RESUMEN
Species of the tribe Delphinieae (Ranunculaceae) have long been the focus of morphological, ecological, and evolutionary studies due to their highly specialized, nearly zygomorphic (bilaterally symmetrical) spiral flowers with nested petal and sepal spurs and reduced petals. The mechanisms underlying the development and evolution of Delphinieae flowers, however, remain unclear. Here, by conducting extensive phylogenetic, comparative transcriptomic, expression, and functional studies, we clarified the evolutionary histories, expression patterns, and functions of floral organ identity and symmetry genes in Delphinieae. We found that duplication and/or diversification of APETALA3-3 (AP3-3), AGAMOUS-LIKE6 (AGL6), CYCLOIDEA (CYC), and DIVARICATA (DIV) lineage genes was tightly associated with the origination of Delphinieae flowers. Specifically, an AGL6-lineage member (such as the Delphinium ajacis AGL6-1a) represses sepal spur formation and petal development in the lateral and ventral parts of the flower while determining petal identity redundantly with AGL6-1b. By contrast, two CYC2-like genes, CYC2b and CYC2a, define the dorsal and lateral-ventral identities of the flower, respectively, and form complex regulatory links with AP3-3, AGL6-1a, and DIV1. Therefore, duplication and diversification of floral symmetry genes, as well as co-option of the duplicated copies into the preexisting floral regulatory network, have been key for the origin of Delphinieae flowers.
Asunto(s)
Flores , Duplicación de Gen , Ranunculaceae , Flores/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ranunculaceae/genéticaRESUMEN
Complex color patterns on petals are widespread in flowering plants, yet the mechanisms underlying their formation remain largely unclear. Here, by conducting detailed morphological, anatomical, biochemical, optical, transcriptomic, and functional studies, we investigated the cellular bases, chromogenic substances, reflectance spectra, developmental processes, and underlying mechanisms of complex color pattern formation on Nigella orientalis petals. We found that the complexity of the N. orientalis petals in color pattern is reflected at multiple levels, with the amount and arrangement of different pigmented cells being the key. We also found that biosynthesis of the chromogenic substances of different colors is sequential, so that one color/pattern is superimposed on another. Expression and functional studies further revealed that a pair of R2R3-MYB genes function cooperatively to specify the formation of the eyebrow-like horizontal stripe and the Mohawk haircut-like splatters. Specifically, while NiorMYB113-1 functions to draw a large splatter region, NiorMYB113-2 functions to suppress the production of anthocyanins from the region where a gap will form, thereby forming the highly specialized pattern. Our results provide a detailed portrait for the spatiotemporal dynamics of the coloration of N. orientalis petals and help better understand the mechanisms underlying complex color pattern formation in plants.
Asunto(s)
Nigella , Ranunculaceae , Antocianinas/metabolismo , Flores/anatomía & histología , Color , Regulación de la Expresión Génica de las PlantasRESUMEN
Petals can be simple or elaborate, depending on whether they have lobes, teeth, fringes, or appendages along their margins, or possess spurs, scales, or other types of modifications on their adaxial/abaxial side, or both. Elaborate petals have been recorded in 23 orders of angiosperms and are generally believed to have played key roles in the adaptive evolution of corresponding lineages. The mechanisms underlying the formation of elaborate petals, however, are largely unclear. Here, by performing extensive transcriptomic and functional studies on Nigella damascena (Ranunculaceae), we explore the mechanisms underlying elaborate petal development and specialized character formation. In addition to the identification of genes and programs that are specifically/preferentially expressed in petals, we found genes and programs that are required for elaborate rather than simple petal development. By correlating the changes in gene expression with those in petal development, we identified 30 genes that are responsible for the marginal/ventral elaboration of petals and the initiation of several highly specialized morphological characters (e.g., pseudonectaries, long hairs, and short trichomes). Expression and functional analyses further confirmed that a class I homeodomain-leucine zipper family transcription factor gene, Nigella damascena LATE MERISTEM IDENTITY1 (NidaLMI1), plays important roles in the development of short trichomes and bifurcation of the lower lip. Our results not only provide the first portrait of elaborate petal development but also pave the way to understanding the mechanisms underlying lateral organ diversification in plants.
Asunto(s)
Flores/crecimiento & desarrollo , Genes de Plantas , Genes Reguladores , Ranunculaceae/crecimiento & desarrollo , Ranunculaceae/genética , Flores/genética , Regulación de la Expresión Génica de las PlantasRESUMEN
Domesticated crops with high yield and quality are frequently susceptible to pathogen attack, whereas enhancement of disease resistance generally compromises crop yield. The underlying mechanisms of how plant development and disease resistance are coordinately programed remain elusive. Here, we showed that the basic Helix-Loop-Helix (bHLH) transcription factor Cucumis sativus Irregular Vasculature Patterning (CsIVP) was highly expressed in cucumber vascular tissues. Knockdown of CsIVP caused severe vasculature disorganization and abnormal organ morphogenesis. CsIVP directly binds to vascular-related regulators YABBY5 (CsYAB5), BREVIPEDICELLUS (CsBP), and AUXIN/INDOLEACETIC ACIDS4 (CsAUX4) and promotes their expression. Knockdown of CsYAB5 resulted in similar phenotypes as CsIVP-RNA interference (RNAi) plants, including disturbed vascular configuration and abnormal organ morphology. Meanwhile, CsIVP-RNAi plants were more resistant to downy mildew and accumulated more salicylic acid (SA). CsIVP physically interacts with NIM1-INTERACTING1 (CsNIMIN1), a negative regulator in the SA signaling pathway. Thus, CsIVP is a novel vasculature regulator functioning in CsYAB5-mediated organ morphogenesis and SA-mediated downy mildew resistance in cucumber.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/inmunología , Proteínas de Plantas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cucumis sativus/clasificación , Cucumis sativus/genética , Resistencia a la Enfermedad/genética , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Morfogénesis , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Haz Vascular de Plantas/genética , Haz Vascular de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Unión Proteica , Ácido Salicílico/metabolismo , Transducción de Señal/genéticaRESUMEN
Petals can be simple or elaborate, depending on whether they have complex basic structures and/or highly specialized epidermal modifications. It has been proposed that the independent origin and diversification of elaborate petals have promoted plant-animal interactions and, therefore, the evolutionary radiation of corresponding plant groups. Recent advances in floral development and evolution have greatly improved our understanding of the processes, patterns, and mechanisms underlying petal elaboration. In this review, we compare the developmental processes of simple and elaborate petals, concluding that elaborate petals can be achieved through four main paths of modifications (i.e. marginal elaboration, ventral elaboration, dorsal elaboration, and surface elaboration). Although different types of elaborate petals were formed through different types of modifications, they are all results of changes in the expression patterns of genes involved in organ polarity establishment and/or the proliferation, expansion, and differentiation of cells. The deployment of existing genetic materials to perform a new function was also shown to be a key to making elaborate petals during evolution.
Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , AnimalesRESUMEN
Complete loss of petals, or becoming apetalous, has occurred independently in many flowering plant lineages. However, the mechanisms underlying the parallel evolution of naturally occurring apetalous lineages remain largely unclear. Here, by sampling representatives of all nine apetalous genera/tribes of the family Ranunculaceae and conducting detailed morphological, expression, molecular evolutionary and functional studies, we investigate the mechanisms underlying parallel petal losses. We found that while non-expression/downregulation of the petal identity gene APETALA3-3 (AP3-3) is tightly associated with complete petal losses, disruptions of the AP3-3 orthologs were unlikely to be the real causes for the parallel evolution of apetalous lineages. We also found that, compared with their close petalous relatives, naturally occurring apetalous taxa usually bear slightly larger numbers of stamens, whereas the number of sepals remains largely unchanged, suggestive of petal-to-stamen rather than petal-to-sepal transformations. In addition, in the recently originated apetalous genus Enemion, the petal-to-stamen transformations have likely been caused by the mutations that led to the elevation and outward expansion of the expression of the C-function gene, AGAMOUS1 (AG1). Our results not only provide a general picture of parallel petal losses within the Ranunculaceae but also help understand the mechanisms underlying the independent originations of other apetalous lineages.
Asunto(s)
Flores/anatomía & histología , Flores/fisiología , Proteínas de Plantas/genética , Ranunculaceae/genética , Proteína AGAMOUS de Arabidopsis/genética , Proteínas de Arabidopsis/genética , Evolución Molecular , Flores/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Filogenia , Plantas Modificadas Genéticamente , Ranunculaceae/anatomía & histologíaRESUMEN
Carotenoid cleavage dioxygenases (CCDs) drive carotenoid catabolism to produce various apocarotenoids and immediate derivatives with particular developmental, ecological, and agricultural importance. How CCD genes evolved with species diversification and the resulting functional novelties in cereal crops have remained largely elusive. We constructed a unified four-clade phylogenetic tree of CCDs, revealing a previously unanchored basal clade CCD10 CCD10 underwent highly dynamic duplication or loss events, even in the grass family. Different from cleavage sites of CCD8 and ZAXINONE SYNTHASE (ZAS), maize (Zea mays) ZmCCD10a cleaved differentially structured carotenoids at 5, 6 (5', 6') and 9, 10 (9', 10') positions, generating C8 (6-methyl-5-hepten-2-one) and C13 (geranylacetone, α-ionone, and ß-ionone) apocarotenoids in Escherichia coli Localized in plastids, ZmCCD10a cleaved neoxanthin, violaxanthin, antheraxathin, lutein, zeaxanthin, and ß-carotene in planta, corroborating functional divergence of ZmCCD10a and ZAS. ZmCCD10a expression was dramatically stimulated in maize and teosinte (Z. mays ssp. parviglumis, Z. mays ssp. huehuetenangensis, Zea luxurians, and Zea diploperennis) roots by phosphate (Pi) limitation. ZmCCD10a silencing favored phosphorus retention in the root and reduced phosphorus and biomass accumulation in the shoot under low Pi. Overexpression of ZmCCD10a in Arabidopsis (Arabidopsis thaliana) enhanced plant tolerance to Pi limitation by preferential phosphorus allocation to the shoot. Thus, ZmCCD10a encodes a unique CCD facilitating plant tolerance to Pi limitation. Additionally, ZmCCD10a silencing and overexpression led to coherent alterations in expression of PHOSPHATE STARVATION RESPONSE REGULATOR 1 (PHR1) and Pi transporters, and cis-regulation of ZmCCD10a expression by ZmPHR1;1 and ZmPHR1;2 implies a probable ZmCCD10a-involved regulatory pathway that adjusts Pi allocation.
Asunto(s)
Carotenoides/metabolismo , Dioxigenasas/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Norisoprenoides/metabolismo , Terpenos/metabolismo , Xantófilas/metabolismo , Zea mays/metabolismo , beta Caroteno/metabolismoRESUMEN
NAC (NAM, ATAF1/2, CUC2) transcription factors play important roles in plant growth, development, and responses to abiotic stress. In this study, we cloned an NAC2 subfamily transcription factor gene (SlNAC7) from the halophyte Suaeda liaotungensis K., and conducted a series of studies to determine the characteristics and functions of this gene. The SlNAC7 coding region contains 1719 base pairs that encode a 573 amino acid long protein. SlNAC7 is expressed in the roots, stems, and leaves of S. liaotungensis, with the highest expression in the leaves. We found that SlNAC7 expression can be induced by drought, salt, cold, and abscisic acid. Transient expression in onion epidermal cells revealed that SlNAC7 is located in both the nucleus and cytoplasm. A transcriptional activation experiment in yeast showed that the transcriptional activation domain of SlNAC7 is located at the C terminus. When SlNAC7 was transformed into Arabidopsis under the control of a CaMV 35S promoter its overexpression was found to enhance the ability of transgenic plants to resist drought, salt, and cold stress. Moreover, these plants showed multiple changes in growth characteristics and physiological and biochemical indices in response to different stresses, as well as the upregulation of numerous stress-related genes. We have thus characterized a new halophyte-derived NAC transcription factor, SlNAC7, which can regulate plant growth and physiological and biochemical changes under adverse conditions by regulating the expression of stress-related genes, thereby enhancing plant stress resistance. SlNAC7 is a promising candidate for breeding new varieties of stress-tolerant crops.
Asunto(s)
Chenopodiaceae , Regulación de la Expresión Génica de las Plantas , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Respuesta al Choque por Frío , Sequías , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
A H2O2-free colorimetric protocol based on urchin-like Au@Pt nanoparticles (Au@Pt NPs) has been developed for the sensitive and selective determination of cysteine (Cys). We verified the intrinsic oxidase-like activity of the Au@Pt NPs. They can act as artificial mimic oxidases to catalyse the oxidization of 3,3',5,5'-tetramethylbenzidine (TMB) with the assistance of dissolved oxygen, avoiding the use of H2O2 in the colorimetric determination of Cys. In addition, the discrimination of Cys from the other two biothiol analogues, homocysteine and glutathione, can be easily realized through a simple ageing process. HNO3 is added to this colorimetric system to terminate the reaction by oxidizing ox-TMB (oxidized form of TMB) to diphenoquinone (DPQ), thus generating a characteristic absorption peak of DPQ at 450 nm. By recording the absorbance at 450 nm, interference from the aggregated Au@Pt NPs (absorption peak at 670 nm) when 650 nm (the characteristic absorption peak of ox-TMB) is used as the absorption wavelength can be eliminated. We investigated this H2O2-free colorimetric protocol and obtained high sensitivity, with a detection limit of 1.5 nM and relatively high selectivity. The analytical performance for real samples was further explored. The Au@Pt NP-based H2O2-free colorimetric protocol is of great significance for the sensitive and selective determination of Cys in practical samples in different scenarios.
RESUMEN
Identification and comparison of the conserved and variable downstream genes of floral organ identity regulators are critical to understanding the mechanisms underlying the commonalities and peculiarities of floral organs. Yet, because of the lack of studies in nonmodel species, a general picture of the regulatory evolution between floral organ identity genes and their targets is still lacking. Here, by conducting extensive chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq), electrophoretic mobility shift assay and bioinformatic analyses, we identify and predict the target genes of a petal identity gene, AqAPETALA3-3 (AqAP3-3), in Aquilegia coerulea (Ranunculaceae) and compare them with those of its counterpart in Arabidopsis thaliana, AP3. In total, 7049 direct target genes are identified for AqAP3-3, of which 2394 are highly confident and 1085 are shared with AP3. Gene Ontology enrichment analyses further indicate that conserved targets are largely involved in the formation of identity-related features, whereas nonconserved targets are mostly required for the formation of species-specific features. These results not only help understand the molecular bases of the conserved and nonconserved features of petals, but also pave the way to studying the regulatory evolution between floral organ identity genes and their targets.
Asunto(s)
Aquilegia , Arabidopsis , Ranunculaceae , Aquilegia/genética , Arabidopsis/genética , Flores/genética , Regulación de la Expresión Génica de las PlantasRESUMEN
A fluorescent probe L-Cu2+ based on quinoline, coumarin and Cu2+ has been synthesized and characterized for hypochlorite determination. After copper ion was added to the solution of ligand L, the fluorescence quenching at 490 nm might result from a ligand-metal charge transfer (LMCT) process and its strong coordination ability for Cu2+ . In the presence of hypochlorite, the structure of ligand L was destroyed to form 7-(diethylamino)-coumarin-3-carboxylic acid, and the fluorescence was restored at 460 nm. In this case, L-Cu2+ complex could be used as a fluorescent probe to detect hypochlorite, with the advantages of rapid, selective, wide linear range and low detection limit.
Asunto(s)
Ácido Hipocloroso , Quinolinas , Cobre , Cumarinas , Colorantes Fluorescentes , Espectrometría de Fluorescencia , AguaRESUMEN
A highly sensitive and selective colorimetric analysis method based on unmodified gold nanoparticles (AuNPs) to detect iodide ions (I- ) in solution in the presence of hexadecyl trimethyl ammonium bromide (CTAB) and mercury ions (Hg2+ ) has been successfully developed. Hg2+ could form a gold amalgam with AuNPs to protect AuNPs from CTAB-induced aggregation caused by the electrostatic attraction between CTAB and citrate ion-covered AuNPs. When a mixture of Hg2+ and I- was added to the solution of AuNPs, the formation of the HgI2 complex destroyed the protection of Hg2+ for AuNPs, which led to the aggregation of AuNPs accompanied with the change in colour of the solution from red to grey black and decrease in the absorbance of AuNPs at 520 nm. There was a good linear relationship between A520nm and I- concentration from 0 to 800 nM with a low limit of detection (LOD) of 4.2 nM. Furthermore, this simple and reliable colorimetric sensor has been applied successfully to the detection of I- in practical samples.
Asunto(s)
Mercurio , Nanopartículas del Metal , Colorimetría , Oro , Yoduros , IonesRESUMEN
Elaborate petals are present in many flowering plants lineages and have greatly promoted the success and evolutionary radiation of these groups. How elaborate petals are made, however, remains largely unclear. Petals of Nigella (Ranunculaceae) have long been recognized as elaborate and can thus be an excellent model for the study of petal elaboration. Here, by conducting detailed morphological, micromorphological, anatomical, developmental and evolutionary studies on the petals of Nigella species, we explored the processes, general patterns and underlying mechanisms of petal elaboration. We found that petals of Nigella are highly complex, and the complexity can be reflected at various levels. We also found that evolutionary elaboration of the Nigella petals is a gradual process, involving not only modifications of pre-existing structures but also de novo origination of new characters. Further investigations indicated that the elaboration and diversification of Nigella petals were accomplished by modifying the ancestral trajectory of petal development, a process known as developmental repatterning. Our results not only provide new insights into the development and evolution of elaborate petals, but also highlight the necessity of conducting multiple-level investigations for understanding the processes, patterns and underlying mechanisms of plant evolution.
Asunto(s)
Tipificación del Cuerpo , Flores/anatomía & histología , Nigella/anatomía & histología , Nigella/crecimiento & desarrollo , Biodiversidad , Evolución Biológica , Flores/ultraestructura , Nigella/ultraestructuraRESUMEN
The family Ranunculaceae, a member of early-diverging eudicots that is increasingly being used as a model for the study of plant developmental evolution, has been the focus of systematic studies for centuries. Recent studies showed that the family can be divided into 14 tribes, with Glaucideae, Hydrastideae, and Coptideae being the successive basal-most lineages. The relationships among the remaining 11 tribes, however, remain controversial, so that a clear picture of character evolution within the family is still lacking. In this study, by sequencing, assembling and analyzing the chloroplast (cp) genomes of 35 species representing 31 genera of the 14 tribes, we resolved the relationships among the tribes and genera of the Ranunculaceae and clarified several long-standing controversies. We found that many of the characters that were once widely used for taxonomic and systematic considerations were actually results of parallel, convergent or even reversal evolution, suggestive of unreliability. We also found that the family has likely experienced two waves of radiative evolution, through which most of the extant tribes and genera were generated. Notably, both waves of radiation were correlated with the increase in the temperature of the earth, suggesting that global warming may have been the driving force of the radiation events. Based on these observations, we hypothesize that global warming and the associated decrease in the type and number of animal pollinators may have been the main reason why taxa with highly elaborate petals as well as those without petal were generated during each of the two waves of radiation.
Asunto(s)
Genoma del Cloroplasto , Filogenia , Ranunculaceae/genética , Secuencia de Bases , Mapeo Cromosómico , Evolución Molecular , Funciones de Verosimilitud , Ranunculaceae/clasificación , Factores de TiempoRESUMEN
With the help of modulator synthesis method, a mesoporous Zr-based metal-organic framework, [Zr6O4(OH)8(H2O)4(TADIBA)4]·24DMF·45H2O (DMF = N, N-dimethylformamide, H2TADIBA = 4,4'-(2 H-1,2,4-triazole-3,5-diyl) dibenzoic acid), namely, JLU-MOF58, was successfully constructed. JLU-MOF58 having reo topology is constructed by the bent ligands with Lewis basic sites and 8-connected Zr6 clusters with Lewis and Brønsted acid sites. It not only possesses two types of mesoporous cages: octahedral and cuboctahedral (2.76 and 4.10 nm), with a pore volume of 1.76 cm3 g-1, but also displays excellent chemical stability in acid and base aqueous phase. Benefiting from the Brønsted and Lewis acid sites, Lewis basic sites, excellent chemical stability, and the mesoporous cages incorporated in the framework, JLU-MOF58 can be regarded as a remarkably efficient heterogeneous catalyst that exhibits excellent catalytic efficiency for CO2 conversion.
RESUMEN
In this paper, a novel fluorescent sensor 1 for selective and sensitive detection of cysteine was developed based on a complex between bi-8-carboxamidoquinoline derivative ligand (L) and Cu2+ . The interaction of Cu2+ with the ligand causes a dramatic fluorescence quenching most likely due to its high affinity towards Cu2+ and a ligand-metal charge transfer (LMCT) process. The in situ generated L-Cu2 complex was utilized as a chemosensing ensemble for cysteine. In the presence of cysteine, the fluorophore, L, was released from L-Cu2 complex because of the strong affinity of cysteine to Cu2+ via the Cu-S bond, leading to the fluorescence recovery of the ligand. The proposed displacement mechanism was confirmed by the results of mass spectrometry (MS) study. Under optimized conditions, the recovered fluorescence intensity is linear with cysteine concentrations in the range 1 × 10-6 mol/l to 8 × 10-6 mol/l. The detection limit for cysteine is 1.92 × 10-7 mol/l. Furthermore, the established method showed a highly sensitive and selective response to cysteine among the 20 fundamental α-amino acids used as the building blocks of proteins, after Ni2+ was used as a masking agent to eliminate the interference of His. The proposed sensor is applicable in monitoring cysteine in practical samples with good recovery rate.
Asunto(s)
Cobre/química , Cisteína/análisis , Colorantes Fluorescentes/química , Compuestos Organometálicos/química , Quinolinas/química , Fluorescencia , Concentración de Iones de Hidrógeno , Espectrometría de FluorescenciaRESUMEN
How genes change their expression patterns over time is still poorly understood. Here, by conducting expression, functional, bioinformatic, and evolutionary analyses, we demonstrate that the differences between the Arabidopsis (Arabidopsis thaliana) APETALA1 (AP1) and CAULIFLOWER (CAL) duplicate genes in the time, space, and level of expression were determined by the presence or absence of functionally important transcription factor-binding sites (TFBSs) in regulatory regions. In particular, a CArG box, which is the autoregulatory site of AP1 that can also be bound by the CAL protein, is a key determinant of the expression differences. Because of the CArG box, AP1 is both autoregulated and cross-regulated (by AP1 and CAL, respectively), and its relatively high-level expression is maintained till to the late stages of sepal and petal development. The observation that the CArG box was gained recently further suggests that the autoregulation and cross-regulation of AP1, as well as its function in sepal and petal development, are derived features. By comparing the evolutionary histories of this and other TFBSs, we further indicate that the divergence of AP1 and CAL in regulatory regions has been markedly asymmetric and can be divided into several stages. Specifically, shortly after duplication, when AP1 happened to be the paralog that maintained the function of the ancestral gene, CAL experienced certain degrees of degenerate evolution, in which several functionally important TFBSs were lost. Later, when functional divergence allowed the survival of both paralogs, CAL remained largely unchanged in expression, whereas the functions of AP1 were gradually reinforced by gains of the CArG box and other TFBSs.
Asunto(s)
Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes Duplicados , Proteínas de Dominio MADS/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Sitios de Unión , Evolución Molecular , Proteínas de Dominio MADS/metabolismo , Unión Proteica/genética , Homología de Secuencia de Ácido Nucleico , Factores de Tiempo , Factores de Transcripción/metabolismoRESUMEN
A highly selective fluorescent probe 2-(2-(2-aminoethylamino)ethyl)-3',6'-bis(ethylamino)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one (ABDO) for Se (IV) had been synthesized in our earlier report. In this study, this fluorescent sensor is applied on analysis fluorescent imaging of Se (IV) in Hela cells. The experiment conditions, such as the MTT assay, different concentration of saline, incubated time of Hela cells with ABDO and Se (IV), and intracellular action position of Se (IV), are investigated. Through a series of experiments, the fluorescent image of Se (IV) in Hela cells can be observed when the cells cultured by 2 µM ABDO and 2 µM Se (IV) for 210 min. And the intracellular action position of Se (IV) is verified after the co-localization experiments are done. It is mitochondria. These experimental results show that ABDO will be an eagerly anticipated sensor for fluorescent imaging analysis of selenium ion in living cells. Besides, we also can use the complexes of ABDO-Se to observe morphology and distribution of mitochondria in cells like JG-B.
Asunto(s)
Fluorescencia , Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , Rodaminas/química , Compuestos de Selenio/análisis , Células HeLa , Humanos , Modelos Moleculares , Estructura MolecularRESUMEN
We summarized proposals submitted and funded in the discipline of microbiology of the Department of Life Sciences of National Natural Science Foundation of China in 2016. The traits and concerns in different sub-disciplines as well as distinctive funding programs were addressed, and the prior funding fields were prospected. The information may provide references for researchers who apply funding at the discipline of microbiology.
Asunto(s)
Microbiología/economía , Disciplinas de las Ciencias Naturales/economía , China , Fundaciones/economía , Microbiología/organización & administración , Disciplinas de las Ciencias Naturales/organización & administración , Proyectos de InvestigaciónRESUMEN
Absence of petals, or being apetalous, is usually one of the most important features that characterizes a group of flowering plants at high taxonomic ranks (i.e., family and above). The apetalous condition, however, appears to be the result of parallel or convergent evolution with unknown genetic causes. Here we show that within the buttercup family (Ranunculaceae), apetalous genera in at least seven different lineages were all derived from petalous ancestors, indicative of parallel petal losses. We also show that independent petal losses within this family were strongly associated with decreased or eliminated expression of a single floral organ identity gene, APETALA3-3 (AP3-3), apparently owing to species-specific molecular lesions. In an apetalous mutant of Nigella, insertion of a transposable element into the second intron has led to silencing of the gene and transformation of petals into sepals. In several naturally occurring apetalous genera, such as Thalictrum, Beesia, and Enemion, the gene has either been lost altogether or disrupted by deletions in coding or regulatory regions. In Clematis, a large genus in which petalous species evolved secondarily from apetalous ones, the gene exhibits hallmarks of a pseudogene. These results suggest that, as a petal identity gene, AP3-3 has been silenced or down-regulated by different mechanisms in different evolutionary lineages. This also suggests that petal identity did not evolve many times independently across the Ranunculaceae but was lost in numerous instances. The genetic mechanisms underlying the independent petal losses, however, may be complex, with disruption of AP3-3 being either cause or effect.