Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nucleic Acids Res ; 51(21): 11652-11667, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37889087

RESUMEN

Fully grown oocytes remain transcriptionally quiescent, yet many maternal mRNAs are synthesized and retained in growing oocytes. We now know that maternal mRNAs are stored in a structure called the mitochondria-associated ribonucleoprotein domain (MARDO). However, the components and functions of MARDO remain elusive. Here, we found that LSM14B knockout prevents the proper storage and timely clearance of mRNAs (including Cyclin B1, Btg4 and other mRNAs that are translationally activated during meiotic maturation), specifically by disrupting MARDO assembly during oocyte growth and meiotic maturation. With decreased levels of storage and clearance, the LSM14B knockout oocytes failed to enter meiosis II, ultimately resulting in female infertility. Our results demonstrate the function of LSM14B in MARDO assembly, and couple the MARDO with mRNA clearance and oocyte meiotic maturation.


Asunto(s)
Oogénesis , ARN Mensajero Almacenado , Femenino , Humanos , Meiosis/genética , Oocitos/fisiología , Oogénesis/genética , ARN Mensajero/genética , ARN Mensajero Almacenado/genética , Ratones Endogámicos C57BL , Masculino , Animales , Ratones
2.
Nucleic Acids Res ; 50(10): 5599-5616, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35640597

RESUMEN

Maternal-to-zygotic transition (MZT) is the first and key step in the control of animal development and intimately related to changes in chromatin structure and histone modifications. H2AK119ub1, an important epigenetic modification in regulating chromatin configuration and function, is primarily catalyzed by PRC1 and contributes to resistance to transcriptional reprogramming in mouse embryos. In this study, the genome-wide dynamic distribution of H2AK119ub1 during MZT in mice was investigated using chromosome immunoprecipitation and sequencing. The results indicated that H2AK119ub1 accumulated in fully grown oocytes and was enriched at the TSSs of maternal genes, but was promptly declined after meiotic resumption at genome-wide including the TSSs of early zygotic genes, by a previously unidentified mechanism. Genetic evidences indicated that ubiquitin-specific peptidase 16 (USP16) is the major deubiquitinase for H2AK119ub1 in mouse oocytes. Conditional knockout of Usp16 in oocytes did not impair their survival, growth, or meiotic maturation. However, oocytes lacking USP16 have defects when undergoing zygotic genome activation or gaining developmental competence after fertilization, potentially associated with high levels of maternal H2AK119ub1 deposition on the zygotic genomes. Taken together, H2AK119ub1 level is declined during oocyte maturation by an USP16-dependent mechanism, which ensures zygotic genome reprogramming and transcriptional activation of essential early zygotic genes.


Asunto(s)
Histonas , Lisina , Animales , Cromatina/genética , Regulación del Desarrollo de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Ratones , Oocitos/metabolismo , Oogénesis/genética , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Cigoto
3.
Nucleic Acids Res ; 50(19): 10896-10913, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35801907

RESUMEN

Post-transcriptional RNA modifications critically regulate various biological processes. N4-acetylcytidine (ac4C) is an epi-transcriptome, which is highly conserved in all species. However, the in vivo physiological functions and regulatory mechanisms of ac4C remain poorly understood, particularly in mammals. In this study, we demonstrate that the only known ac4C writer, N-acetyltransferase 10 (NAT10), plays an essential role in male reproduction. We identified the occurrence of ac4C in the mRNAs of mouse tissues and showed that ac4C undergoes dynamic changes during spermatogenesis. Germ cell-specific ablation of Nat10 severely inhibits meiotic entry and leads to defects in homologous chromosome synapsis, meiotic recombination and repair of DNA double-strand breaks during meiosis. Transcriptomic profiling revealed dysregulation of functional genes in meiotic prophase I after Nat10 deletion. These findings highlight the crucial physiological functions of ac4C modifications in male spermatogenesis and expand our understanding of its role in the regulation of specific physiological processes in vivo.


Asunto(s)
Citidina , Meiosis , Masculino , Ratones , Animales , Meiosis/genética , Citidina/genética , Emparejamiento Cromosómico , Células Germinativas , Mamíferos
4.
Development ; 147(6)2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32094118

RESUMEN

The most significant feature of meiosis is the recombination process during prophase I. CXXC finger protein 1 (CXXC1) binds to CpG islands and mediates the deposition of H3K4me3 by the SETD1 complex. CXXC1 is also predicted to recruit H3K4me3-marked regions to the chromosome axis for the generation of double-strand breaks (DSBs) in the prophase of meiosis. Therefore, we deleted Cxxc1 before the onset of meiosis with Stra8-Cre The conditional knockout mice were completely sterile with spermatogenesis arrested at MII. Knockout of Cxxc1 led to a decrease in the H3K4me3 level from the pachytene to the MII stage and caused transcriptional disorder. Many spermatogenesis pathway genes were expressed early leading to abnormal acrosome formation in arrested MII cells. In meiotic prophase, deletion of Cxxc1 caused delayed DSB repair and improper crossover formation in cells at the pachytene stage, and more than half of the diplotene cells exhibited precocious homologous chromosome segregation in both male and female meiosis. Cxxc1 deletion also led to a significant decrease of H3K4me3 enrichment at DMC1-binding sites, which might compromise DSB generation. Taken together, our results show that CXXC1 is essential for proper meiotic crossover formation in mice and suggest that CXXC1-mediated H3K4me3 plays an essential role in meiotic prophase of spermatogenesis and oogenesis.


Asunto(s)
Intercambio Genético/fisiología , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Meiosis/fisiología , Transactivadores/fisiología , Animales , Células Cultivadas , Embrión de Mamíferos , Femenino , Masculino , Meiosis/genética , Metilación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oogénesis/genética , Procesamiento Proteico-Postraduccional/genética , Espermatogénesis/genética , Transactivadores/genética
5.
Mol Hum Reprod ; 29(6)2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37068378

RESUMEN

Strategies to maximize individual fertility chances are constant requirements of ART. In vitro folliculogenesis may represent a valid option to create a large source of immature ovarian follicles in ART. Efforts are being made to set up mammalian follicle culture protocols with suitable FSH stimuli. In this study, a new type of recombinant FSH (KN015) with a prolonged half-life is proposed as an alternative to canonical FSH. KN015 supports the in vitro development of mouse follicles from primary to preovulatory stage with higher efficiency than canonical FSH and enhanced post-fertilization development rates of the ovulated oocytes. The use of KN015 also allows us to compare the dynamic transcriptome changes in oocytes and granulosa cells at different stages, in vivo and in vitro. In particular, KN015 facilitates mRNA accumulation in growing mouse oocytes and prevents spontaneous luteinization of granulosa cells in vitro. Novel analyses of transcriptome changes in this study reveal that the in vivo oocytes were more efficient than in vitro oocytes in terms of maternal mRNA clearing during meiotic maturation. KN015 promotes the degradation of maternal mRNA during in vitro oocyte maturation, improves cytoplasmic maturation and, therefore, enhances embryonic developmental potential. These findings establish new transcriptome data for oocyte and granulosa cells at the key stages of follicle development, and should help to widen the use of KN015 as a valid and commercially available hormonal support enabling optimized in vitro development of follicles and oocytes.


Asunto(s)
ARN Mensajero Almacenado , Transcriptoma , Femenino , Ratones , Animales , ARN Mensajero Almacenado/metabolismo , Oogénesis/genética , Oocitos/metabolismo , Células de la Granulosa , Hormona Folículo Estimulante/genética , Hormona Folículo Estimulante/farmacología , Hormona Folículo Estimulante/metabolismo , Meiosis , Mamíferos
6.
J Pineal Res ; 74(2): e12846, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36428267

RESUMEN

With the rapid change of people's lifestyle, more childbearing couples live with irregular schedules (i.e., staying up late) and suffer from decreased fertility and abortion, which can be caused by luteal phase defect (LPD). We used continuous light-exposed mice as a model to observe whether continuous light exposure may affect luteinization and luteal function. We showed that the level of progesterone in serum reduced (p < .001), the number of corpus luteum (CL) decreased (p < .01), and the expressions of luteinization-related genes (Lhcgr, Star, Ptgfr, and Runx2), clock genes (Clock and Per1), and Mt1 were downregulated (p < .05) in the ovaries of mice exposed to continuous light, suggesting that continuous light exposure induces defects in luteinization and luteal functions. Strikingly, injection of melatonin (3 mg/kg) could improve luteal functions in continuous light-exposed mice. Moreover, we found that, after 2 h of hCG injection, the level of pERK1/2 in the ovary decreased in the continuous light group, but increased in the melatonin administration group, suggesting that melatonin can improve LPD caused by continuous light exposure through activating the ERK1/2 pathway. In summary, our data demonstrate that continuous light exposure affects ovary luteinization and luteal function, which can be rescued by melatonin.


Asunto(s)
Melatonina , Ovario , Femenino , Embarazo , Ratones , Animales , Ovario/metabolismo , Ratones Endogámicos ICR , Melatonina/farmacología , Melatonina/metabolismo , Cuerpo Lúteo/metabolismo , Progesterona/metabolismo , Luteinización
7.
J Med Genet ; 59(9): 850-857, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34611029

RESUMEN

BACKGROUND: Recurrent preimplantation embryo developmental arrest (RPEA) is the most common cause of assisted reproductive technology treatment failure associated with identified genetic abnormalities. Variants in known maternal genes can only account for 20%-30% of these cases. The underlying genetic causes for the other affected individuals remain unknown. METHODS: Whole exome sequencing was performed for 100 independent infertile females that experienced RPEA. Functional characterisations of the identified candidate disease-causative variants were validated by Sanger sequencing, bioinformatics and in vitro functional analyses, and single-cell RNA sequencing of zygotes. RESULTS: Biallelic variants in ZFP36L2 were associated with RPEA and the recurrent variant (p.Ser308_Ser310del) prevented maternal mRNA decay in zygotes and HeLa cells. CONCLUSION: These findings emphasise the relevance of the relationship between maternal mRNA decay and human preimplantation embryo development and highlight a novel gene potentially responsible for RPEA, which may facilitate genetic diagnoses.


Asunto(s)
Infertilidad Femenina , Blastocisto , Femenino , Células HeLa , Humanos , Infertilidad Femenina/diagnóstico , Infertilidad Femenina/genética , Embarazo , ARN Mensajero Almacenado , Factores de Transcripción/genética , Secuenciación del Exoma
8.
Nucleic Acids Res ; 49(5): 2569-2582, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33621320

RESUMEN

During oogenesis, oocytes gain competence and subsequently undergo meiotic maturation and prepare for embryonic development; trimethylated histone H3 on lysine-4 (H3K4me3) mediates a wide range of nuclear events during these processes. Oocyte-specific knockout of CxxC-finger protein 1 (CXXC1, also known as CFP1) impairs H3K4me3 accumulation and causes changes in chromatin configurations. This study investigated the changes in genomic H3K4me3 landscapes in oocytes with Cxxc1 knockout and the effects on other epigenetic factors such as the DNA methylation, H3K27me3, H2AK119ub1 and H3K36me3. H3K4me3 is overall decreased after knocking out Cxxc1, including both the promoter region and the gene body. CXXC1 and MLL2, which is another histone H3 methyltransferase, have nonoverlapping roles in mediating H3K4 trimethylation during oogenesis. Cxxc1 deletion caused a decrease in DNA methylation levels and affected H3K27me3 and H2AK119ub1 distributions, particularly at regions with high DNA methylation levels. The changes in epigenetic networks implicated by Cxxc1 deletion were correlated with the transcriptional changes in genes in the corresponding genomic regions. This study elucidates the epigenetic changes underlying the phenotypes and molecular defects in oocytes with deleted Cxxc1 and highlights the role of CXXC1 in orchestrating multiple factors that are involved in establishing the appropriate epigenetic states of maternal genome.


Asunto(s)
Epigénesis Genética , Oocitos/metabolismo , Transactivadores/fisiología , Animales , Células Cultivadas , Metilación de ADN , Femenino , Eliminación de Gen , Genoma , Código de Histonas , Histonas/metabolismo , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , Transactivadores/genética , Transcripción Genética
9.
EMBO J ; 37(24)2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30478191

RESUMEN

Meiotic resumption-coupled degradation of maternal transcripts occurs during oocyte maturation in the absence of mRNA transcription. The CCR4-NOT complex has been identified as the main eukaryotic mRNA deadenylase. In vivo functional and mechanistic information regarding its multiple subunits remains insufficient. Cnot6l, one of four genes encoding CCR4-NOT catalytic subunits, is preferentially expressed in mouse oocytes. Genetic deletion of Cnot6l impaired deadenylation and degradation of a subset of maternal mRNAs during oocyte maturation. Overtranslation of these undegraded mRNAs caused microtubule-chromosome organization defects, which led to activation of spindle assembly checkpoint and meiotic cell cycle arrest at prometaphase. Consequently, Cnot6l-/- female mice were severely subfertile. The function of CNOT6L in maturing oocytes is mediated by RNA-binding protein ZFP36L2, not maternal-to-zygotic transition licensing factor BTG4, which interacts with catalytic subunits CNOT7 and CNOT8 of CCR4-NOT Thus, recruitment of different adaptors by different catalytic subunits ensures stage-specific degradation of maternal mRNAs by CCR4-NOT This study provides the first direct genetic evidence that CCR4-NOT-dependent and particularly CNOT6L-dependent decay of selective maternal mRNAs is a prerequisite for meiotic maturation of oocytes.


Asunto(s)
Meiosis , Oocitos/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Ribonucleasas/metabolismo , Animales , Exorribonucleasas , Femenino , Eliminación de Gen , Ratones , Ratones Noqueados , Oocitos/citología , Proteínas/genética , Proteínas/metabolismo , ARN Mensajero/genética , Proteínas Represoras , Ribonucleasas/genética , Tristetraprolina/genética , Tristetraprolina/metabolismo
10.
Nucleic Acids Res ; 48(2): 879-894, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31777931

RESUMEN

An important event of the maternal-to-zygotic transition (MZT) in animal embryos is the elimination of a subset of the maternal transcripts that accumulated during oogenesis. In both invertebrates and vertebrates, a maternally encoded mRNA decay pathway (M-decay) acts before zygotic genome activation (ZGA) while a second pathway, which requires zygotic transcription, subsequently clears additional mRNAs (Z-decay). To date the mechanisms that activate the Z-decay pathway in mammalian early embryos have not been investigated. Here, we identify murine maternal transcripts that are degraded after ZGA and show that inhibition of de novo transcription stabilizes these mRNAs in mouse embryos. We show that YAP1-TEAD4 transcription factor-mediated transcription is essential for Z-decay in mouse embryos and that TEAD4-triggered zygotic expression of terminal uridylyltransferases TUT4 and TUT7 and mRNA 3'-oligouridylation direct Z-decay. Components of the M-decay pathway, including BTG4 and the CCR4-NOT deadenylase, continue to function in Z-decay but require reinforcement from the zygotic factors for timely removal of maternal mRNAs. A long 3'-UTR and active translation confer resistance of Z-decay transcripts to M-decay during oocyte meiotic maturation. The Z-decay pathway is required for mouse embryo development beyond the four-cell stage and contributes to the developmental competence of preimplantation embryos.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Genoma/genética , Proteínas Musculares/genética , ARN Mensajero/genética , Factores de Transcripción/genética , Cigoto/crecimiento & desarrollo , Animales , Embrión de Mamíferos , Desarrollo Embrionario/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Ratones , Nucleotidiltransferasas/genética , Oocitos/crecimiento & desarrollo , Estabilidad del ARN/genética , Receptores CCR4/genética , Factores de Transcripción de Dominio TEA , Proteínas Señalizadoras YAP
11.
Cell Mol Life Sci ; 77(15): 2997-3012, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31676962

RESUMEN

CxxC-finger protein 1 (CFP1)-mediated trimethylated histone H3 at lysine-4 (H3K4me3) during oocyte development enables the oocyte genome to establish the competence to generate a new organism. Nevertheless, it remains unclear to which extent this epigenetic modification forms an instructive component of ovarian follicle development. We investigated the ovarian functions using an oocyte-specific Cxxc1 knockout mouse model, in which the H3K4me3 accumulation is downregulated in oocytes of developing follicles. CFP1-dependent H3K4 trimethylation in oocytes was necessary to maintain the expression of key paracrine factors and to facilitate the communication between an oocyte and the surrounding granulosa cells. The distinct gene expression patterns in cumulus cells within preovulatory follicles were disrupted by the Cxxc1 deletion in oocytes. Both follicle growth and ovulation were compromised after CFP1 deletion, because Cxxc1 deletion in oocytes indirectly impaired essential signaling pathways in granulosa cells that mediate the functions of follicle-stimulating hormone and luteinizing hormone. Therefore, CFP1-regulated epigenetic modification of the oocyte genome influences the responses of ovarian follicles to gonadotropin in a cell-nonautonomous manner.


Asunto(s)
Histonas/metabolismo , Oocitos/metabolismo , Folículo Ovárico/metabolismo , Transactivadores/metabolismo , Animales , Células del Cúmulo/metabolismo , Femenino , Hormona Folículo Estimulante/metabolismo , Células de la Granulosa/citología , Células de la Granulosa/metabolismo , Hormona Luteinizante/metabolismo , Metilación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Folículo Ovárico/crecimiento & desarrollo , Ovulación , Comunicación Paracrina , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Transactivadores/deficiencia , Transactivadores/genética
12.
Nucleic Acids Res ; 47(1): 328-340, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30335155

RESUMEN

Meiotic maturation of mammalian oocytes depends on the temporally and spatially regulated cytoplasmic polyadenylation and translational activation of maternal mRNAs. Cytoplasmic polyadenylation is controlled by cis-elements in the 3'-UTRs of mRNAs including the polyadenylation signal (PAS), which is bound by the cleavage and polyadenylation specificity factor (CPSF) and the cytoplasmic polyadenylation element (CPE), which recruits CPE binding proteins. Using the 3'-UTRs of mouse Cpeb1, Btg4 and Cnot6l mRNAs, we deciphered the combinatorial code that controls developmental stage-specific translation during meiotic maturation: (i) translation of a maternal transcript at the germinal vesicle (GV) stage requires one or more PASs that locate far away from CPEs; (ii) PASs distal and proximal to the 3'-end of the transcripts are equally effective in mediating translation at the GV stage, as long as they are not close to the CPEs; (iii) Both translational repression at the GV stage and activation after germinal vesicle breakdown require at least one CPE adjacent to the PAS; (iv) The numbers and positions of CPEs in relation to PASs within the 3'-UTR of a given transcript determines its repression efficiency in GV oocytes. This study reveals a previously unrecognized non-canonical mechanism by which the proximal PASs mediate 3'-terminal polyadenylation and translation of maternal transcripts.


Asunto(s)
Proteínas de Ciclo Celular/genética , Oocitos/crecimiento & desarrollo , Biosíntesis de Proteínas , Ribonucleasas/genética , Factores de Transcripción/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Regiones no Traducidas 3'/genética , Animales , Citoplasma/genética , Femenino , Células Germinativas/crecimiento & desarrollo , Meiosis/genética , Ratones , Oocitos/metabolismo , Oogénesis/genética , Poliadenilación/genética , ARN Mensajero/genética
13.
Development ; 144(3): 452-463, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27993988

RESUMEN

Mammalian oocyte maturation depends on the translational activation of stored maternal mRNAs upon meiotic resumption. Cytoplasmic polyadenylation element binding protein 1 (CPEB1) is a key oocyte factor that regulates maternal mRNA translation. However, the signal that triggers CPEB1 activation at the onset of mammalian oocyte maturation is not known. We provide evidence that a mitogen-activated protein kinase (MAPK) cascade couples maternal mRNA translation to meiotic cell cycle progression in mouse oocytes by triggering CPEB1 phosphorylation and degradation. Mutations of the phosphorylation sites or ubiquitin E3 ligase binding sites in CPEB1 have a dominant-negative effect in oocytes, and mimic the phenotype of ERK1/2 knockout, by impairing spindle assembly and mRNA translation. Overexpression of the CPEB1 downstream translation activator DAZL in ERK1/2-deficient oocytes partially rescued the meiotic defects, indicating that ERK1/2 is essential for spindle assembly, metaphase II arrest and maternal-zygotic transition (MZT) primarily by triggering the translation of key maternal mRNAs. Taken together, ERK1/2-mediated CPEB1 phosphorylation/degradation is a major mechanism of maternal mRNA translational activation, and is crucial for mouse oocyte maturation and MZT.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Oocitos/citología , Oocitos/metabolismo , ARN Mensajero Almacenado/genética , ARN Mensajero Almacenado/metabolismo , Animales , Ciclo Celular , Proteínas de Ciclo Celular/genética , Femenino , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/fisiología , Meiosis , Ratones , Ratones Noqueados , Modelos Biológicos , Oogénesis , Fosforilación , Estabilidad del ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Porcinos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Cigoto/citología , Cigoto/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
14.
Biol Reprod ; 101(3): 579-590, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30715134

RESUMEN

In mammals, maternal-to-zygotic transition (MZT), or oocyte-to-embryo transition, begins with oocyte meiotic resumption due to the sequential translational activation and destabilization of dormant maternal transcripts stored in the ooplasm. It then continues with the elimination of maternal transcripts during oocyte maturation and fertilization and ends with the full transcriptional activation of the zygotic genome during embryonic development. A hallmark of MZT in mammals is its reliance on translation and the utilization of stored RNAs and proteins, rather than de novo transcription of genes, to sustain meiotic maturation and early development. Impaired maternal mRNA clearance at the onset of MZT prevents zygotic genome activation and causes early arrest of developing embryos. In this review, we discuss recent advances in our knowledge of the mechanisms whereby mRNA translation and degradation are controlled by cytoplasmic polyadenylation and deadenylation which set up the competence of maturing oocyte to accomplish MZT. The emphasis of this review is on the mouse as a model organism for mammals and BTG4 as a licensing factor of MZT under the translational control of the MAPK cascade.


Asunto(s)
Desarrollo Embrionario/genética , Mamíferos/embriología , Mamíferos/genética , Biosíntesis de Proteínas , Estabilidad del ARN/fisiología , ARN Mensajero Almacenado/metabolismo , Cigoto/metabolismo , Animales , Muerte , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Humanos , Parto/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero Almacenado/genética
15.
Mol Hum Reprod ; 21(2): 195-205, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25371539

RESUMEN

In mammals, oocytes within the primordial follicles require a number of essential factors to maintain their survival. However, the survival factors for activated oocytes have been poorly characterized. Recently we reported that damaged DNA binding protein-1 (DDB1), the linker subunit of the cullin ring-finger ubiquitin E3 ligase-4 (CRL4) complex, and its substrate adaptor, DDB1-CUL4 associated factor-1 (DCAF1), were essential for primordial follicle maintenance. In this study we specifically deleted these in the oocytes of growing follicles, to investigate if DDB1 and DCAF1 were also survival factors for activated oocytes. In the ovaries of Ddb1(fl/fl);Zp3-Cre mice, the primordial follicle pool was intact, but awakened oocytes and growing follicles beyond the primary stage were rapidly depleted. In the ovaries of Dcaf1(fl/fl);Pten(fl/fl);Gdf9-Cre and Ddb1(fl/fl);Pten(fl/fl);Gdf9-Cre mice, global primordial follicle activation was stimulated by enhanced PI3K signaling, but the awakened oocytes were rapidly lost due to no CRL4(DCAF1) activity. These mouse models provided original evidence that CRL4(DCAF1) was essential for maintaining oocyte survival, not only those in dormancy at the primordial follicle stage, but also naturally awakened oocytes and those awakened by hyper-activation of PI3K signaling. Interestingly, the oocyte-specific Ddb1 or Dcaf1 knockout mice had ovulation defects even before oocyte exhaustion. CRL4(DCAF1) within oocytes was required for cumulus expansion and ovulation-related somatic gene expression in a cell non-autonomous manner. Granulosa cells that surrounded these Ddb1 or Dcaf1-deleted oocytes exhibited increased rates of apoptosis and showed poor responses to ovulation signals. These results suggested that CRL4 in oocytes also regulated granulosa cell functions in a cell non-autonomous manner.


Asunto(s)
Proteínas Portadoras/metabolismo , Folículo Ovárico/metabolismo , Ovulación/fisiología , Animales , Proteínas Portadoras/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Células de la Granulosa/metabolismo , Factor 9 de Diferenciación de Crecimiento/genética , Factor 9 de Diferenciación de Crecimiento/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oocitos/metabolismo , Folículo Ovárico/fisiología , Ovulación/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Transducción de Señal
16.
Sci Total Environ ; 859(Pt 2): 160431, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36423845

RESUMEN

4-vinylcyclohexene diepoxide (VCD), widely used in industry, is a hazardous compound that can cause premature ovarian failure, but whether maternal VCD exposure affects the health and reproduction of offspring is unknown. Here we focused on the effects of VCD on fertility and physical health of F1 and F2 offspring in mice. The pregnant mice were injected intraperitoneally with different dosages of VCD once every day from 6.5 to 18.5 days post-coitus (dpc). We showed that maternal exposure to VCD during pregnancy significantly reduced the litter size and ovarian reserve, while increasing microtia occurrences of F1 mice. The cytospread staining showed a significant inhibition of meiotic prophase I progression from the zygotene stage to the pachytene stage. Mechanistically, the expression level of DNA damage marker (γ-H2AX) and BAX/BCL2 ratios were significantly increased, and RAD51 and DMC1 were extensively recruited to DNA double strand breaks sites in the oocytes of offspring from VCD-exposed mothers. Overall, our results provide solid evidence showing that maternal exposure to VCD during pregnancy has intergenerational deleterious effects on the offspring.


Asunto(s)
Infertilidad , Exposición Materna , Humanos , Embarazo , Femenino , Ratones , Animales , Exposición Materna/efectos adversos , Meiosis , Oocitos , Ciclohexenos/toxicidad , Compuestos de Vinilo/toxicidad
17.
J Adv Res ; 51: 45-57, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36396044

RESUMEN

INTRODUCTION: The R-loop is a naturally formed three-strand nucleic acid structure that recently has been reported to participate in multiple biological processes and helped answer some previously unexplained scientific questions. Meiosis process involves multiple chromatin-related events such as DNA double-stranded breaks (DSB) formation, repairing and transcriptional dynamics. OBJECTIVES: Explore the regulatory roles and physiological functions of R-loops in the mammalian meiosis process. METHODS: In our study, using genome-wide S9.6 CUT & Tag seq, we first mapped the genomic distribution and dynamic changes of R-loop during the meiotic process in mice, from spermatogonia to secondary spermatocytes. And we further explore the role of R-loop in physiological conditions by constructing conditional knockout mice of Rnaseh1, which deleted the R-loop endonuclease before meiosis entry. RESULTS: R-loop predominantly distributes at promoter-related regions and varies across different meiotic stages. By joint analysis with the corresponding transcriptome, we found that the R-loop was closely related to transcription during the meiotic process. The high frequency of promoter-related R-loop in meiotic cells is usually accompanied by high transcription activity, and we further verified this in the leptotene/zygotene to the pachytene transition process. Moreover, the lack of RNase H1 caused sterility in male mice with R-loop accumulation and abnormal DSB repair in spermatocytes. Further analysis showed that abnormal R-loop accumulation in the leptotene/zygotene stages influenced transcriptional regulation in the pachytene stage. CONCLUSION: The mutual regulation of the R-loop and transcription plays an essential role in spermatogenesis. And R-loop is also important for the normal repair process of DSB during meiosis.


Asunto(s)
Roturas del ADN de Doble Cadena , Estructuras R-Loop , Masculino , Ratones , Animales , Meiosis/genética , Espermatogénesis/genética , Espermatocitos , Ratones Noqueados , Mamíferos/genética
18.
Clin Transl Med ; 13(10): e1236, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37846137

RESUMEN

OBJECTIVE: To reveal whether gut microbiota and their metabolites are correlated with oocyte quality decline caused by circadian rhythm disruption, and to search possible approaches for improving oocyte quality. DESIGN: A mouse model exposed to continuous light was established. The oocyte quality, embryonic development, microbial metabolites and gut microbiota were analyzed. Intragastric administration of microbial metabolites was conducted to confirm the relationship between gut microbiota and oocyte quality and embryonic development. RESULTS: Firstly, we found that oocyte quality and embryonic development decreased in mice exposed to continuous light. Through metabolomics profiling and 16S rDNA-seq, we found that the intestinal absorption capacity of vitamin D was decreased due to significant decrease of bile acids such as lithocholic acid (LCA), which was significantly associated with increased abundance of Turicibacter. Subsequently, the concentrations of anti-Mullerian hormone (AMH) hormone in blood and melatonin in follicular fluid were reduced, which is the main reason for the decline of oocyte quality and early embryonic development, and this was rescued by injection of vitamin D3 (VD3). Secondly, melatonin rescued oocyte quality and embryonic development by increasing the concentration of lithocholic acid and reducing the concentration of oxidative stress metabolites in the intestine. Thirdly, we found six metabolites that could rescue oocyte quality and early embryonic development, among which LCA of 30 mg/kg and NorDCA of 15 mg/kg had the best rescue effect. CONCLUSION: These findings confirm the link between ovarian function and gut microbiota regulation by microbial metabolites and have potential value for improving ovary function.


Asunto(s)
Microbioma Gastrointestinal , Melatonina , Embarazo , Femenino , Ratones , Animales , Vitamina D , Ácidos y Sales Biliares , Melatonina/metabolismo , Oocitos/metabolismo , Desarrollo Embrionario , Ácido Litocólico/farmacología , Ácido Litocólico/metabolismo
19.
Nat Commun ; 13(1): 3191, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35680896

RESUMEN

A decrease in oocyte developmental potential is a major obstacle for successful pregnancy in women of advanced age. However, the age-related epigenetic modifications associated with dynamic transcriptome changes, particularly meiotic maturation-coupled mRNA clearance, have not been adequately characterized in human oocytes. This study demonstrates a decreased storage of transcripts encoding key factors regulating the maternal mRNA degradome in fully grown oocytes of women of advanced age. A similar defect in meiotic maturation-triggered mRNA clearance is also detected in aged mouse oocytes. Mechanistically, the epigenetic and cytoplasmic aspects of oocyte maturation are synchronized in both the normal development and aging processes. The level of histone H3K4 trimethylation (H3K4me3) is high in fully grown mouse and human oocytes derived from young females but decreased during aging due to the decreased expression of epigenetic factors responsible for H3K4me3 accumulation. Oocyte-specific knockout of the gene encoding CxxC-finger protein 1 (CXXC1), a DNA-binding subunit of SETD1 methyltransferase, causes ooplasm changes associated with accelerated aging and impaired maternal mRNA translation and degradation. These results suggest that a network of CXXC1-maintained H3K4me3, in association with mRNA decay competence, sets a timer for oocyte deterioration and plays a role in oocyte aging in both mouse and human oocytes.


Asunto(s)
Histonas , Oocitos , Animales , Femenino , Histonas/genética , Histonas/metabolismo , Humanos , Meiosis/genética , Ratones , Oocitos/metabolismo , Embarazo , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero Almacenado/metabolismo , Transactivadores/metabolismo
20.
Leukemia ; 36(4): 1123-1131, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35039639

RESUMEN

Hematopoietic stress drives quiescent hematopoietic stem cells (HSCs) to proliferate, generating reactive oxygen species (ROS) and oxidative DNA damage including abasic sites. Such a coupling between rapid DNA replication and a burst of abasic site formation during HSC stress responses, however, presents a challenge to accurately repair abasic sites located in replication-associated single-stranded DNA. Here we show that HMCES, a novel shield of abasic sites, plays pivotal roles in overcoming this challenge upon HSC activation. While HMCES was dispensable for steady-state hematopoiesis, Hmces-deficient HSCs exhibited compromised long-term self-renewal capacity in response to hematopoietic stress such as myeloablation and transplantation. Loss of HMCES resulted in accumulation of DNA lesions due to impaired resolution of abasic sites generated by activation-induced ROS in activated HSCs and broad downregulation of DNA damage response and repair pathways. Moreover, Hmces-deficient mice died from bone marrow failure after exposure to sublethal irradiation, which also produces ROS. Notably, dysregulation of HMCES occurs frequently in acute lymphocytic leukemia (ALL) and is associated with poor clinical outcomes. Together, our findings not only highlighted HMCES as a novel genome protector in activated HSCs, but also position it as a potential selective target against ALL while sparing normal hematopoiesis.


Asunto(s)
Daño del ADN , Células Madre Hematopoyéticas , Animales , ADN/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA