Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Br J Nutr ; 127(5): 653-665, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-33858522

RESUMEN

Poor utilisation efficiency of carbohydrate always leads to metabolic phenotypes in fish. The intestinal microbiota plays an important role in carbohydrate degradation. Whether the intestinal bacteria could alleviate high-carbohydrate diet (HCD)-induced metabolic phenotypes in fish remains unknown. Here, a strain affiliated to Bacillus amyloliquefaciens was isolated from the intestine of Nile tilapia. A basal diet (CON), HCD or HCD supplemented with B. amy SS1 (HCB) was used to feed fish for 10 weeks. The beneficial effects of B. amy SS1 on weight gain and protein accumulation were observed. Fasting glucose and lipid deposition were decreased in the HCB group compared with the HCD group. High-throughput sequencing showed that the abundance of acetate-producing bacteria was increased in the HCB group relative to the HCD group. Gas chromatographic analysis indicated that the concentration of intestinal acetate was increased dramatically in the HCB group compared with that in the HCD group. Glucagon-like peptide-1 was also increased in the intestine and serum of the HCB group. Thus, fish were fed with HCD, HCD supplemented with sodium acetate at 900 mg/kg (HLA), 1800 mg/kg (HMA) or 3600 mg/kg (HHA) diet for 8 weeks, and the HMA and HHA groups mirrored the effects of B. amy SS1. This study revealed that B. amy SS1 could alleviate the metabolic phenotypes caused by HCD by enriching acetate-producing bacteria in fish intestines. Regulating the intestinal microbiota and their metabolites might represent a powerful strategy for fish nutrition modulation and health maintenance in future.


Asunto(s)
Bacillus amyloliquefaciens , Cíclidos , Acetatos , Alimentación Animal/análisis , Animales , Carbohidratos , Dieta/veterinaria , Fenotipo
2.
Food Chem (Oxf) ; 3: 100040, 2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35415664

RESUMEN

High level of carbohydrate in aquafeed could achieve cost-sparing effect, but it may cause adverse effects on flesh quality of aquatic products. An eight-week trial was conducted to investigate whether oligosaccharides-supplementation, including Galacto-oligosaccharides (GOS) and xylo-oligosaccharide (XOS), could systematically improve the growth performance, texture characteristics and nutrition composition of Nile tilapia fed with high-carbohydrate diet. The results indicated that GOS-supplementation improved the amino acid composition, while XOS-supplementation showed beneficial effects on growth performance. High-carbohydrate diet had adverse effects on fillet texture, while oligosaccharide-supplementation regulated the expression of muscle development-related genes to help restoring muscle texture properties. Furthermore, either high-carbohydrate or addition of oligosaccharides could change the intestinal microbiota composition and their metabolites. Further correlation analysis suggested that intestinal microbiota may account for the improvement in fish growth condition and texture characteristics. Application of oligosaccharides may be an innovative strategy for flesh quality modulation in aquaculture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA