Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(15): e2206217120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011198

RESUMEN

RNA-binding protein (RBP) dysfunction is a fundamental hallmark of amyotrophic lateral sclerosis (ALS) and related neuromuscular disorders. Abnormal neuronal excitability is also a conserved feature in ALS patients and disease models, yet little is known about how activity-dependent processes regulate RBP levels and functions. Mutations in the gene encoding the RBP Matrin 3 (MATR3) cause familial disease, and MATR3 pathology has also been observed in sporadic ALS, suggesting a key role for MATR3 in disease pathogenesis. Here, we show that glutamatergic activity drives MATR3 degradation through an NMDA receptor-, Ca2+-, and calpain-dependent mechanism. The most common pathogenic MATR3 mutation renders it resistant to calpain degradation, suggesting a link between activity-dependent MATR3 regulation and disease. We also demonstrate that Ca2+ regulates MATR3 through a nondegradative process involving the binding of Ca2+/calmodulin to MATR3 and inhibition of its RNA-binding ability. These findings indicate that neuronal activity impacts both the abundance and function of MATR3, underscoring the effect of activity on RBPs and providing a foundation for further study of Ca2+-coupled regulation of RBPs implicated in ALS and related neurological diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Calpaína/genética , Calpaína/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Asociadas a Matriz Nuclear/metabolismo
2.
Cerebellum ; 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38165578

RESUMEN

The Cerebellar Cognitive Affective/Schmahmann Syndrome (CCAS) manifests as impaired executive control, linguistic processing, visual spatial function, and affect regulation. The CCAS has been described in the spinocerebellar ataxias (SCAs), but its prevalence is unknown. We analyzed results of the CCAS/Schmahmann Scale (CCAS-S), developed to detect and quantify CCAS, in two natural history studies of 309 individuals Symptomatic for SCA1, SCA2, SCA3, SCA6, SCA7, or SCA8, 26 individuals Pre-symptomatic for SCA1 or SCA3, and 37 Controls. We compared total raw scores, domain scores, and total fail scores between Symptomatic, Pre-symptomatic, and Control cohorts, and between SCA types. We calculated scale sensitivity and selectivity based on CCAS category designation among Symptomatic individuals and Controls, and correlated CCAS-S performance against age and education, and in Symptomatic patients, against genetic repeat length, onset age, disease duration, motor ataxia, depression, and fatigue. Definite CCAS was identified in 46% of the Symptomatic group. False positive rate among Controls was 5.4%. Symptomatic individuals had poorer global CCAS-S performance than Controls, accounting for age and education. The domains of semantic fluency, phonemic fluency, and category switching that tap executive function and linguistic processing consistently separated Symptomatic individuals from Controls. CCAS-S scores correlated most closely with motor ataxia. Controls were similar to Pre-symptomatic individuals whose nearness to symptom onset was unknown. The use of the CCAS-S identifies a high CCAS prevalence in a large cohort of SCA patients, underscoring the utility of the scale and the notion that the CCAS is the third cornerstone of clinical ataxiology.

3.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34312226

RESUMEN

Mechanisms controlling myelination during central nervous system (CNS) maturation play a pivotal role in the development and refinement of CNS circuits. The transcription factor THAP1 is essential for timing the inception of myelination during CNS maturation through a cell-autonomous role in the oligodendrocyte lineage. Here, we demonstrate that THAP1 modulates the extracellular matrix (ECM) composition by regulating glycosaminoglycan (GAG) catabolism within oligodendrocyte progenitor cells (OPCs). Thap1-/- OPCs accumulate and secrete excess GAGs, inhibiting their maturation through an autoinhibitory mechanism. THAP1 controls GAG metabolism by binding to and regulating the GusB gene encoding ß-glucuronidase, a GAG-catabolic lysosomal enzyme. Applying GAG-degrading enzymes or overexpressing ß-glucuronidase rescues Thap1-/- OL maturation deficits in vitro and in vivo. Our studies establish lysosomal GAG catabolism within OPCs as a critical mechanism regulating oligodendrocyte development.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Matriz Extracelular/metabolismo , Lisosomas/metabolismo , Animales , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Ratones , Ratones Noqueados
4.
Cerebellum ; 22(5): 790-809, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35962273

RESUMEN

Spinocerebellar ataxias (SCAs) are progressive neurodegenerative disorders, but there is no metric that predicts disease severity over time. We hypothesized that by developing a new metric, the Severity Factor (S-Factor) using immutable disease parameters, it would be possible to capture disease severity independent of clinical rating scales. Extracting data from the CRC-SCA and READISCA natural history studies, we calculated the S-Factor for 438 participants with symptomatic SCA1, SCA2, SCA3, or SCA6, as follows: ((length of CAG repeat expansion - maximum normal repeat length) /maximum normal repeat length) × (current age - age at disease onset) × 10). Within each SCA type, the S-Factor at the first Scale for the Assessment and Rating of Ataxia (SARA) visit (baseline) was correlated against scores on SARA and other motor and cognitive assessments. In 281 participants with longitudinal data, the slope of the S-Factor over time was correlated against slopes of scores on SARA and other motor rating scales. At baseline, the S-Factor showed moderate-to-strong correlations with SARA and other motor rating scales at the group level, but not with cognitive performance. Longitudinally the S-Factor slope showed no consistent association with the slope of performance on motor scales. Approximately 30% of SARA slopes reflected a trend of non-progression in motor symptoms. The S-Factor is an observer-independent metric of disease burden in SCAs. It may be useful at the group level to compare cohorts at baseline in clinical studies. Derivation and examination of the S-factor highlighted challenges in the use of clinical rating scales in this population.


Asunto(s)
Ataxias Espinocerebelosas , Humanos , Ataxias Espinocerebelosas/diagnóstico , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/epidemiología , Gravedad del Paciente , Progresión de la Enfermedad
5.
Mol Pharmacol ; 102(1): 438-449, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35489717

RESUMEN

Impaired cerebellar Purkinje neuron firing resulting from reduced expression of large-conductance calcium-activated potassium (BK) channels is a consistent feature in models of inherited neurodegenerative spinocerebellar ataxia (SCA). Restoring BK channel expression improves motor function and delays cerebellar degeneration, indicating that BK channels are an attractive therapeutic target. Current BK channel activators lack specificity and potency and are therefore poor templates for future drug development. We implemented an automated patch clamp platform for high-throughput drug discovery of BK channel activators using the Nanion SyncroPatch 384PE system. We screened over 15,000 compounds for their ability to increase BK channel current amplitude under conditions of lower intracellular calcium that is present in disease. We identified several novel BK channel activators that were then retested on the SyncroPatch 384PE to generate concentration-response curves (CRCs). Compounds with favorable CRCs were subsequently tested for their ability to improve irregular cerebellar Purkinje neuron spiking, characteristic of BK channel dysfunction in SCA1 mice. We identified a novel BK channel activator, 4-chloro-N-(5-chloro-2-cyanophenyl)-3-(trifluoromethyl)benzene-1-sulfonamide (herein renamed BK-20), that exhibited a more potent half-maximal activation of BK current (pAC50 = 4.64) than NS-1619 (pAC50 = 3.7) at a free internal calcium concentration of 270 nM in a heterologous expression system and improved spiking regularity in SCA1 Purkinje neurons. BK-20 had no activity on small-conductance calcium-activated potassium (SK)1-3 channels but interestingly was a potent blocker of the T-type calcium channel, Cav3.1 (IC50 = 1.05 µM). Our work describes both a novel compound for further drug development in disorders with irregular Purkinje spiking and a unique platform for drug discovery in degenerative ataxias. SIGNIFICANCE STATEMENT: Motor impairment associated with altered Purkinje cell spiking due to dysregulation of large-conductance calcium-activated potassium (BK) channel expression and function is a shared feature of disease in many degenerative ataxias. BK channel activators represent an outstanding therapeutic agent for ataxia. We have developed a high-throughput platform to screen for BK channel activators and identified a novel compound that can serve as a template for future drug development for the treatment of these disabling disorders.


Asunto(s)
Ataxia Cerebelosa , Canales de Potasio Calcio-Activados , Ataxias Espinocerebelosas , Animales , Ataxia , Calcio/metabolismo , Ataxia Cerebelosa/tratamiento farmacológico , Canales de Potasio de Gran Conductancia Activados por el Calcio , Ratones , Potasio/metabolismo , Ataxias Espinocerebelosas/metabolismo
6.
Hum Mol Genet ; 29(19): 3249-3265, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-32964235

RESUMEN

Selective neuronal vulnerability in neurodegenerative disease is poorly understood. Using the ATXN1[82Q] model of spinocerebellar ataxia type 1 (SCA1), we explored the hypothesis that regional differences in Purkinje neuron degeneration could provide novel insights into selective vulnerability. ATXN1[82Q] Purkinje neurons from the anterior cerebellum were found to degenerate earlier than those from the nodular zone, and this early degeneration was associated with selective dysregulation of ion channel transcripts and altered Purkinje neuron spiking. Efforts to understand the basis for selective dysregulation of channel transcripts revealed modestly increased expression of the ATXN1 co-repressor Capicua (Cic) in anterior cerebellar Purkinje neurons. Importantly, disrupting the association between ATXN1 and Cic rescued the levels of these ion channel transcripts, and lentiviral overexpression of Cic in the nodular zone accelerated both aberrant Purkinje neuron spiking and neurodegeneration. These findings reinforce the central role for Cic in SCA1 cerebellar pathophysiology and suggest that only modest reductions in Cic are needed to have profound therapeutic impact in SCA1.


Asunto(s)
Ataxina-1/metabolismo , Activación del Canal Iónico , Neuronas/patología , Células de Purkinje/patología , Proteínas Represoras/metabolismo , Ataxias Espinocerebelosas/patología , Animales , Ataxina-1/genética , Femenino , Técnicas de Sustitución del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Células de Purkinje/metabolismo , Proteínas Represoras/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo
7.
Nat Rev Neurosci ; 18(10): 613-626, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28855740

RESUMEN

The dominantly inherited spinocerebellar ataxias (SCAs) are a large and diverse group of neurodegenerative diseases. The most prevalent SCAs (SCA1, SCA2, SCA3, SCA6 and SCA7) are caused by expansion of a glutamine-encoding CAG repeat in the affected gene. These SCAs represent a substantial portion of the polyglutamine neurodegenerative disorders and provide insight into this class of diseases as a whole. Recent years have seen considerable progress in deciphering the clinical, pathological, physiological and molecular aspects of the polyglutamine SCAs, with these advances establishing a solid base from which to pursue potential therapeutic approaches.


Asunto(s)
Péptidos/genética , Ataxias Espinocerebelosas , Animales , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Humanos , Modelos Genéticos , Modelos Neurológicos , Mutación , Proteínas del Tejido Nervioso/genética , Péptidos/fisiología , Ataxias Espinocerebelosas/diagnóstico , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/fisiopatología
8.
Sensors (Basel) ; 22(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35591203

RESUMEN

Intensive balance and coordination training is the mainstay of treatment for symptoms of impaired balance and mobility in individuals with hereditary cerebellar ataxia. In this study, we compared the effects of home-based balance and coordination training with and without vibrotactile SA for individuals with hereditary cerebellar ataxia. Ten participants (five males, five females; 47 ± 12 years) with inherited forms of cerebellar ataxia were recruited to participate in a 12-week crossover study during which they completed two six-week blocks of balance and coordination training with and without vibrotactile SA. Participants were instructed to perform balance and coordination exercises five times per week using smartphone balance trainers that provided written, graphic, and video guidance and measured trunk sway. The pre-, per-, and post-training performance were assessed using the Scale for the Assessment and Rating of Ataxia (SARA), SARAposture&gait sub-scores, Dynamic Gait Index, modified Clinical Test of Sensory Interaction in Balance, Timed Up and Go performed with and without a cup of water, and multiple kinematic measures of postural sway measured with a single inertial measurement unit placed on the participants' trunks. To explore the effects of training with and without vibrotactile SA, we compared the changes in performance achieved after participants completed each six-week block of training. Among the seven participants who completed both blocks of training, the change in the SARA scores and SARAposture&gait sub-scores following training with vibrotactile SA was not significantly different from the change achieved following training without SA (p>0.05). However, a trend toward improved SARA scores and SARAposture&gait sub-scores was observed following training with vibrotactile SA; compared to their pre-vibrotacile SA training scores, participants significantly improved their SARA scores (mean=−1.21, p=0.02) and SARAposture&gait sub-scores (mean=−1.00, p=0.01). In contrast, no significant changes in SARA scores and SARAposture&gait sub-scores were observed following the six weeks of training without SA compared to their pre-training scores immediately preceding the training block without vibrotactile SA (p>0.05). No significant changes in trunk kinematic sway parameters were observed as a result of training (p>0.05). Based on the findings from this preliminary study, balance and coordination training improved the participants' motor performance, as captured through the SARA. Vibrotactile SA may be a beneficial addition to training regimens for individuals with hereditary cerebellar ataxia, but additional research with larger sample sizes is needed to assess the significance and generalizability of these findings.


Asunto(s)
Ataxia Cerebelosa , Trastornos Neurológicos de la Marcha , Modalidades de Fisioterapia , Trastornos de la Sensación , Adulto , Ataxia Cerebelosa/etiología , Ataxia Cerebelosa/terapia , Estudios Cruzados , Retroalimentación , Femenino , Marcha , Trastornos Neurológicos de la Marcha/terapia , Humanos , Masculino , Persona de Mediana Edad , Equilibrio Postural , Autocuidado , Trastornos de la Sensación/terapia , Teléfono Inteligente/instrumentación , Telerrehabilitación/instrumentación , Tacto , Vibración
9.
Mov Disord ; 36(3): 622-631, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33151010

RESUMEN

BACKGROUND: A combination of central muscle relaxants, chlorzoxazone and baclofen (chlorzoxazone-baclofen), has been proposed for treatment of cerebellar symptoms in human spinocerebellar ataxia. However, central muscle relaxants can worsen balance. The optimal dose for target engagement without toxicity remains unknown. Using the genetically precise Atxn1154Q/2Q model of spinocerebellar ataxia type 1, we aimed to determine the role of cerebellar dysfunction in motor impairment. We also aimed to identify appropriate concentrations of chlorzoxazone-baclofen needed for target engagement without toxicity to plan for human clinical trials. METHODS: We use patch clamp electrophysiology in acute cerebellar slices and immunostaining to identify the specific ion channels targeted by chlorzoxazone-baclofen. Behavioral assays for coordination and grip strength are used to determine specificity of chlorzoxazone-baclofen for improving cerebellar dysfunction without off-target effects in Atxn1154Q/2Q mice. RESULTS: We identify irregular Purkinje neuron firing in association with reduced expression of ion channels Kcnma1 and Cacna1g in Atxn1154Q/2Q mice. Using in vitro electrophysiology in brain slices, we identified concentrations of chlorzoxazone-baclofen that improve Purkinje neuron spike regularity without reducing firing frequency. At a disease stage in Atxn1154Q/2Q mice when motor impairment is due to cerebellar dysfunction, orally administered chlorzoxazone-baclofen improves motor performance without affecting muscle strength. CONCLUSION: We identify a tight relationship between baclofen-chlorzoxazone concentrations needed to engage target and levels above which cerebellar function will be compromised. We propose to use this information for a novel clinical trial design, using sequential dose escalation within each subject, to identify dose levels that are likely to improve ataxia symptoms while minimizing toxicity. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Canales de Calcio Tipo T , Ataxias Espinocerebelosas , Animales , Ataxina-1/metabolismo , Baclofeno , Cerebelo/metabolismo , Clorzoxazona , Modelos Animales de Enfermedad , Ratones , Células de Purkinje , Ataxias Espinocerebelosas/genética
10.
Cerebellum ; 20(1): 41-53, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32789747

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is the second-most common CAG repeat disease, caused by a glutamine-encoding expansion in the ATXN3 protein. SCA3 is characterized by spinocerebellar degeneration leading to progressive motor incoordination and early death. Previous studies suggest that potassium channel dysfunction underlies early abnormalities in cerebellar cortical Purkinje neuron firing in SCA3. However, cerebellar cortical degeneration is often modest both in the human disease and mouse models of SCA3, raising uncertainty about the role of cerebellar dysfunction in SCA3. Here, we address this question by investigating Purkinje neuron excitability in SCA3. In early-stage SCA3 mice, we confirm a previously identified increase in excitability of cerebellar Purkinje neurons and associate this excitability with reduced transcripts of two voltage-gated potassium (KV) channels, Kcna6 and Kcnc3, as well as motor impairment. Intracerebroventricular delivery of antisense oligonucleotides (ASO) to reduce mutant ATXN3 restores normal excitability to SCA3 Purkinje neurons and rescues transcript levels of Kcna6 and Kcnc3. Interestingly, while an even broader range of KV channel transcripts shows reduced levels in late-stage SCA3 mice, cerebellar Purkinje neuron physiology was not further altered despite continued worsening of motor impairment. These results suggest the progressive motor phenotype observed in SCA3 may not reflect ongoing changes in the cerebellar cortex but instead dysfunction of other neuronal structures within and beyond the cerebellum. Nevertheless, the early rescue of both KV channel expression and neuronal excitability by ASO treatment suggests that cerebellar cortical dysfunction contributes meaningfully to motor dysfunction in SCA3.


Asunto(s)
Ataxina-3/genética , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/genética , Oligonucleótidos Antisentido/uso terapéutico , Células de Purkinje/patología , Proteínas Represoras/genética , Animales , Conducta Animal , Humanos , Inyecciones Intraventriculares , Canal de Potasio Kv1.6/efectos de los fármacos , Canal de Potasio Kv1.6/genética , Enfermedad de Machado-Joseph/psicología , Ratones , Ratones Transgénicos , Técnicas de Placa-Clamp , Fenotipo , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Canales de Potasio Shaw/efectos de los fármacos , Canales de Potasio Shaw/genética , Resultado del Tratamiento
11.
Proc Natl Acad Sci U S A ; 115(52): E12407-E12416, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30530649

RESUMEN

The genetically heterogeneous spinocerebellar ataxias (SCAs) are caused by Purkinje neuron dysfunction and degeneration, but their underlying pathological mechanisms remain elusive. The Src family of nonreceptor tyrosine kinases (SFK) are essential for nervous system homeostasis and are increasingly implicated in degenerative disease. Here we reveal that the SFK suppressor Missing-in-metastasis (MTSS1) is an ataxia locus that links multiple SCAs. MTSS1 loss results in increased SFK activity, reduced Purkinje neuron arborization, and low basal firing rates, followed by cell death. Surprisingly, mouse models for SCA1, SCA2, and SCA5 show elevated SFK activity, with SCA1 and SCA2 displaying dramatically reduced MTSS1 protein levels through reduced gene expression and protein translation, respectively. Treatment of each SCA model with a clinically approved Src inhibitor corrects Purkinje neuron basal firing and delays ataxia progression in MTSS1 mutants. Our results identify a common SCA therapeutic target and demonstrate a key role for MTSS1/SFK in Purkinje neuron survival and ataxia progression.


Asunto(s)
Proteínas de Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/fisiopatología , Animales , Ataxia/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/genética , Proteínas de Neoplasias/genética , Proteínas/metabolismo , Células de Purkinje/fisiología , Ataxias Espinocerebelosas/metabolismo , Degeneraciones Espinocerebelosas/metabolismo , Degeneraciones Espinocerebelosas/fisiopatología , Familia-src Quinasas/metabolismo
12.
Hum Mol Genet ; 27(8): 1396-1410, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29432535

RESUMEN

Among the many types of neurons expressing protein kinase C (PKC) enzymes, cerebellar Purkinje neurons are particularly reliant on appropriate PKC activity for maintaining homeostasis. The importance of PKC enzymes in Purkinje neuron health is apparent as mutations in PRKCG (encoding PKCγ) cause cerebellar ataxia. PRKCG has also been identified as an important node in ataxia gene networks more broadly, but the functional role of PKC in other forms of ataxia remains unexplored, and the mechanisms by which PKC isozymes regulate Purkinje neuron health are not well understood. Here, we investigated how PKC activity influences neurodegeneration in inherited ataxia. Using mouse models of spinocerebellar ataxia type 1 (SCA1) and 2 (SCA2) we identify an increase in PKC-mediated substrate phosphorylation in two different forms of inherited cerebellar ataxia. Normalizing PKC substrate phosphorylation in SCA1 and SCA2 mice accelerates degeneration, suggesting that the increased activity observed in these models is neuroprotective. We also find that increased phosphorylation of PKC targets limits Purkinje neuron membrane excitability, suggesting that PKC activity may support Purkinje neuron health by moderating excitability. These data suggest a functional role for PKC enzymes in ataxia gene networks, and demonstrate that increased PKC activity is a protective modifier of degeneration in inherited cerebellar ataxia.


Asunto(s)
Ataxina-1/genética , Ataxina-2/genética , Proteína Quinasa C/genética , Células de Purkinje/enzimología , Ataxias Espinocerebelosas/genética , Animales , Ataxina-1/metabolismo , Ataxina-2/metabolismo , Cerebelo/enzimología , Cerebelo/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Microtomía , Fosforilación , Cultivo Primario de Células , Proteína Quinasa C/metabolismo , Células de Purkinje/patología , Transducción de Señal , Ataxias Espinocerebelosas/enzimología , Ataxias Espinocerebelosas/patología , Ataxias Espinocerebelosas/prevención & control , Técnicas de Cultivo de Tejidos
13.
Mov Disord ; 35(10): 1774-1786, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32621646

RESUMEN

BACKGROUND: No treatment exists for the most common dominantly inherited ataxia Machado-Joseph disease, or spinocerebellar ataxia type 3 (SCA3). Successful evaluation of candidate therapeutics will be facilitated by validated noninvasive biomarkers of disease pathology recapitulated by animal models. OBJECTIVE: We sought to identify shared in vivo neurochemical signatures in two mouse models of SCA3 that reflect the human disease pathology. METHODS: Cerebellar neurochemical concentrations in homozygous YACMJD84.2 (Q84/Q84) and hemizygous CMVMJD135 (Q135) mice were measured by in vivo magnetic resonance spectroscopy at 9.4 tesla. To validate the neurochemical biomarkers, levels of neurofilament medium (NFL; indicator of neuroaxonal integrity) and myelin basic protein (MBP; indicator of myelination) were measured in cerebellar lysates from a subset of mice and patients with SCA3. Finally, NFL and MBP levels were measured in the cerebellar extracts of Q84/Q84 mice upon silencing of the mutant ATXN3 gene. RESULTS: Both Q84/Q84 and Q135 mice displayed lower N-acetylaspartate than wild-type littermates, indicating neuroaxonal loss/dysfunction, and lower myo-inositol and total choline, indicating disturbances in phospholipid membrane metabolism and demyelination. Cerebellar NFL and MBP levels were accordingly lower in both models as well as in the cerebellar cortex of patients with SCA3 than controls. Importantly, N-acetylaspartate and total choline correlated with NFL and MPB, respectively, in Q135 mice. Long-term sustained RNA interference (RNAi)-mediated reduction of ATXN3 levels increased NFL and MBP in Q84/Q84 cerebella. CONCLUSIONS: N-acetylaspartate, myo-inositol, and total choline levels in the cerebellum are candidate biomarkers of neuroaxonal and oligodendrocyte pathology in SCA3, aspects of pathology that are reversible by RNAi therapy. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Machado-Joseph , Animales , Ataxina-3/genética , Ataxina-3/metabolismo , Cerebelo/metabolismo , Modelos Animales de Enfermedad , Humanos , Enfermedad de Machado-Joseph/genética , Espectroscopía de Resonancia Magnética , Ratones
14.
Cerebellum ; 19(1): 154-160, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31705293

RESUMEN

Mutations in the mitochondrial alanyl-tRNA synthetase gene, AARS2, have been reported to cause leukoencephalopathy associated with early ovarian failure, a clinical presentation described as "ovarioleukodystrophy." We present a sibling pair: one with cerebellar ataxia and one with vision loss and cognitive impairment in addition to ataxia. Neither shows evidence of leukoencephalopathy on MRI imaging. Exome sequencing revealed that both siblings are compound heterozygous for AARS2 variants (p.Phe131del and p.Ile328Met). Yeast complementation assays indicate that p.Phe131del AARS2 dramatically impairs gene function and that p.Ile328Met AARS2 is a hypomorphic allele. This work expands the phenotypic spectrum of AARS2-associated disease to include ataxia without leukoencephalopathy.


Asunto(s)
Alanina-ARNt Ligasa/genética , Ataxia/diagnóstico por imagen , Ataxia/genética , Leucoencefalopatías/diagnóstico por imagen , Leucoencefalopatías/genética , Adulto , Secuencia de Aminoácidos , Femenino , Humanos , Masculino , Linaje , Hermanos
15.
Hum Mol Genet ; 26(20): 3935-3945, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29016852

RESUMEN

Alterations in Purkinje neuron firing often accompany ataxia, but the molecular basis for these changes is poorly understood. In a mouse model of spinocerebellar ataxia type 2 (SCA2), a progressive reduction in Purkinje neuron firing frequency accompanies cell atrophy. We investigated the basis for altered Purkinje neuron firing in SCA2. A reduction in the expression of large-conductance calcium-activated potassium (BK) channels and Kv3.3 voltage-gated potassium channels accompanies the inability of Purkinje neurons early in disease to maintain repetitive spiking. In association with prominent Purkinje neuron atrophy, repetitive spiking is restored, although at a greatly reduced firing frequency. In spite of a continued impairment in spike repolarization and a persistently reduced BK channel mediated afterhyperpolarization (AHP), repetitive spiking is maintained, through the increased activity of barium-sensitive potassium channels, most consistent with inwardly rectifying potassium (Kir) channels. Increased activity of Kir channels results in the generation of a novel AHP not seen in wild-type Purkinje neurons that also accounts for the reduced firing frequency late in disease. Homeostatic changes in Purkinje neuron morphology that help to preserve repetitive spiking can also therefore have deleterious consequences for spike frequency. These results suggest that the basis for spiking abnormalities in SCA2 differ depending on disease stage, and interventions targeted towards correcting potassium channel dysfunction in ataxia need to be tailored to the specific stage in the degenerative process.


Asunto(s)
Células de Purkinje/metabolismo , Ataxias Espinocerebelosas/metabolismo , Potenciales de Acción , Animales , Ataxia/metabolismo , Calcio/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/fisiología , Técnicas de Placa-Clamp , Canales de Potasio/metabolismo , Canales de Potasio/fisiología , Canales de Potasio con Entrada de Voltaje/metabolismo , Células de Purkinje/fisiología , Ataxias Espinocerebelosas/fisiopatología
16.
BMC Med ; 17(1): 200, 2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31711490

RESUMEN

BACKGROUND: Niemann-Pick disease type C is a fatal and progressive neurodegenerative disorder characterized by the accumulation of unesterified cholesterol in late endosomes and lysosomes. We sought to develop new therapeutics for this disorder by harnessing the body's endogenous cholesterol scavenging particle, high-density lipoprotein (HDL). METHODS: Here we design, optimize, and define the mechanism of action of synthetic HDL (sHDL) nanoparticles. RESULTS: We demonstrate a dose-dependent rescue of cholesterol storage that is sensitive to sHDL lipid and peptide composition, enabling the identification of compounds with a range of therapeutic potency. Peripheral administration of sHDL to Npc1 I1061T homozygous mice mobilizes cholesterol, reduces serum bilirubin, reduces liver macrophage size, and corrects body weight deficits. Additionally, a single intraventricular injection into adult Npc1 I1061T brains significantly reduces cholesterol storage in Purkinje neurons. Since endogenous HDL is also a carrier of sphingomyelin, we tested the same sHDL formulation in the sphingomyelin storage disease Niemann-Pick type A. Utilizing stimulated Raman scattering microscopy to detect endogenous unlabeled lipids, we show significant rescue of Niemann-Pick type A lipid storage. CONCLUSIONS: Together, our data establish that sHDL nanoparticles are a potential new therapeutic avenue for Niemann-Pick diseases.


Asunto(s)
Lipoproteínas HDL/uso terapéutico , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Animales , Colesterol/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Lípidos , Lipoproteínas HDL/síntesis química , Masculino , Ratones , Ratones Endogámicos C57BL , Nanopartículas/uso terapéutico
17.
Ann Neurol ; 84(1): 64-77, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29908063

RESUMEN

OBJECTIVE: Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease, is the most common dominantly inherited ataxia. Despite advances in understanding this CAG repeat/polyglutamine expansion disease, there are still no therapies to alter its progressive fatal course. Here, we investigate whether an antisense oligonucleotide (ASO) targeting the SCA3 disease gene, ATXN3, can prevent molecular, neuropathological, electrophysiological, and behavioral features of the disease in a mouse model of SCA3. METHODS: The top ATXN3-targeting ASO from an in vivo screen was injected intracerebroventricularly into early symptomatic transgenic SCA3 mice that express the full human disease gene and recapitulate key disease features. Following a single ASO treatment at 8 weeks of age, mice were evaluated longitudinally for ATXN3 suppression and rescue of disease-associated pathological changes. Mice receiving an additional repeat injection at 21 weeks were evaluated longitudinally up to 29 weeks for motor performance. RESULTS: The ATXN3-targeting ASO achieved sustained reduction of polyglutamine-expanded ATXN3 up to 8 weeks after treatment and prevented oligomeric and nuclear accumulation of ATXN3 up to at least 14 weeks after treatment. Longitudinal ASO therapy rescued motor impairment in SCA3 mice, and this rescue was associated with a recovery of defects in Purkinje neuron firing frequency and afterhyperpolarization. INTERPRETATION: This preclinical study established efficacy of ATXN3-targeted ASOs as a disease-modifying therapeutic strategy for SCA3. These results support further efforts to develop ASOs for human clinical trials in this polyglutamine disease as well as in other dominantly inherited disorders caused by toxic gain of function. Ann Neurol 2018;83:64-77.


Asunto(s)
Ataxina-3/química , Regulación de la Expresión Génica/efectos de los fármacos , Enfermedad de Machado-Joseph/tratamiento farmacológico , Oligonucleótidos Antisentido/uso terapéutico , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Factores de Edad , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Ataxina-3/genética , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/genética , Gliosis/tratamiento farmacológico , Gliosis/etiología , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/patología , Enfermedad de Machado-Joseph/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Mutación/genética , Células de Purkinje/efectos de los fármacos , Células de Purkinje/patología , Proteínas de Unión al ARN/metabolismo
18.
Cerebellum ; 18(3): 519-526, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30830673

RESUMEN

Cerebellar degenerative pathology has been identified in tremor patients; however, how the degenerative pathology could contribute to tremor remains unclear. If the cerebellar degenerative pathology can directly drive tremor, one would hypothesize that tremor is likely to occur in the diseases of cerebellar ataxia and follows the disease progression in such disorders. To further test this hypothesis, we studied the occurrence of tremor in different disease stages of classical cerebellar degenerative disorders: spinocerebellar ataxias (SCAs). We further separately analyzed postural tremor and rest tremor, two forms of tremor that both involve the cerebellum. We also explored tremor in different subtypes of SCAs. We found that 18.1% of SCA patients have tremor. Interestingly, SCA patients with tremor have worse ataxia than those without tremor. When stratifying patients into mild, moderate, and severe disease stages according to the severity of ataxia, moderate and severe SCA patients more commonly have tremor than those with mild ataxia, the effect most prominently observed in postural tremor of SCA3 and SCA6 patients. Finally, tremor can independently contribute to worse functional status in SCA2 patients, even after adjusting for ataxia severity. Tremor is more likely to occur in the severe stage of cerebellar degeneration when compared to mild stages. Our results partially support the cerebellar degenerative model of tremor.


Asunto(s)
Cerebelo/patología , Ataxias Espinocerebelosas/complicaciones , Ataxias Espinocerebelosas/patología , Temblor/etiología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Temblor/epidemiología
19.
PLoS Genet ; 12(5): e1006042, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27152617

RESUMEN

Selective neuronal vulnerability is characteristic of most degenerative disorders of the CNS, yet mechanisms underlying this phenomenon remain poorly characterized. Many forms of cerebellar degeneration exhibit an anterior-to-posterior gradient of Purkinje cell loss including Niemann-Pick type C1 (NPC) disease, a lysosomal storage disorder characterized by progressive neurological deficits that often begin in childhood. Here, we sought to identify candidate genes underlying vulnerability of Purkinje cells in anterior cerebellar lobules using data freely available in the Allen Brain Atlas. This approach led to the identification of 16 candidate neuroprotective or susceptibility genes. We demonstrate that one candidate gene, heat shock protein beta-1 (HSPB1), promoted neuronal survival in cellular models of NPC disease through a mechanism that involved inhibition of apoptosis. Additionally, we show that over-expression of wild type HSPB1 or a phosphomimetic mutant in NPC mice slowed the progression of motor impairment and diminished cerebellar Purkinje cell loss. We confirmed the modulatory effect of Hspb1 on Purkinje cell degeneration in vivo, as knockdown by Hspb1 shRNA significantly enhanced neuron loss. These results suggest that strategies to promote HSPB1 activity may slow the rate of cerebellar degeneration in NPC disease and highlight the use of bioinformatics tools to uncover pathways leading to neuronal protection in neurodegenerative disorders.


Asunto(s)
Proteínas de Choque Térmico HSP27/genética , Degeneración Nerviosa/genética , Enfermedad de Niemann-Pick Tipo C/genética , Células de Purkinje/metabolismo , Animales , Apoptosis/genética , Supervivencia Celular/genética , Cerebelo/metabolismo , Cerebelo/patología , Modelos Animales de Enfermedad , Proteínas de Choque Térmico HSP27/biosíntesis , Humanos , Ratones , Degeneración Nerviosa/patología , Degeneración Nerviosa/terapia , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Niemann-Pick Tipo C/patología , Enfermedad de Niemann-Pick Tipo C/terapia , Células de Purkinje/patología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico
20.
Cerebellum ; 16(2): 577-594, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27734238

RESUMEN

A role for the cerebellum in causing ataxia, a disorder characterized by uncoordinated movement, is widely accepted. Recent work has suggested that alterations in activity, connectivity, and structure of the cerebellum are also associated with dystonia, a neurological disorder characterized by abnormal and sustained muscle contractions often leading to abnormal maintained postures. In this manuscript, the authors discuss their views on how the cerebellum may play a role in dystonia. The following topics are discussed: The relationships between neuronal/network dysfunctions and motor abnormalities in rodent models of dystonia. Data about brain structure, cerebellar metabolism, cerebellar connections, and noninvasive cerebellar stimulation that support (or not) a role for the cerebellum in human dystonia. Connections between the cerebellum and motor cortical and sub-cortical structures that could support a role for the cerebellum in dystonia. Overall points of consensus include: Neuronal dysfunction originating in the cerebellum can drive dystonic movements in rodent model systems. Imaging and neurophysiological studies in humans suggest that the cerebellum plays a role in the pathophysiology of dystonia, but do not provide conclusive evidence that the cerebellum is the primary or sole neuroanatomical site of origin.


Asunto(s)
Cerebelo/fisiopatología , Distonía/fisiopatología , Animales , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Distonía/diagnóstico por imagen , Distonía/patología , Humanos , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/patología , Vías Nerviosas/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA