Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Arch Insect Biochem Physiol ; 115(1): e22073, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38288485

RESUMEN

Although neonicotinoids are widely used and important insecticide, there are growing concerns about their effect on nontarget insects and other organisms. Moreover, the effects of nitenpyram (NIT), a second generation of neonicotinoid insecticides, on Chrysopa pallens are still unclear. Therefore, this study purposed to investigate the acute toxicity of NIT to C. pallens using the spotting method. To examine the potential effects of a sublethal dose of NIT (LD30 , 1.85 ng of active ingredient per insect) on C. pallens, we constructed the life tables and analyzed the transcriptome data. The life table results showed that the period of second instar larvae, adult pre-oviposition period and total pre-oviposition period were significantly prolonged after exposure to sublethal dose of NIT, but had no significant effects on the other instars, longevity, oviposition days, and fecundity. The population parameters, including the preadult survival rate, gross reproduction rate, net reproductive rate, the intrinsic rate of increase, and finite rate of increase, were not significantly affected, and only the mean generation time was significantly prolonged by NIT. Transcriptome analysis showed that there were 68 differentially expressed genes (DEGs), including 50 upregulated genes and 18 downregulated genes. Moreover, 13 DEGs related to heat shock protein, nose resistant to fluoxetine protein 6, and prophenoloxidas were upregulated. This study showed the potential effects of sublethal doses of NIT on C. pallens and provided a theoretical reference for the comprehensive application of chemical and biological control in integrated pest management.


Asunto(s)
Insecticidas , Femenino , Animales , Neonicotinoides , Insecticidas/toxicidad , Insectos/genética , Reproducción
2.
Insect Mol Biol ; 32(3): 263-276, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36582185

RESUMEN

Lufenuron (LUF) and Methoxyfenozide (MET) as Insect Growth Regulators (IGRs) contribute to the current control of the catastrophic crop pest, Spodoptera exigua (Lepidoptera, Noctuidae). Yet S. exigua has evolved resistance to LUF and MET, which is possibly mediated by cytochrome P450 monooxygenases (P450s), particularly from the CYP3 clade family, as it plays a key role in the detoxification of insecticides. However, a mixture of LUF and MET (MML) (optimal ratio: 6:4) remains highly insecticidal. Here, we analysed the response of S. exigua to sublethal concentrations of LUF, MET, and MML via transcriptomics. Twelve differentially expressed genes (DEGs) encoding CYP3 clade members were observed in transcriptomes and CYP9A9 was significantly upregulated after treatment with LUF, MET, and MML. Further, CYP9A9 was most highly expressed in the midgut of L4 S. exigua larvae. RNAi-mediated knockdown of CYP9A9 reduced the activity of CYP450 and increased the susceptibility of S. exigua larvae to LUF, MET, and MML. Thus, CYP9A9 plays a key role in the detoxification of LUF, MET, and MML in S. exigua. These findings provide new insights into insecticidal actions of IGRs, which can be applied to the establishment of novel pest management strategies.


Asunto(s)
Insecticidas , Animales , Spodoptera/genética , Insecticidas/farmacología , Hormonas Juveniles/farmacología , Larva/genética , Sistema Enzimático del Citocromo P-450/genética
3.
Ecotoxicol Environ Saf ; 262: 115180, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37379665

RESUMEN

Heavy metals (HMs) and microplastics (MPs) are two emerging factors threatening global food security. Whether long-term MPs pollution will affect the distribution of HMs and their resistance genes (MRGs) in soil is unknown. Here, metagenomic approach was used to decipher the fate of MRGs in cropland soils with long-term film MPs residues. Similar distribution pattern of MRGs was formed in long-term film MPs contaminated soil. A total of 202 MRG subtypes were detected, with resistance genes for Multimetal, Cu, and As being the most prevalent type of MRGs. MRGs formed a modular distribution of five clusters centered on MRGs including ruvB in long-term film MPs contaminated soil. MRGs also formed tight co-occurrence networks with mobile genetic elements (MGEs: integrons, insertions and plasmids). Redundancy analysis showed that HMs together with microbial communities and MGEs affected the distribution of MRGs in soil. Thirteen genera including Pseudomonas were identified as potential hosts for MRGs and MGEs. The research provides preliminary progress on the synergistic effect of HMs and MPs in affecting soil ecological security. The synergistic effect of MPs and HMs needs to be considered in the remediation of contaminated soils.

4.
Environ Res ; 214(Pt 4): 114133, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35995229

RESUMEN

Plastic pollution in the soil ecosystem is currently receiving worldwide attention. However, little is known whether the presence of microplastics (MPs) in soil will affect the environmental behavior of pesticide residues in soil. Here, the effect of the addition of new mulch MPs (New-MPs), aged mulch MPs (Aged-MPs) and biodegradable mulch MPs (BioD-MPs) on the adsorption and degradation behaviors of two pesticides (imidacloprid and flumioxazin) in soil was investigated. Three MPs slowed down rapid adsorption stage of pesticides in soil and delayed the time to reach adsorption equilibrium. Adsorption rates: Soil > Soil + New-MPs > Soil + Aged-MPs > Soil + BioD-MPs. Three MPs enhanced the adsorption strength of the soil system for the two pesticides, and the aging treatment of the MPs enhanced this effect. Three MPs affected the degradation process of the two pesticides. New-MPs promoted the degradation of two pesticides imidacloprid and flumioxazin, and the degradation half-lives were shortened to 0.93 and 0.85 times, respectively; while Aged-Mps and BioD-MPs delayed the degradation process of two pesticides, and the degradation half-lives were extended to 1.64 times and 1.21 times, respectively. The effect was more significant with the increase of MPs and pesticides concentration. Pesticide polarity, surface structure and functional groups of MPs are potentially important reasons for the differences in adsorption and degradation of MPs-soil systems. Our findings provide a deep insight into understanding the mechanism of interaction between MPs and pesticide residues in soil environment.


Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Contaminantes del Suelo , Adsorción , Ecosistema , Microplásticos , Residuos de Plaguicidas/análisis , Plaguicidas/análisis , Plásticos , Suelo/química , Contaminantes del Suelo/análisis
5.
Ecotoxicol Environ Saf ; 233: 113338, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35228031

RESUMEN

As microplastics became the focus of global attention, the hazards of plastic plasticizers (PAEs) have gradually attracted people's attention. Agricultural soil is one of its hardest hit areas. However, current research of its impact on soil ecology only stops at the microorganism itself, and there is still lack of conclusion on the impact of soil metabolism. To this end, three most common PAEs (Dimethyl phthalate: DMP, Dibutyl phthalate: DBP and Bis (2-ethylhexyl) phthalate: DEHP) were selected and based on high-throughput sequencing and metabolomics platforms, the influence of PAEs residues on soil metabolic functions were revealed for the first time. PAEs did not significantly changed the alpha diversity of soil bacteria in the short term, but changed their community structure and interfered with the complexity of community symbiosis network. Metabolomics indicated that exposure to DBP can significantly change the soil metabolite profile. A total of 172 differential metabolites were found, of which 100 were up-regulated and 72 were down-regulated. DBP treatment interfered with 43 metabolic pathways including basic metabolic processes. In particular, it interfered with the metabolism of residual steroids and promoted the metabolism of various plasticizers. In addition, through differential labeling and collinear analysis, some bacteria with the degradation potential of PAEs, such as Gordonia, were excavated.


Asunto(s)
Ácidos Ftálicos , Contaminantes del Suelo , Dibutil Ftalato/toxicidad , Ésteres , Humanos , Metabolómica , Ácidos Ftálicos/toxicidad , Plásticos , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
6.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34638750

RESUMEN

Long-term use of a single fungicide increases the resistance risk and causes adverse effects on natural ecosystems. Controlled release formulations of dual fungicides with different modes of action can afford a new dimension for addressing the current issues. Based on adjustable aperture and superhigh surface area, metal-organic frameworks (MOFs) are ideal candidates as pesticide release carriers. This study used Al3+ as the metal node and 2-aminoterephthalic acid as the organic chain to prepare aluminum-based metal-organic framework material (NH2-Al-MIL-101) with "cauliflower-like" structure and high surface area of 2359.0 m2/g. Fungicides of azoxystrobin (AZOX) and diniconazole (Dini) were simultaneously encapsulated into NH2-Al-MIL-101 with the loading content of 6.71% and 29.72%, respectively. Dual fungicide delivery system of AZOX@Dini@NH2-Al-MIL-101 demonstrated sustained and pH responsive release profiles. When the maximum cumulative release rate of AZOX and Dini both reached about 90%, the release time was 46 and 136 h, respectively. Furthermore, EC50 values as well as the percentage of inhibition revealed that AZOX@Dini@NH2-Al-MIL-101 had enhanced germicidal efficacy against rice sheath blight (Rhizoctonia solani), evidenced by the synergistic ratio of 1.83. The present study demonstrates a potential application prospect in sustainable plant protection through co-delivery fungicides with MOFs as a platform.


Asunto(s)
Fungicidas Industriales , Estructuras Metalorgánicas , Pirimidinas , Rhizoctonia/crecimiento & desarrollo , Estrobilurinas , Triazoles , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Fungicidas Industriales/química , Fungicidas Industriales/farmacocinética , Fungicidas Industriales/farmacología , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacocinética , Estructuras Metalorgánicas/farmacología , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/farmacología , Estrobilurinas/química , Estrobilurinas/farmacocinética , Estrobilurinas/farmacología , Triazoles/química , Triazoles/farmacocinética , Triazoles/farmacología
7.
Int J Mol Sci ; 20(6)2019 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-30884792

RESUMEN

Environmental stimuli-responsive pesticide release is desirable for enhanced efficiency and reduced side effects. In most cases, the loading and release of pesticides mainly depends on hydrophobic interactions and hydrogen bonding. Electrostatic interaction is less investigated as a weapon for achieving high loading content and controlled pesticide release. In this work, negative-charge decorated mesoporous silica nanoparticles (MSNs) were facilely fabricated by introducing sulfonate groups onto MSNs through a post-grafting method. Sulfonate-functionalized MSNs (MSN-SO3) were synthesized by conversion of epoxy group into sulfonate group using a bisulfite ion as a ring opening reagent. Diquat dibromide (DQ), one of the globally used quaternary ammonium herbicides, was efficiently loaded into these negatively charged MSN-SO3 nanoparticles. The loading content was increased to 12.73% compared to those using bare MSNs as carriers (5.31%). The release of DQ from DQ@MSN-SO3 nanoparticles was pH and ionic strength responsive, which was chiefly governed by the electrostatic interactions. Moreover, DQ@MSN-SO3 nanoparticles exhibited good herbicidal activity for the control of Datura stramonium L., and the bioactivity was affected by the ionic strength of the release medium. The strategy of cargo loading and release dependent on the electrostatic interactions could be generally used for charge-carrying pesticides using carriers possessing opposite charges to mitigate the potential negative impacts on the environment.


Asunto(s)
Datura stramonium/efectos de los fármacos , Diquat/química , Herbicidas/química , Nanopartículas/química , Datura stramonium/crecimiento & desarrollo , Diquat/farmacología , Portadores de Fármacos/química , Herbicidas/farmacología , Humanos , Enlace de Hidrógeno/efectos de los fármacos , Concentración de Iones de Hidrógeno , Concentración Osmolar , Plaguicidas/efectos adversos , Plaguicidas/química , Porosidad , Dióxido de Silicio/química , Dióxido de Silicio/farmacología , Electricidad Estática , Sulfitos/química
8.
Chemosphere ; : 142698, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925523

RESUMEN

The detrimental effects of microplastics (MPs) on soil microbial and elemental raise significant environmental concerns. The potential of remediation with biochar to mitigate these negative impacts remains an open question. The remediation effects of biochar derived from corn and cotton straw on MPs concerning soil microorganisms and element cycling were investigated. Specifically, biochar induced substantial remediations in microbial community structure following MP exposure, restoring and fortifying the symbiotic network while exerting dominance over microbial community changes. A combined treatment of biochar and MPs exhibited a noteworthy increase in the abundance of NH4+, NO3-, and available phosphorous by 0.46-2.1 times, reversing the declining trend of dissolved organic carbon, showing a remarkable increase by 0.36 times. This combined treatment also led to a reduction in the abundance of the nitrogen fixation gene nifH by 0.46 times, while significantly increasing the expression of nitrification genes (amoA and amoB) and denitrification genes (nirS and nirK) by 22.5 times and 1.7 times, respectively. Additionally, the carbon cycle cbbLG gene showed a 2.3-fold increase, and the phosphorus cycle gene phoD increased by 0.1-fold. The mixed treatment enriched element-cycling microorganisms by 4.8 to 9.6 times. In summary, the addition of biochar repaired the negative effects of MPs in terms of microbial community dynamics, element content, gene expression, and functional microbiota. These findings underscore the crucial role of biochar in alleviating the adverse effects of MPs on microbial communities and elemental cycling, providing valuable insights into sustainable environmental remediation strategies.

9.
Environ Sci Pollut Res Int ; 31(14): 21845-21856, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38400979

RESUMEN

Glyphosate-based herbicides (GBHs) are common herbicide formulations used in the field and are increasingly used worldwide with the widespread cultivation of herbicide-tolerant genetically modified crops. As a result, the risk of arthropod exposure to GBH is increasing rapidly. Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae) is a common predatory natural enemy in agroecosystems, which is exposed to GBH (Roundup®) while preying on pests. To identify and characterize the potential effects of GBH on C. pallens, the life tables of C. pallens larvae and adults fed with GBH were constructed. Moreover, the effects of GBH treatment on the expression of genes involved in insulin signalling in adults were analyzed using qRT-PCR. The results showed that GBH treatment altered the pupal period and preadult stage of C. pallens larvae. However, it did no effect on longevity, fecundity, and population parameters and two insulin receptor genes (InR1, InR2), a serine/threonine kinase (Akt), an extracellular-signal-regulated kinase (erk), and vitellogenin (Vg1) expression of C. pallens. Adults feeding on GBH significantly altered development, longevity, and differences in the mean generation time of the F0 generation. However, GBH feeding only minimally influenced the growth and population parameters of the F1 generation. In addition, InR1, InR2, erk, and Vg1 expression in the F0 generation were downregulated on the fifth day of feeding on GBH. Furthermore, the expression levels of InR1, InR2, Akt, erk, and Vg1 in C. pallens decreased with the increase of GBH concentration, although the expression levels returned to control levels on the tenth day. Overall, the consumption of the GBH by larvae and adults of C. pallens had minimal effect on the growth and population parameters of C. pallens. The findings of this study can provide a reference for elucidating the environmental risks of GBH, guiding the optimal use of glyphosate in agricultural practices in the future.


Asunto(s)
Glifosato , Herbicidas , Animales , Herbicidas/farmacología , Longevidad , Productos Agrícolas , Proteínas Proto-Oncogénicas c-akt , Plantas Modificadas Genéticamente , Fertilidad , Larva , Insectos
10.
J Hazard Mater ; 466: 133656, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38306832

RESUMEN

Pesticides and microplastics (MPs) derived from mulch film in agricultural soil can independently impact soil ecology, yet the consequences of their combined exposure remain unclear. Therefore, the effects of simultaneous exposure to commonly used pesticides (imidacloprid and flumioxazin) and aged mulch film-derived MPs on soil microorganisms and element cycles in cotton fields were investigated. The combined exposure influenced soil microorganisms, alongside processes related to carbon, nitrogen, and phosphorus cycles, exhibiting effects that were either neutralized or enhanced compared to individual exposures. The impact of pesticides in combined exposure was notably more significant and played a dominant role than that of MPs. Specifically, combined exposure intensified changes in soil bacterial community and symbiotic networks. The combined exposure neutralized NH4+, NO3-, DOC, and A-P contents, shifting from 0.33 % and 40.23 % increase in MPs and pesticides individually to a 40.24 % increase. Moreover, combined exposure resulted in the neutralization or amplification of the nitrogen-fixing gene nifH, nitrifying genes (amoA and amoB), and denitrifying genes (nirS and nirK), the carbon cycle gene cbbLG and the phosphorus cycle gene phoD from 0.48 and 2.57-fold increase to a 2.99-fold increase. The combined exposure also led to the neutralization or enhancement of carbon and nitrogen cycle functional microorganisms, shifting from a 1.53-fold inhibition and 10.52-fold increase to a 6.39-fold increase. These findings provide additional insights into the potential risks associated with combined pesticide exposure and MPs, particularly concerning soil microbial communities and elemental cycling processes.


Asunto(s)
Microbiota , Plaguicidas , Plaguicidas/toxicidad , Suelo , Microplásticos , Plásticos/toxicidad , Carbono , Nitrógeno , Fósforo , Microbiología del Suelo
11.
ACS Omega ; 9(28): 31011-31025, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39035928

RESUMEN

Tank-mix adjuvants have been used to reduce spray drift and facilitate the efficacy of pesticides applied with unmanned aerial vehicles (UAVs). However, the effects of specific adjuvants on pesticide characteristics and the mechanism of action remain unclear. Herein, we analyzed the effects of three different types of tank-mix adjuvants (plant oil; mineral oil; and mixture of alcohol and ester) on the surface tension (ST), contact angle, wetting, permeation, evaporation, spray performance, and aphid-control effects of two types of pesticides. The mineral oil adjuvant Weichi (WCH) was highly effective in reducing the pesticide solution ST, improving the wetting and penetration ability, increasing droplet size, and promoting droplet deposition. The mixed alcohol and ester adjuvant Quanrun (QR) showed excellent wetting and antievaporation properties and promoted droplet deposition. A plant oil adjuvant (Beidatong) moderately improved wetting and penetration ability and reduced droplet drift. Field tests showed that the control efficiencies (CEs) of two pesticides were increased after the addition of adjuvants, even with 20% reductions in pesticide application. When the UAV was operated at 1.5 m, the CEs of two pesticides were increased from 65.39 and 66.63% to 73.11-76.52% and 77.91-88.31%, respectively. When operated at 2.5 m, the CEs were increased from 51.24 and 68.60% to 65.06-75.70% and 77.57-92.59%, respectively. Especially, the CEs of pesticides with WCH and QR increased obviously. Importantly, neither WCH nor QR inhibited hatching of the critical insect natural enemy ladybird beetle at concentrations used in the field. This study provides a framework for assessment of tank-mix adjuvants in aerial sprays and directly demonstrates the value of specific adjuvants in improving pesticide bioavailability and minimizing associated environmental pollution.

12.
Chemosphere ; 312(Pt 1): 137235, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36375616

RESUMEN

Agricultural soils and microplastics (MPs) are hotspots for antibiotic resistance genes (ARGs). Plastic mulch is the most important source of MPs in agricultural soil. ARGs, mobile genetic elements (MGEs), and their host profiles in long-term mulch MP-exposed soils remain unclear. In the present study, metagenomics was used to investigate the distribution patterns of ARGs and MGEs in eight Chinese provinces with a long history of plastic mulch use. A total of 204 subtypes of ARGs and thousands of MGEs (14 integrons, 28 insertions, and 2993 plasmids) were identified. A similar diversity of ARGs was found among MPs film-contaminated sites. The types of ARGs with a high abundance were more concentrated, and multidrug resistance genes were the dominant ARGs. Soils from regions with a longer history of plastic film use (such as Xinjiang province) had a higher abundance of ARGs and MGEs. The distribution of ARGs and MGEs exhibited a modular network distribution pattern. A total of 27 ARG subtypes and 29 MGEs showed co-occurrence network relationships. More than 10 common hosts of ARGs and MGEs, such as Pseudomonas, were found, and their abundances were highest in three provinces, including Xinjiang. This study may help elucidate the impact mechanism of long-term MP residues on the occurrence and spread of ARGs in soil.


Asunto(s)
Antibacterianos , Plásticos , Antibacterianos/farmacología , Microplásticos , Genes Bacterianos , Microbiología del Suelo , Farmacorresistencia Microbiana/genética , Suelo/química
13.
J Hazard Mater ; 423(Pt B): 127258, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34844367

RESUMEN

Research on microplastic pollution of terrestrial soils is catching up with the aquatic environment, especially agricultural soil systems. Plastic residues have caused various environmental problems in mulch film extensively used agricultural areas. However, studies focusing specifically on the potential influence of mulch film residues on the metabolic cycle of soil systems have yet to be conducted. Here, high-throughput sequencing combined with metabolomics were first used to study the effects of residual mulch on soil microbial communities and related metabolic functions. Plastic film treatment did not significantly affect soil physicochemical properties including pH, organic matter and nitrogen, etc in short term. However, it did significantly changed overall community structure of soil bacteria, and interfered with complexity of soil bacterial symbiosis networks; exposure time and concentration of residues were particularly important factors affecting community structure. Furthermore, metabolomics analysis showed that film residue significantly changed soil metabolite spectrum, and interfered with basic carbon and lipid metabolism, and also affected basic cellular processes such as membrane transport and, in particular, interfered with the biosynthesis of secondary metabolites, as well as, biodegradation and metabolism of xenobiotics. Additionally, through linear discriminant and collinear analysis, some new potential microplastic degrading bacteria including Nitrospira, Nocardioidaceae and Pseudonocardiaceae have been excavated.


Asunto(s)
Plásticos , Suelo , Agricultura , Biodegradación Ambiental , Metabolómica , Microbiología del Suelo
14.
J Colloid Interface Sci ; 566: 383-393, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32018178

RESUMEN

Metal-organic frameworks (MOFs) are an emerging class of hybrid inorganic-organic porous materials used in various fields. Considering their excellent performance, MOFs have a considerable application potential in sustainable agriculture. Research projects of MOFs-based platforms for plant protection and nutrition have just started. Environmental stimuli-responsive pesticide release is highly desirable for improved efficacy and decreased side effects. Iron-based MOFs (Fe-MOFs) have a considerable prospect in agriculture as multifunctional materials both for pesticide delivery and plant nutrient replenishment because iron is an essential micronutrient for crop growth. In this work, a simple octahedral Fe-MOFs built from trimers of iron octahedra linked by 1, 3, 5-benzenetricarboxylate (Fe-MIL-100) have been prepared as carriers for fungicide azoxystrobin. Due to the high surface area of 2251 m2/g, the loading content of azoxystrobin into Fe-MIL-100 is satisfactory up to 16.2%. Azoxystrobin-loaded Fe-MOFs (AZOX@Fe-MIL-100) exhibit a pH-responsive initial burst and a subsequent sustained release pattern. Moreover, AZOX@Fe-MIL-100 exhibits good fungicidal activities against two pathogenic fungi-wheat head scab (Fusarium graminearum) and tomato late blight (Phytophthora infestans). The nutritional function of Fe-MIL-100 as iron micronutrient for the enhanced wheat growth was also observed. This research explores the feasibility of MOFs as a platform for potential application in sustainable plant protection.


Asunto(s)
Antifúngicos/farmacología , Fungicidas Industriales/farmacología , Fusarium/efectos de los fármacos , Estructuras Metalorgánicas/química , Phytophthora infestans/efectos de los fármacos , Pirimidinas/farmacología , Estrobilurinas/farmacología , Antifúngicos/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Fungicidas Industriales/química , Concentración de Iones de Hidrógeno , Hierro/química , Hierro/farmacología , Estructuras Metalorgánicas/farmacología , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Porosidad , Pirimidinas/química , Estrobilurinas/química , Propiedades de Superficie
15.
Nanomaterials (Basel) ; 10(10)2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-33050439

RESUMEN

Recently, metal-organic frameworks (MOFs) have become a dazzling star among porous materials used in many fields. Considering their intriguing features, MOFs have great prospects for application in the field of sustainable agriculture, especially as versatile pesticide-delivery vehicles. However, the study of MOF-based platforms for controlled pesticide release has just begun. Controlled pesticide release responsive to environmental stimuli is highly desirable for decreased agrochemical input, improved control efficacy and diminished adverse effects. In this work, simple, octahedral, iron-based MOFs (NH2-Fe-MIL-101) were synthesized through a microwave-assisted solvothermal method using Fe3+ as the node and 2-aminoterephthalic acid as the organic ligand. Diniconazole (Dini), as a model fungicide, was loaded into NH2-Fe-MIL-101 to afford Dini@NH2-Fe-MIL-101 with a satisfactory loading content of 28.1%. The subsequent polydopamine (PDA) modification could endow Dini with pH-sensitive release patterns. The release of Dini from PDA@Dini@NH2-Fe-MIL-101 was much faster in an acidic medium compared to that in neutral and basic media. Moreover, Dini@NH2-Fe-MIL-101 and PDA@Dini@NH2-Fe-MIL-101 displayed good bioactivities against the pathogenic fungus causing wheat head scab (Fusarium graminearum). This research sought to reveal the feasibility of versatile MOFs as a pesticide-delivery platform in sustainable crop protection.

16.
Nanoscale ; 10(43): 20354-20365, 2018 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-30376015

RESUMEN

Recently, mesoporous silica nanoparticles (MSNs) have become popular nanomaterials in smart delivery systems. Although research progress in the application of MSNs as pesticide carriers has been achieved, multifunctional MSNs endowed with bright luminescent centers facilitating the tracking of MSNs in biological systems and versatile structural properties possessing a high drug loading capacity and regulable release are still highly desirable. In the present work, we reported a fluorophore-free method to endow MSNs with stable fluorescence and a double-shelled hollow structure; they were prepared by a selective-etching strategy and subsequent annealing treatment. The strong and stable luminescence is found to originate from the carbon dots generated from the calcination. Their well-defined morphological structure was confirmed by SEM and TEM imaging. These versatile silica nanoparticles served as a novel delivery system for the pesticide pyraclostrobin with a loading content of 28.5%. The pyraclostrobin-loaded nanoparticles showed an initial burst, followed by subsequent sustained release behavior. The fungicidal activity of pyraclostrobin-loaded silica nanoparticles against the fungus Phomopsis asparagi (Sacc.) as well as their visual observation in the mycelium was explored. Furthermore, the effect of pyraclostrobin-loaded nanoparticles on the morphology and ultrastructure of the mycelium was investigated by SEM and TEM observations. This research seeks to develop a novel nanocarrier platform for the potential application of pesticides in sustainable plant protection.


Asunto(s)
Portadores de Fármacos/química , Nanopartículas/química , Plaguicidas/química , Dióxido de Silicio/química , Ascomicetos/efectos de los fármacos , Liberación de Fármacos , Fungicidas Industriales/química , Fungicidas Industriales/farmacología , Tamaño de la Partícula , Plaguicidas/metabolismo , Espectroscopía de Fotoelectrones , Porosidad , Espectrometría de Fluorescencia , Estrobilurinas/química , Estrobilurinas/farmacología
17.
J Agric Food Chem ; 66(26): 6594-6603, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28640597

RESUMEN

Because of its relatively high water solubility and mobility, 2,4-dichlorophenoxy acetic acid (2,4-D) has a high leaching potential threatening the surface water and groundwater. Controlled release formulations of 2,4-D could alleviate the adverse effects on the environment. In the present study, positive-charge functionalized mesoporous silica nanoparticles (MSNs) were facilely synthesized by incorporating trimethylammonium (TA) groups onto MSNs via a postgrafting method. 2,4-D sodium salt, the anionic form of 2,4-D, was effectively loaded into these positively charged MSN-TA nanoparticles. The loading content can be greatly improved to 21.7% compared to using bare MSNs as a single encapsulant (1.5%). Pesticide loading and release patterns were pH, ionic strength and temperature responsive, which were mainly dominated by the electrostatic interactions. Soil column experiments clearly demonstrated that MSN-TA can decrease the soil leaching of 2, 4-D sodium salt. Moreover, this novel nanoformulation showed good bioactivity on target plant without adverse effects on the growth of nontarget plant. This strategy based on electrostatic interactions could be widely applied to charge carrying agrochemicals using carriers bearing opposite charges to alleviate the potential adverse effects on the environment.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/química , Preparaciones de Acción Retardada/química , Portadores de Fármacos/química , Herbicidas/química , Nanopartículas/química , Dióxido de Silicio/química , Ácido 2,4-Diclorofenoxiacético/farmacología , Cucumis sativus/efectos de los fármacos , Cucumis sativus/crecimiento & desarrollo , Preparaciones de Acción Retardada/farmacología , Composición de Medicamentos , Herbicidas/farmacología , Tamaño de la Partícula , Porosidad , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA