate (R0), intrinsic rate of increase (rm), finite rate of increase (λ), life expectancy (E0) and generation time (T), were used as measures of treatment effects. Results from this study have revealed increasingly intense negative effects on many of the rotifer demographic parameters with elevated PBDE concentrations. The population growth curves of B. plicatilis showed almost no lag phase and reached peak abundances within 11 days, while B. plicatilis exposed to BDE-209 had a lag phase of about 5 days. In addition, increased PBDE levels reduced the population abundances and peak population densities of B. plicatilis. The two PBDEs have caused the carrying capacity (K) suppressed and the negative influence turned more serious as the concentration rose. Results also revealed that the time to reach growth curve inflection point (Tp) was shortened by PBDEs to different degrees. This study not only indicated that life table demography and population growth curve studies were two important aspects used to evaluate toxicant PBDE effects, but also compared the two PBDE disruptions to the population growth and reproduction of the rotifer.


Asunto(s)
Éteres Difenilos Halogenados/toxicidad , Rotíferos/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Cromatografía de Gases y Espectrometría de Masas , Crecimiento Demográfico , Reproducción/efectos de los fármacos , Rotíferos/fisiología , Agua de Mar/química
5.
J Environ Sci (China) ; 28: 54-63, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25662239

RESUMEN

Polybrominated diphenyl ethers (PBDEs) are new kinds of persistent organic pollutants (POPs) and their potential threats to the equilibrium and sustainability of marine ecosystems have raised worldwide concerns. Here, two kinds of PBDEs, tetra-BDE (BDE-47) and deca-BDE (BDE-209) were applied, and their toxic effects on the swimming behavior, population growth and reproduction of Brachionus plicatilis were investigated. The results showed that: (1) The actual concentrations of BDE-47 and -209 in the seawater phase measured by GC-MS (Gas Chromatography-Mass Spectrometer) were much lower than their nominal concentrations. (2) In accordance with the 24-hr acute tests, BDE-209 did not show any obvious swimming inhibition to rotifers, but a good correlation did exist between the swimming inhibition rate and BDE-47 concentration suggesting that BDE-47 is more toxic than BDE-209. (3) Both BDE-47 and -209 had a significant influence on the population growth and reproduction parameters of B. plicatilis including the population growth rate, the ratio of ovigerous females/non-ovigerous females (OF/NOF), the ratio of mictic females/amictic females (MF/AF), resting egg production and the mictic rate, which indicate that these parameters in B. plicatilis population were suitable for monitoring and assessing PBDEs. Our results suggest that BDE-47 and -209 are not acute lethal toxicants and may pose a low risk to marine rotifers at environmental concentrations for short-term exposure. They also accumulate differently into rotifers. Further research data are needed to understand the mechanisms responsible for the effects caused by PBDEs and to assess their risks accurately.


Asunto(s)
Éteres Difenilos Halogenados/toxicidad , Rotíferos/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Femenino , Crecimiento Demográfico , Reproducción/efectos de los fármacos , Rotíferos/fisiología , Natación
6.
Tumour Biol ; 35(9): 9269-79, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24938872

RESUMEN

The targeted small-molecule drug AZD6244 is an allosteric, ATP-noncompetitive inhibitor of MEK1/2 that has shown activity against several malignant tumors. Here, we report that AZD6244 repressed cell growth and induced apoptosis and G1-phase arrest in the breast cancer cell lines MDA-MB-231 and HCC1937. Using microRNA (miRNA) arrays and quantitative RT-PCR, we found that miR-203 was up-regulated after AZD6244 treatment. In accordance with bioinformatics and luciferase activity analyses, CUL1 was found to be the direct target of miR-203. Furthermore, miR-203 inhibition and CUL1 overexpression reversed the cytotoxicity of AZD6244 on the MDA-MB-231 and HCC1937 cells. Collectively, our data indicate that miR-203 mediates the AZD6244-induced cytotoxicity of breast cancer cells and that the MEK/ERK/miR-203/CUL1 signaling pathway may participate in this process.


Asunto(s)
Apoptosis/efectos de los fármacos , Bencimidazoles/farmacología , Proliferación Celular/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba
7.
World J Clin Cases ; 11(19): 4698-4706, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37469734

RESUMEN

BACKGROUND: Subcutaneous emphysema is a well-known complication of oral surgery, especially during mandibular wisdom tooth extraction. However, subcutaneous emphysema secondary to dental procedures such as crown preparation is rare. The main symptom of emphysema is swelling and crepitus on palpation. Uncontrolled emphysema may spread along the fascial planes and cause deep space infections or a pneumomediastinum. CASE SUMMARY: In this paper, we report a 34-year-old female who underwent upper molar tooth preparation for crowns and subsequently developed extensive subcutaneous emphysema on the retromandibular angle on two different occasions. The treatment plan for this patient involved close observation of the airway, and administration of dexamethasone and antibiotics via intravenous drip or orally. Ice bag compression was quickly applied and medication was prescribed to alleviate discomfort and promote healing. Although the main reason is unclear, the presence of a fissure in the molar is an important clue which may contribute to the development of subcutaneous emphysema during crown preparation. It is imperative for dental professionals to recognize such pre-disposing factors in order to minimize the risk of complications. CONCLUSION: This case highlights the need for prompt diagnosis and management of subcutaneous emphysema because of the risk of much more serious complications. Awareness of relatively "benign" subcutaneous emphysema during any dental procedure is critical not only for inexperienced dentists, but also for those who work in rural and remote settings as members of surgical teams. In this study, we review the clinical presentation, mechanism, and differential diagnosis of subcutaneous emphysema.

8.
Drug Discov Ther ; 17(5): 357-362, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37880103

RESUMEN

Disinfection of dental unit waterlines (DUWLs) plays a key role in control and prevention of nosocomial infection in a dental clinic. The most conventional disinfectant is hydrogen peroxide (H2O2), while chlorine dioxide (ClO2) has been considered however was limited by the "activation" procedures. With the availability of commercialized stable ClO2 solution (free of activation), direct application of ClO2 in the dental practice became possible. This study was designed to compare the disinfecting effects of stable 5 ppm of ClO2 solution with conventional 0.24% of H2O2 on DUWLs in dental practice. Studies of colony-forming units (CFUs), confocal laser scanning microscopy (CLSM) and scanning electron microscope (SEM) were employed for evaluation. In CFUs studies, we found that the efficiency of ClO2 was no less than those of H2O2. In the morphological studies, the stronger disinfecting effects of ClO2 was verified by both CLSM and SEM studies for removal and prevention of biofilm. Importantly, ClO2 solution achieved a better disinfecting efficiency not only at the surface of bacterial biofilm, but also, it has penetrating effects, presented disinfecting effects from the surface to the bottom of the biofilm. This pilot study provided evidence regarding the efficiency of stable ClO2 solution on disinfection of DUWLs in the dental practice setting. Application of stable ClO2 solution in dental practice is therefore become possible.


Asunto(s)
Infección Hospitalaria , Peróxido de Hidrógeno , Humanos , Peróxido de Hidrógeno/farmacología , Proyectos Piloto , Biopelículas
9.
Trials ; 24(1): 623, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37779187

RESUMEN

BACKGROUND: Atrial fibrillation (AF) is a common arrhythmia that requires anticoagulation therapy to prevent stroke. However, there is still a significant under-/over-treatment in stroke prevention for patients with AF. The adherence and the risk of bleeding associated with oral anticoagulation therapy (OACs) are major concerns. Shared decision-making (SDM) is an approach that involves patients and healthcare providers in making decisions about treatment options. This study aims to assess the effectiveness of a novel SDM tool for anticoagulation management in AF. METHODS: The study will be a prospective, cluster randomized controlled trial involving 440 patients with AF in 8 community health service centers (clusters) in Shanghai, China. The SDM group will receive anticoagulation management through the novel SDM tool, while the control group will receive standard care. The follow-up period will be at least 2 years. The primary outcome will be any bleeding event, while secondary outcomes include the accordance of stroke prophylaxis for AF according to the current guidelines, time in therapeutic range (TTR), the occurrences of major bleeding and thrombosis events, and patient knowledge, adherence, and satisfaction. DISCUSSION: This study will provide evidence of the effectiveness of shared decision-making in improving the appropriateness of OAC use in Chinese AF patients. The findings may inform the development of guidelines and policies for the management of AF and anticoagulation therapy in China and other countries. TRIAL REGISTRATION: ChiCTR ChiCTR2200062123. Registered on 23 July 2022.


Asunto(s)
Fibrilación Atrial , Accidente Cerebrovascular , Humanos , Fibrilación Atrial/complicaciones , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/tratamiento farmacológico , Anticoagulantes/efectos adversos , Estudios Prospectivos , China , Accidente Cerebrovascular/prevención & control , Accidente Cerebrovascular/complicaciones , Hemorragia/inducido químicamente , Hemorragia/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto
10.
Chemosphere ; 303(Pt 2): 135152, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35649441

RESUMEN

Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants (POPs) that pose serious challenges to aquatic animals and environments. Compared with BDE-47 which was one of the most toxic congeners known to date, BDE-209 is less toxic with higher abundance in biotic and abiotic samples. In this study, we have explored the effects of BDE-47 and BDE-209 at different concentrations on the radical oxygen species (ROS) levels and the antioxidant defense system of Brachionus plicatilis. Antioxidant indexes were measured, including total protein content (TSP), the activities of antioxidant enzymes, lipid peroxidation and DNA damage. The results indicated that while low concentrations of PBDEs could activate the antioxidant defense mechanisms, prolonged exposure to higher concentrations of PBDEs could impair the antioxidative capacity of B.plicatilis (P < 0.05). The overwhelming of the B.plicatilis antioxidant defense mechanism led to an accumulation of free radicals, resulting in the overactivation of lipid peroxidation and the increased frequency of DNA damage (P < 0.05). By studying the toxicity of PBDEs and the detoxification mechanism of B.plicatilis, our research has revealed useful indexes for detecting and monitoring the level of BDE-47 and BDE-209 in the future. Altogether, this study holds immense value in the field of ecotoxicology and environmental safety and will aid in the proper management of PBDEs pollution.


Asunto(s)
Éteres Difenilos Halogenados , Rotíferos , Animales , Antioxidantes/metabolismo , Mecanismos de Defensa , Monitoreo del Ambiente , Éteres Difenilos Halogenados/metabolismo
11.
Front Microbiol ; 13: 976918, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532466

RESUMEN

Lily (Lilium spp.) is one of the most famous ornamental flowers globally. Lily basal rot (also known as root rot or stem rot) and lily gray mold have seriously affected the yield and quality of lily, resulting in huge economic losses. In this study, bacterial strain E was isolated from a continuous lily cropping field. Strain E displayed high control efficiency against lily basal rot and gray mold, caused by Fusarium oxysporum and Botrytis cinerea respectively, and promoted the occurrence of scale bulblets. Strain E displayed strong inhibitory effects against several other plant pathogenic fungi and two pathogenic bacteria in dual culture and disc diffusion assays, respectively. Whole genome sequencing revealed that strain E contained a 3,929,247 bp circular chromosome with 4,056 protein-coding genes and an average GC content of 47.32%. Strain E was classified as Bacillus velezensis using genome-based phylogenetic analysis and average nucleotide identity and digital DNA-DNA hybridization analyses. A total of 86 genes and 13 secondary metabolite biosynthetic gene clusters involved in antifungal and antibacterial activity, plant growth promotion, colonization, nutrient uptake and availability were identified in the genome of strain E. In vitro biochemical assays showed that strain E produced siderophores, proteases, cellulases, biofilms, antifungal and antibacterial substances, and exhibited organic phosphate solubilization and swimming and swarming motility, which were consistent with the results of the genome analysis. Colonization analysis showed that strain E could colonize the root of the lily, but not the leaf. Overall, these results demonstrate that B. velezensis strain E can be used as a potential biofertilizer and biocontrol agent for lily production.

12.
Biomolecules ; 11(6)2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208465

RESUMEN

The increasing incidence of resistance to chemotherapeutic agents has become a major issue in the treatment of oral cancer (OC). Epithelial-mesenchymal transition (EMT) has attracted a great deal of attention in recent years with regard to its relation to the mechanism of chemotherapy drug resistance. EMT-activating transcription factors (EMT-ATFs), such as Snail, TWIST, and ZEB, can activate several different molecular pathways, e.g., PI3K/AKT, NF-κB, and TGF-ß. In contrast, the activated oncological signal pathways provide reciprocal feedback that affects the expression of EMT-ATFs, resulting in a peritumoral extracellular environment conducive to cancer cell survival and evasion of the immune system, leading to resistance to multiple chemotherapeutic agents. We present an overview of evidence-based chemotherapy for OC treatment based on the National Comprehensive Cancer Network (NCCN) Chemotherapy Order Templates. We focus on the molecular pathways involved in drug resistance related to the EMT and highlight the signal pathways and transcription factors that may be important for EMT-regulated drug resistance. Rapid progress in antitumor regimens, together with the application of powerful techniques such as high-throughput screening and microRNA technology, will facilitate the development of therapeutic strategies to augment chemotherapy.


Asunto(s)
Resistencia a Antineoplásicos/fisiología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias de la Boca/tratamiento farmacológico , Antineoplásicos/farmacología , Línea Celular Tumoral , Resistencia a Medicamentos , Resistencia a Antineoplásicos/efectos de los fármacos , Quimioterapia/métodos , Transición Epitelial-Mesenquimal/fisiología , Humanos , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta
13.
J Invest Surg ; 34(3): 243-256, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31122080

RESUMEN

This study compared the in vivo applicability of three-dimensional uncalcined and unsintered hydroxyapatite/poly-d/l-lactide (3D-HA/PDLLA) with beta-tricalcium phosphate (ß-TCP). 3D-HA/PDLLA is a newly developed bioactive, osteoconductive, bioresorbable bone regenerative composite. We performed critical-defect surgery on the mandible body of rats; the defects were filled with one of two bone graft substitutes. After a 4-week follow-up period, the mandibular specimens were examined using hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC) staining and micro-computed tomography (micro-CT). The H&E staining showed an increase in newly formed bone in both groups from week 1 to 4. The difference in the Runx2 IHC optical density (OD) scores of 3D-HA/PDLLA and ß-TCP was not statistically significant (p > 0.05); however, the osteocalcin IHC OD scores of the groups differed significantly (p < 0.05). Micro-CT demonstrated a similar trabecular thickness, trabecular spacing, and bone volume per total volume in the two groups (p > 0.05), indicating that bone formation in the two groups was nearly the same from a macro-perspective of bone regeneration. These results demonstrated that a different bone regeneration pattern and earlier osteoblast differentiation occurred in 3D-HA/PDLLA compared with ß-TCP. In conclusion, our study demonstrates that 3D-HA/PDLLA is feasible for clinical application as a new bioactive, osteoconductive/bioresorbable bone graft substitute for maxillofacial surgery.


Asunto(s)
Sustitutos de Huesos , Animales , Regeneración Ósea , Fosfatos de Calcio , Dioxanos , Durapatita , Ratas , Microtomografía por Rayos X
14.
Cancers (Basel) ; 13(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34885013

RESUMEN

Oral squamous cell carcinoma (OSCC) is a major type of cancer that accounts for over 90% of all oral cancer cases. Recently developed evidence-based therapeutic regimens for OSCC based on monoclonal antibodies (mAbs), such as cetuximab, pembrolizumab, and nivolumab, have attracted considerable attention worldwide due to their high specificity, low toxicity, and low rates of intolerance. However, the efficacy of those three mAbs remains poor because of the low rate of responders and acquired resistance within a short period of time. The epithelial-mesenchymal transition (EMT) process is fundamental for OSCC growth and metastasis and is also responsible for the poor response to mAbs. During EMT, cancer cells consume abundant energy substrates and create an immunosuppressive tumor microenvironment to support their growth and evade T cells. In this review, we provide an overview of the complex roles of major substrates and signaling pathways involved in the development of therapeutic resistance in OSCC. In addition, we summarize potential therapeutic strategies that may help overcome this resistance. This review aims to help oral oncologists and researchers aiming to manage OSCC and establish new treatment modalities.

15.
Nanomaterials (Basel) ; 11(2)2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33503931

RESUMEN

This study was performed to examine the applicability of the newly developed nano-biocomposite, ß-tricalcium phosphate (ß-TCP)/u-HA/poly-d/l-lactide (PDLLA), to bone defects in the oral and maxillofacial area. This novel nano-biocomposite showed several advantages, including biocompatibility, biodegradability, and osteoconductivity. In addition, its optimal plasticity also allowed its utilization in irregular critical bone defect reconstructive surgery. Here, three different nano-biomaterials, i.e., ß-TCP/PDLLA, ß-TCP, and PDLLA, were implanted into critical bone defects in the right lateral mandible of 10-week-old Sprague-Dawley (SD) rats as bone graft substitutes. Micro-computed tomography (Micro-CT) and immunohistochemical staining for the osteogenesis biomarkers, Runx2, osteocalcin, and the leptin receptor, were performed to investigate and compare bone regeneration between the groups. Although the micro-CT results showed the highest bone mineral density (BMD) and bone volume to total volume (BV/TV) with ß-TCP, immunohistochemical analysis indicated better osteogenesis-promoting ability of ß-TCP/PDLLA, especially at an early stage of the bone healing process. These results confirmed that the novel nano-biocomposite, ß-TCP/PDLLA, which has excellent biocompatibility, bioresorbability and bioactive/osteoconductivity, has the potential to become a next-generation biomaterial for use as a bone graft substitute in maxillofacial reconstructive surgery.

16.
Materials (Basel) ; 14(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068558

RESUMEN

Uncalcined/unsintered hydroxyapatite (HA) and poly-l-lactide-co-glycolide (u-HA/PLLA/PGA) are novel bioresorbable bioactive materials with bone regeneration characteristics and have been used to treat mandibular defects in a rat model. However, the bone regenerative interaction with the periosteum, the inflammatory response, and the degradation of this material have not been examined. In this study, we used a rat mandible model to compare the above features in u-HA/PLLA/PGA and uncalcined/unsintered HA and poly-l-lactic acid (u-HA/PLLA). We divided 11 male Sprague-Dawley rats into 3- and 16-week groups. In each group, we assessed the characteristics of a u-HA/PLLA/PGA sheet covering the right mandibular angle and a u-HA/PLLA sheet covering the left mandibular angle in three rats each, and one rat was used as a sham control. The remaining three rats in the 16-week group were used for a degradation assessment and received both sheets of material as in the material assessment subgroup. At 3 and 16 weeks after surgery, the rats were sacrificed, and mandible specimens were subjected to micro-computed tomography, histological analysis, and immunohistochemical staining. The results indicated that the interaction between the periosteum and u-HA/PLLA/PGA material produced significantly more new bone regeneration with a lower inflammatory response and a faster resorption rate compared to u-HA/PLLA alone. These findings may indicate that this new biomaterial has ideal potential in treating maxillofacial defects of the midface and orbital regions.

17.
Materials (Basel) ; 15(1)2021 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-35009297

RESUMEN

The advent of bioresorbable materials to overcome limitations and replace traditional bone-reconstruction titanium-plate systems for bone fixation, thus achieving greater efficiency and safety in medical and dental applications, has ushered in a new era in biomaterial development. Because of its bioactive osteoconductive ability and biocompatibility, the forged composite of uncalcined/unsintered hydroxyapatite and poly L-lactic acid (u-HA/PLLA) has attracted considerable interest from researchers in bone tissue engineering, as well as from clinicians, particularly for applications in maxillofacial reconstructive surgery. Thus, various in vitro studies, in vivo studies, and clinical trials have been conducted to investigate the feasibility and weaknesses of this biomaterial in oral and maxillofacial surgery. Various technical improvements have been proposed to optimize its advantages and limit its disadvantages. This narrative review presents an up-to-date, comprehensive review of u-HA/PLLA, a bioactive osteoconductive and bioresorbable bone-reconstruction and -fixation material, in the context of oral and maxillofacial surgery, notably maxillofacial trauma, orthognathic surgery, and maxillofacial reconstruction. It simultaneously introduces new trends in the development of bioresorbable materials that could used in this field. Various studies have shown the superiority of u-HA/PLLA, a third-generation bioresorbable biomaterial with high mechanical strength, biocompatibility, and bioactive osteoconductivity, compared to other bioresorbable materials. Future developments may focus on controlling its bioactivity and biodegradation rate and enhancing its mechanical strength.

18.
Cancers (Basel) ; 12(3)2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32121061

RESUMEN

As oral squamous cell carcinoma (OSCC) can develop from potentially malignant disorders (PMDs), it is critical to develop methods for early detection to improve the prognosis of patients. Epithelial-mesenchymal transition (EMT) plays an important role during tumor progression and metastasis. The Wnt signaling pathway is an intercellular pathway in animals that also plays a fundamental role in cell proliferation and regeneration, and in the function of many cell or tissue types. Specific components of master regulators such as epithelial cadherin (E-cadherin), Vimentin, adenomatous polyposis coli (APC), Snail, and neural cadherin (N-cadherin), which are known to control the EMT process, have also been implicated in the Wnt cascade. Here, we review recent findings on the Wnt signaling pathway and the expression mechanism. These regulators are known to play roles in EMT and tumor progression, especially in OSCC. Characterizing the mechanisms through which both EMT and the Wnt pathway play a role in these cellular pathways could increase our understanding of the tumor genesis process and may allow for the development of improved therapeutics for OSCC.

19.
Nanomaterials (Basel) ; 11(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374294

RESUMEN

Uncalcined/unsintered hydroxyapatite and poly-l-lactide-co-glycolide (u-HA/PLLA/PGA) is a new bioresorbable nanomaterial with superior characteristics compared with current bioresorbable materials, including appropriate mechanical properties, outstanding bioactive/osteoconductive features, and remarkably shorter resorption time. Nevertheless, the bone regeneration characteristics of this nanomaterial have not been evaluated in maxillofacial reconstructive surgery. In this study, we used a rat mandible model to assess the bone regeneration ability of u-HA/PLLA/PGA material, compared with uncalcined/unsintered hydroxyapatite and poly-l-lactide acid (u-HA/PLLA) material, which has demonstrated excellent bone regenerative ability. A 4-mm-diameter defect was created at the mandibular angle area in 28 Sprague Dawley male rats. The rats were divided into three groups: u-HA/PLLA/PGA (u-HA/PLLA/PGA graft + defect), u-HA/PLLA (u-HA/PLLA graft + defect), and sham control (defect alone). At 1, 3, 8, and 16 weeks after surgeries, the rats were sacrificed and assessed by micro-computed tomography, histological analysis with hematoxylin and eosin staining, and immunohistochemical analyses. The results confirmed that the accelerated bone bioactive/regenerative osteoconduction of u-HA/PLLA/PGA was comparable with that of u-HA/PLLA in the rat mandible model. Furthermore, this new regenerative nanomaterial was able to more rapidly induce bone formation in the early stage and had great potential for further clinical applications in maxillofacial reconstructive surgery.

20.
Materials (Basel) ; 12(18)2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31514283

RESUMEN

Uncalcined and unsintered hydroxyapatite/poly l-lactide (u-HA/PLLA) material has osteoconductive characteristics and is available for use as a maxillofacial osteosynthetic reconstruction device. However, its bone regeneration ability in the maxillofacial region has not been fully investigated. This study is the first to assess the bone regenerative potential of osteoconductive u-HA/PLLA material when it is used for repairing maxillofacial bone defects. A total of 21 Sprague-Dawley male rats were divided into three groups-the u-HA/PLLA, PLLA, or sham control groups. A critical size defect of 4 mm was created in the mandible of each rat. Then, the defect was covered with either a u-HA/PLLA or PLLA sheet on the buccal side. The rats in each group were sacrificed at 2, 4, or 8 weeks. The rats' mandibles were sampled for histological analysis with hematoxylin and eosin staining, histomorphometry, and immunohistochemistry with Runx2 and osteocalcin (OCN) antibody. The amount of newly formed bone in the u-HA/PLLA group was significantly higher than that of the PLLA group. The expression of Runx2 and OCN in the u-HA/PLLA group was also significantly higher. These results demonstrate that the u-HA/PLLA material has excellent bone regenerative ability and confirm its applicability as a reconstructive device in maxillofacial surgery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA