Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cell ; 186(6): 1195-1211.e19, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36796363

RESUMEN

Social interactions require awareness and understanding of the behavior of others. Mirror neurons, cells representing an action by self and others, have been proposed to be integral to the cognitive substrates that enable such awareness and understanding. Mirror neurons of the primate neocortex represent skilled motor tasks, but it is unclear if they are critical for the actions they embody, enable social behaviors, or exist in non-cortical regions. We demonstrate that the activity of individual VMHvlPR neurons in the mouse hypothalamus represents aggression performed by self and others. We used a genetically encoded mirror-TRAP strategy to functionally interrogate these aggression-mirroring neurons. We find that their activity is essential for fighting and that forced activation of these cells triggers aggressive displays by mice, even toward their mirror image. Together, we have discovered a mirroring center in an evolutionarily ancient region that provides a subcortical cognitive substrate essential for a social behavior.


Asunto(s)
Agresión , Hipotálamo , Neuronas Espejo , Animales , Ratones , Agresión/fisiología , Hipotálamo/citología , Conducta Social
2.
Cell ; 186(18): 3862-3881.e28, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37572660

RESUMEN

Male sexual behavior is innate and rewarding. Despite its centrality to reproduction, a molecularly specified neural circuit governing innate male sexual behavior and reward remains to be characterized. We have discovered a developmentally wired neural circuit necessary and sufficient for male mating. This circuit connects chemosensory input to BNSTprTac1 neurons, which innervate POATacr1 neurons that project to centers regulating motor output and reward. Epistasis studies demonstrate that BNSTprTac1 neurons are upstream of POATacr1 neurons, and BNSTprTac1-released substance P following mate recognition potentiates activation of POATacr1 neurons through Tacr1 to initiate mating. Experimental activation of POATacr1 neurons triggers mating, even in sexually satiated males, and it is rewarding, eliciting dopamine release and self-stimulation of these cells. Together, we have uncovered a neural circuit that governs the key aspects of innate male sexual behavior: motor displays, drive, and reward.


Asunto(s)
Vías Nerviosas , Conducta Sexual Animal , Animales , Masculino , Neuronas/fisiología , Recompensa , Conducta Sexual Animal/fisiología , Ratones
3.
Cell ; 185(4): 654-671.e22, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35065713

RESUMEN

Sex hormones exert a profound influence on gendered behaviors. How individual sex hormone-responsive neuronal populations regulate diverse sex-typical behaviors is unclear. We performed orthogonal, genetically targeted sequencing of four estrogen receptor 1-expressing (Esr1+) populations and identified 1,415 genes expressed differentially between sexes or estrous states. Unique subsets of these genes were distributed across all 137 transcriptomically defined Esr1+ cell types, including estrous stage-specific ones, that comprise the four populations. We used differentially expressed genes labeling single Esr1+ cell types as entry points to functionally characterize two such cell types, BNSTprTac1/Esr1 and VMHvlCckar/Esr1. We observed that these two cell types, but not the other Esr1+ cell types in these populations, are essential for sex recognition in males and mating in females, respectively. Furthermore, VMHvlCckar/Esr1 cell type projections are distinct from those of other VMHvlEsr1 cell types. Together, projection and functional specialization of dimorphic cell types enables sex hormone-responsive populations to regulate diverse social behaviors.


Asunto(s)
Ciclo Estral/genética , Regulación de la Expresión Génica , Caracteres Sexuales , Conducta Sexual Animal/fisiología , Agresión , Animales , Aromatasa/metabolismo , Trastorno Autístico/genética , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neuronas/metabolismo , Conducta Social
4.
Cell ; 176(5): 1190-1205.e20, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30712868

RESUMEN

Sexually naive animals have to distinguish between the sexes because they show species-typical interactions with males and females without meaningful prior experience. However, central neural pathways in naive mammals that recognize sex of other individuals remain poorly characterized. We examined the role of the principal component of the bed nucleus of stria terminalis (BNSTpr), a limbic center, in social interactions in mice. We find that activity of aromatase-expressing BNSTpr (AB) neurons appears to encode sex of other animals and subsequent displays of mating in sexually naive males. Silencing these neurons in males eliminates preference for female pheromones and abrogates mating success, whereas activating them even transiently promotes male-male mating. Surprisingly, female AB neurons do not appear to control sex recognition, mating, or maternal aggression. In summary, AB neurons represent sex of other animals and govern ensuing social behaviors in sexually naive males.


Asunto(s)
Sistema Límbico/metabolismo , Núcleos Septales/fisiología , Conducta Sexual Animal/fisiología , Amígdala del Cerebelo/fisiología , Animales , Aromatasa/metabolismo , Encéfalo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Feromonas/metabolismo , Caracteres Sexuales , Conducta Social
7.
Cell ; 179(6): 1393-1408.e16, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31735496

RESUMEN

Behaviors are inextricably linked to internal state. We have identified a neural mechanism that links female sexual behavior with the estrus, the ovulatory phase of the estrous cycle. We find that progesterone-receptor (PR)-expressing neurons in the ventromedial hypothalamus (VMH) are active and required during this behavior. Activating these neurons, however, does not elicit sexual behavior in non-estrus females. We show that projections of PR+ VMH neurons to the anteroventral periventricular (AVPV) nucleus change across the 5-day mouse estrous cycle, with ∼3-fold more termini and functional connections during estrus. This cyclic increase in connectivity is found in adult females, but not males, and regulated by estrogen signaling in PR+ VMH neurons. We further show that these connections are essential for sexual behavior in receptive females. Thus, estrogen-regulated structural plasticity of behaviorally salient connections in the adult female brain links sexual behavior to the estrus phase of the estrous cycle.


Asunto(s)
Red Nerviosa/fisiología , Conducta Sexual Animal/fisiología , Animales , Estrógenos/metabolismo , Ciclo Estral/efectos de los fármacos , Femenino , Hormonas Esteroides Gonadales/farmacología , Hipotálamo Anterior/fisiología , Masculino , Ratones Endogámicos C57BL , Red Nerviosa/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ovario/metabolismo , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Receptores de Progesterona/metabolismo , Conducta Sexual Animal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
11.
Cell ; 154(1): 89-102, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23810192

RESUMEN

Genetically hard-wired neural mechanisms must enforce behavioral reproductive isolation because interspecies courtship is rare even in sexually naïve animals of most species. We find that the chemoreceptor Gr32a inhibits male D. melanogaster from courting diverse fruit fly species. Gr32a recognizes nonvolatile aversive cues present on these reproductively dead-end targets, and activity of Gr32a neurons is necessary and sufficient to inhibit interspecies courtship. Male-specific Fruitless (Fru(M)), a master regulator of courtship, also inhibits interspecies courtship. Gr32a and Fru(M) are not coexpressed, but Fru(M) neurons contact Gr32a neurons, suggesting that these genes influence a shared neural circuit that inhibits interspecies courtship. Gr32a and Fru(M) also suppress within-species intermale courtship, but we show that distinct mechanisms preclude sexual displays toward conspecific males and other species. Although this chemosensory pathway does not inhibit interspecies mating in D. melanogaster females, similar mechanisms appear to inhibit this behavior in many other male drosophilids.


Asunto(s)
Drosophila melanogaster/fisiología , Preferencia en el Apareamiento Animal , Animales , Cortejo , Drosophila/clasificación , Drosophila/genética , Drosophila/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Femenino , Especiación Genética , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Cell ; 153(4): 896-909, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23663785

RESUMEN

Sexual dimorphisms in the brain underlie behavioral sex differences, but the function of individual sexually dimorphic neuronal populations is poorly understood. Neuronal sexual dimorphisms typically represent quantitative differences in cell number, gene expression, or other features, and it is unknown whether these dimorphisms control sex-typical behavior exclusively in one sex or in both sexes. The progesterone receptor (PR) controls female sexual behavior, and we find many sex differences in number, distribution, or projections of PR-expressing neurons in the adult mouse brain. Using a genetic strategy we developed, we have ablated one such dimorphic PR-expressing neuronal population located in the ventromedial hypothalamus (VMH). Ablation of these neurons in females greatly diminishes sexual receptivity. Strikingly, the corresponding ablation in males reduces mating and aggression. Our findings reveal the functions of a molecularly defined, sexually dimorphic neuronal population in the brain. Moreover, we show that sexually dimorphic neurons can control distinct sex-typical behaviors in both sexes.


Asunto(s)
Agresión/fisiología , Hipotálamo/metabolismo , Neuronas/metabolismo , Caracteres Sexuales , Conducta Sexual , Animales , Femenino , Hipotálamo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Progesterona/análisis , Receptores de Progesterona/metabolismo , Conducta Sexual Animal
13.
Cell ; 148(3): 596-607, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22304924

RESUMEN

Sex hormones such as estrogen and testosterone are essential for sexually dimorphic behaviors in vertebrates. However, the hormone-activated molecular mechanisms that control the development and function of the underlying neural circuits remain poorly defined. We have identified numerous sexually dimorphic gene expression patterns in the adult mouse hypothalamus and amygdala. We find that adult sex hormones regulate these expression patterns in a sex-specific, regionally restricted manner, suggesting that these genes regulate sex typical behaviors. Indeed, we find that mice with targeted disruptions of each of four of these genes (Brs3, Cckar, Irs4, Sytl4) exhibit extremely specific deficits in sex specific behaviors, with single genes controlling the pattern or extent of male sexual behavior, male aggression, maternal behavior, or female sexual behavior. Taken together, our findings demonstrate that various components of sexually dimorphic behaviors are governed by separable genetic programs.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Perfilación de la Expresión Génica , Hipotálamo/metabolismo , Caracteres Sexuales , Conducta Sexual Animal , Agresión , Animales , Estro/metabolismo , Femenino , Masculino , Conducta Materna , Ratones , Ovario/metabolismo , Testículo/metabolismo , Testosterona/metabolismo
14.
Cell ; 139(1): 61-72, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19804754

RESUMEN

Sex hormones are essential for neural circuit development and sex-specific behaviors. Male behaviors require both testosterone and estrogen, but it is unclear how the two hormonal pathways intersect. Circulating testosterone activates the androgen receptor (AR) and is also converted into estrogen in the brain via aromatase. We demonstrate extensive sexual dimorphism in the number and projections of aromatase-expressing neurons. The masculinization of these cells is independent of AR but can be induced in females by either testosterone or estrogen, indicating a role for aromatase in sexual differentiation of these neurons. We provide evidence suggesting that aromatase is also important in activating male-specific aggression and urine marking because these behaviors can be elicited by testosterone in males mutant for AR and in females subjected to neonatal estrogen exposure. Our results suggest that aromatization of testosterone into estrogen is important for the development and activation of neural circuits that control male territorial behaviors.


Asunto(s)
Encéfalo/metabolismo , Estrógenos/metabolismo , Vías Nerviosas , Caracteres Sexuales , Animales , Animales Recién Nacidos , Aromatasa/metabolismo , Supervivencia Celular , Estrógenos/biosíntesis , Femenino , Masculino , Ratones , Neuronas/metabolismo , Receptores Androgénicos/metabolismo , Conducta Sexual Animal , Territorialidad
15.
Neuron ; 111(6): 787-796.e4, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36708707

RESUMEN

Prairie voles are among a small group of mammals that display long-term social attachment between mating partners. Many pharmacological studies show that signaling via the oxytocin receptor (Oxtr) is critical for the display of social monogamy in these animals. We used CRISPR mutagenesis to generate three different Oxtr-null mutant prairie vole lines. Oxtr mutants displayed social attachment such that males and females showed a behavioral preference for their mating partners over a stranger of the opposite sex, even when assayed using different experimental setups. Mothers lacking Oxtr delivered viable pups, and parents displayed care for their young and raised them to the weanling stage. Together, our studies unexpectedly reveal that social attachment, parturition, and parental behavior can occur in the absence of Oxtr signaling in prairie voles.


Asunto(s)
Pradera , Receptores de Oxitocina , Animales , Masculino , Femenino , Receptores de Oxitocina/genética , Oxitocina , Mamíferos , Arvicolinae , Conducta Social
16.
J Neurosci ; 31(28): 10119-27, 2011 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-21752988

RESUMEN

Primary afferent "pain" fibers (nociceptors) are divided into subclasses based on distinct molecular and anatomical features, and these classes mediate noxious modality-specific contributions to behaviors evoked by painful stimuli. Whether the heat and capsaicin receptor transient receptor potential vanilloid-1 (TRPV1) is expressed heterogeneously across several sensory populations, or is selectively expressed by a unique nociceptor subclass, however, is unclear. Here we used two lines of Trpv1 reporter mice to investigate the primary afferent expression of TRPV1, both during development and in the adult. We demonstrate, using Cre-induced lineage tracing, that during development TRPV1 is transiently expressed in a wide range of dorsal root ganglion neurons, and that its expression is gradually refined, such that TRPV1 transcripts become restricted to a specific subset of peptidergic sensory neurons. Finally, the remarkable sensitivity that is characteristic of these reporter mice revealed an innervation of central and peripheral targets by TRPV1+ primary afferents in the adult that is considerably more extensive than has previously been appreciated.


Asunto(s)
Ganglios Espinales/metabolismo , Neuronas Aferentes/metabolismo , Neuropéptidos/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Transgénicos , Nociceptores/metabolismo , Canales Catiónicos TRPV/genética
17.
J Neurosci ; 31(13): 5067-77, 2011 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-21451044

RESUMEN

The heat and capsaicin receptor, TRPV1, is required for the detection of painful heat by primary afferent pain fibers (nociceptors), but the extent to which functional TRPV1 channels are expressed in the CNS is debated. Because previous evidence is based primarily on indirect physiological responses to capsaicin, here we genetically modified the Trpv1 locus to reveal, with excellent sensitivity and specificity, the distribution of TRPV1 in all neuronal and non-neuronal tissues. In contrast to reports of widespread and robust expression in the CNS, we find that neuronal TRPV1 is primarily restricted to nociceptors in primary sensory ganglia, with minimal expression in a few discrete brain regions, most notably in a contiguous band of cells within and adjacent to the caudal hypothalamus. We confirm hypothalamic expression in the mouse using several complementary approaches, including in situ hybridization, calcium imaging, and electrophysiological recordings. Additional in situ hybridization experiments in rat, monkey, and human brain demonstrate that the restricted expression of TRPV1 in the CNS is conserved across species. Outside of the CNS, we find TRPV1 expression in a subset of arteriolar smooth muscle cells within thermoregulatory tissues. Here, capsaicin increases calcium uptake and induces vasoconstriction, an effect that likely counteracts the vasodilation produced by activation of neuronal TRPV1.


Asunto(s)
Arteriolas/metabolismo , Química Encefálica/genética , Regulación de la Expresión Génica , Genes Reporteros , Miocitos del Músculo Liso/metabolismo , Canales Catiónicos TRPV/biosíntesis , Animales , Arteriolas/química , Humanos , Hipotálamo/química , Hipotálamo/metabolismo , Macaca fascicularis , Masculino , Ratones , Ratones Transgénicos , Miocitos del Músculo Liso/química , Ratas , Ratas Sprague-Dawley , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/fisiología , Vasoconstricción/genética , Vasodilatación/genética
18.
Curr Biol ; 16(19): R842-4, 2006 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-17027479

RESUMEN

Successful suckling is vital to the survival of mammalian newborns. In many mammals, nursing behavior is triggered by maternally derived odors. Such odors may also promote the learned association of odorant cues present in the environment during nursing.


Asunto(s)
Conducta Animal , Señales (Psicología) , Lactancia/fisiología , Feromonas/fisiología , Conejos/fisiología , Animales , Animales Lactantes/fisiología , Aprendizaje por Asociación , Odorantes
19.
Nat Neurosci ; 8(12): 1660-2, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16261133

RESUMEN

Odors detected by the vomeronasal organ or the main olfactory epithelium (MOE) trigger social behaviors in many animals. It is unknown whether MOE neurons detect cues that initiate mating or aggression. We demonstrate that mice lacking functional CNGA2 (cyclic nucleotide-gated channel alpha2), which is required for odor-evoked MOE signaling, fail to mate or fight, suggesting a broad and essential role for the MOE in regulating these behaviors.


Asunto(s)
Agresión/fisiología , Canales Iónicos/genética , Mucosa Olfatoria/metabolismo , Feromonas/fisiología , Conducta Sexual Animal/fisiología , Olfato/genética , Animales , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Femenino , Masculino , Ratones , Ratones Noqueados , Sistemas Neurosecretores/fisiología , Bulbo Olfatorio/fisiología , Vías Olfatorias/fisiología , Caracteres Sexuales , Transmisión Sináptica/fisiología , Órgano Vomeronasal/fisiología
20.
Cell Rep ; 27(9): 2527-2536.e4, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31141679

RESUMEN

Genetically wired neural mechanisms inhibit mating between species because even naive animals rarely mate with other species. These mechanisms can evolve through changes in expression or function of key genes in sensory pathways or central circuits. Gr32a is a gustatory chemoreceptor that, in D. melanogaster, is essential to inhibit interspecies courtship and sense quinine. Similar to D. melanogaster, we find that D. simulans Gr32a is expressed in foreleg tarsi, sensorimotor appendages that inhibit interspecies courtship, and it is required to sense quinine. Nevertheless, Gr32a is not required to inhibit interspecies mating by D. simulans males. However, and similar to its function in D. melanogaster, Ppk25, a member of the Pickpocket family, promotes conspecific courtship in D. simulans. Together, we have identified distinct evolutionary mechanisms underlying chemosensory control of taste and courtship in closely related Drosophila species.


Asunto(s)
Evolución Biológica , Cortejo/psicología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Drosophila simulans/fisiología , Receptores de Superficie Celular/metabolismo , Conducta Sexual Animal , Gusto/fisiología , Animales , Comunicación Celular , Células Quimiorreceptoras , Proteínas de Drosophila/genética , Femenino , Masculino , Feromonas , Receptores de Superficie Celular/genética , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA