Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 18(11): e3000936, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33137097

RESUMEN

Using mRNA sequencing and de novo transcriptome assembly, we identified, cloned, and characterized 9 previously undiscovered fluorescent protein (FP) homologs from Aequorea victoria and a related Aequorea species, with most sequences highly divergent from A. victoria green fluorescent protein (avGFP). Among these FPs are the brightest green fluorescent protein (GFP) homolog yet characterized and a reversibly photochromic FP that responds to UV and blue light. Beyond green emitters, Aequorea species express purple- and blue-pigmented chromoproteins (CPs) with absorbances ranging from green to far-red, including 2 that are photoconvertible. X-ray crystallography revealed that Aequorea CPs contain a chemically novel chromophore with an unexpected crosslink to the main polypeptide chain. Because of the unique attributes of several of these newly discovered FPs, we expect that Aequorea will, once again, give rise to an entirely new generation of useful probes for bioimaging and biosensing.


Asunto(s)
Hidrozoos/genética , Hidrozoos/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Animales , Técnicas Biosensibles , Color , Cristalografía por Rayos X , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hidrozoos/química , Proteínas Luminiscentes/química , Modelos Moleculares , Imagen Óptica , Filogenia , Electricidad Estática
2.
Bioorg Med Chem ; 27(18): 4013-4029, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31378593

RESUMEN

Inhibitors against Trypanosoma brucei phosphodiesterase B1 (TbrPDEB1) and B2 (TbrPDEB2) have gained interest as new treatments for human African trypanosomiasis. The recently reported alkynamide tetrahydrophthalazinones, which show submicromolar activities against TbrPDEB1 and anti-T. brucei activity, have been used as starting point for the discovery of new TbrPDEB1 inhibitors. Structure-based design indicated that the alkynamide-nitrogen atom can be readily decorated, leading to the discovery of 37, a potent TbrPDEB1 inhibitor with submicromolar activities against T. brucei parasites. Furthermore, 37 is more potent against TbrPDEB1 than hPDE4 and shows no cytotoxicity on human MRC-5 cells. The crystal structures of the catalytic domain of TbrPDEB1 co-crystalized with several different alkynamides show a bidentate interaction with key-residue Gln874, but no interaction with the parasite-specific P-pocket, despite being (uniquely) a more potent inhibitor for the parasite PDE. Incubation of blood stream form trypanosomes by 37 increases intracellular cAMP levels and results in the distortion of the cell cycle and cell death, validating phosphodiesterase inhibition as mode of action.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/efectos de los fármacos , Inhibidores de Fosfodiesterasa/uso terapéutico , Proteínas Protozoarias/efectos de los fármacos , Humanos , Inhibidores de Fosfodiesterasa/farmacología , Relación Estructura-Actividad
3.
Nat Methods ; 10(5): 407-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23524392

RESUMEN

We report a monomeric yellow-green fluorescent protein, mNeonGreen, derived from a tetrameric fluorescent protein from the cephalochordate Branchiostoma lanceolatum. mNeonGreen is the brightest monomeric green or yellow fluorescent protein yet described to our knowledge, performs exceptionally well as a fusion tag for traditional imaging as well as stochastic single-molecule superresolution imaging and is an excellent fluorescence resonance energy transfer (FRET) acceptor for the newest cyan fluorescent proteins.


Asunto(s)
Cordados/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Animales , Datos de Secuencia Molecular , Procesos Estocásticos
4.
Neurophotonics ; 11(2): 024208, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38559366

RESUMEN

Significance: Luminopsins (LMOs) are bioluminescent-optogenetic tools with a luciferase fused to an opsin that allow bimodal control of neurons by providing both optogenetic and chemogenetic access. Determining which design features contribute to the efficacy of LMOs will be beneficial for further improving LMOs for use in research. Aim: We investigated the relative impact of luciferase brightness, opsin sensitivity, pairing of emission and absorption wavelength, and arrangement of moieties on the function of LMOs. Approach: We quantified efficacy of LMOs through whole cell patch clamp recordings in HEK293 cells by determining coupling efficiency, the percentage of maximum LED induced photocurrent achieved with bioluminescent activation of an opsin. We confirmed key results by multielectrode array recordings in primary neurons. Results: Luciferase brightness and opsin sensitivity had the most impact on the efficacy of LMOs, and N-terminal fusions of luciferases to opsins performed better than C-terminal and multi-terminal fusions. Precise paring of luciferase emission and opsin absorption spectra appeared to be less critical. Conclusions: Whole cell patch clamp recordings allowed us to quantify the impact of different characteristics of LMOs on their function. Our results suggest that coupling brighter bioluminescent sources to more sensitive opsins will improve LMO function. As bioluminescent activation of opsins is most likely based on Förster resonance energy transfer, the most effective strategy for improving LMOs further will be molecular evolution of luciferase-fluorescent protein-opsin fusions.

5.
Neurophotonics ; 11(2): 024209, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38725801

RESUMEN

Significance: Pain comprises a complex interaction between motor action and somatosensation that is dependent on dynamic interactions between the brain and spinal cord. This makes understanding pain particularly challenging as it involves rich interactions between many circuits (e.g., neural and vascular) and signaling cascades throughout the body. As such, experimentation on a single region may lead to an incomplete and potentially incorrect understanding of crucial underlying mechanisms. Aim: We aimed to develop and validate tools to enable detailed and extended observation of neural and vascular activity in the brain and spinal cord. The first key set of innovations was targeted to developing novel imaging hardware that addresses the many challenges of multisite imaging. The second key set of innovations was targeted to enabling bioluminescent (BL) imaging, as this approach can address limitations of fluorescent microscopy including photobleaching, phototoxicity, and decreased resolution due to scattering of excitation signals. Approach: We designed 3D-printed brain and spinal cord implants to enable effective surgical implantations and optical access with wearable miniscopes or an open window (e.g., for one- or two-photon microscopy or optogenetic stimulation). We also tested the viability for BL imaging and developed a novel modified miniscope optimized for these signals (BLmini). Results: We describe "universal" implants for acute and chronic simultaneous brain-spinal cord imaging and optical stimulation. We further describe successful imaging of BL signals in both foci and a new miniscope, the "BLmini," which has reduced weight, cost, and form-factor relative to standard wearable miniscopes. Conclusions: The combination of 3D-printed implants, advanced imaging tools, and bioluminescence imaging techniques offers a coalition of methods for understanding spinal cord-brain interactions. Our work has the potential for use in future research into neuropathic pain and other sensory disorders and motor behavior.

6.
Neurophotonics ; 11(2): 021005, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38450294

RESUMEN

Significance: Bioluminescent optogenetics (BL-OG) offers a unique and powerful approach to manipulate neural activity both opto- and chemogenetically using a single actuator molecule (a LuMinOpsin, LMO). Aim: To further enhance the utility of BL-OG by improving the efficacy of chemogenetic (bioluminescence-driven) LMO activation. Approach: We developed novel luciferases optimized for Förster resonance energy transfer when fused to the fluorescent protein mNeonGreen, generating bright bioluminescent (BL) emitters spectrally tuned to Volvox Channelrhodopsin 1 (VChR1). Results: A new LMO generated from this approach (LMO7) showed significantly stronger BL-driven opsin activation compared to previous and other new variants. We extensively benchmarked LMO7 against LMO3 (current standard) and found significantly stronger neuronal activity modulation ex vivo and in vivo, and efficient modulation of behavior. Conclusions: We report a robust new option for achieving multiple modes of control in a single actuator and a promising engineering strategy for continued improvement of BL-OG.

7.
BMC Genomics ; 14: 167, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-23496952

RESUMEN

BACKGROUND: The lack of genomic resources can present challenges for studies of non-model organisms. Transcriptome sequencing offers an attractive method to gather information about genes and gene expression without the need for a reference genome. However, it is unclear what sequencing depth is adequate to assemble the transcriptome de novo for these purposes. RESULTS: We assembled transcriptomes of animals from six different phyla (Annelids, Arthropods, Chordates, Cnidarians, Ctenophores, and Molluscs) at regular increments of reads using Velvet/Oases and Trinity to determine how read count affects the assembly. This included an assembly of mouse heart reads because we could compare those against the reference genome that is available. We found qualitative differences in the assemblies of whole-animals versus tissues. With increasing reads, whole-animal assemblies show rapid increase of transcripts and discovery of conserved genes, while single-tissue assemblies show a slower discovery of conserved genes though the assembled transcripts were often longer. A deeper examination of the mouse assemblies shows that with more reads, assembly errors become more frequent but such errors can be mitigated with more stringent assembly parameters. CONCLUSIONS: These assembly trends suggest that representative assemblies are generated with as few as 20 million reads for tissue samples and 30 million reads for whole-animals for RNA-level coverage. These depths provide a good balance between coverage and noise. Beyond 60 million reads, the discovery of new genes is low and sequencing errors of highly-expressed genes are likely to accumulate. Finally, siphonophores (polymorphic Cnidarians) are an exception and possibly require alternate assembly strategies.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Animales , Secuencia Conservada , Genómica , Invertebrados/genética , Ratones , Miocardio/metabolismo , ARN Mensajero/genética
8.
Biochem Biophys Res Commun ; 431(2): 360-6, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23262181

RESUMEN

Calcium-binding photoproteins have been discovered in a variety of luminous marine organisms [1]. Recent interest in photoproteins from the phylum Ctenophora has stemmed from cloning and expression of several photoproteins from this group [2-5]. Additional characterization has revealed unique biochemical properties found only in ctenophore photoproteins, such as inactivation by light. Here we report the cloning, expression, and characterization of the photoprotein responsible for luminescence in the deep-sea ctenophore Bathocyroe fosteri. This animal was of particular interest due to the unique broad color spectrum observed in live specimens [6]. Full-length sequences were identified by BLAST searches of known photoprotein sequences against Bathocyroe transcripts obtained from 454 sequencing. Recombinantly expressed Bathocyroe photoprotein (BfosPP) displayed an optimal coelenterazine-loading pH of 8.5, and produced calcium-triggered luminescence with peak wavelengths closely matching the 493 nm peak observed in the spectrum of live B. fosteri specimens. Luminescence from recombinant BfosPP was inactivated most efficiently by UV and blue light. Primary structure alignment of BfosPP with other characterized photoproteins showed very strong sequence similarity to other ctenophore photoproteins and conservation of EF-hand motifs. Both alignment and structural prediction data provide more insight into the formation of the coelenterazine-binding domain and the probable mechanism of photoinactivation.


Asunto(s)
Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/efectos de la radiación , Ctenóforos/metabolismo , Luminiscencia , Proteínas Luminiscentes/química , Proteínas Luminiscentes/efectos de la radiación , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/clasificación , Proteínas de Unión al Calcio/genética , Clonación Molecular , Imidazoles/química , Sustancias Luminiscentes/química , Proteínas Luminiscentes/clasificación , Proteínas Luminiscentes/genética , Datos de Secuencia Molecular , Filogenia , Conformación Proteica , Pirazinas/química
9.
bioRxiv ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37425735

RESUMEN

SIGNIFICANCE: Bioluminescent optogenetics (BL-OG) offers a unique and powerful approach to manipulate neural activity both opto- and chemogenetically using a single actuator molecule (a LuMinOpsin, LMO). AIM: To further enhance the utility of BL-OG by improving the efficacy of chemogenetic (bioluminescence-driven) LMO activation. APPROACH: We developed novel luciferases optimized for Forster resonance energy transfer (FRET) when fused to the fluorescent protein mNeonGreen, generating bright bioluminescent (BL) emitters spectrally tuned to Volvox Channelrhodopsin 1 (VChR1). RESULTS: A new LMO generated from this approach (LMO7) showed significantly stronger BL-driven opsin activation compared to previous and other new variants. We extensively benchmarked LMO7 against LMO3 (current standard), and found significantly stronger neuronal activity modulation ex vivo and in vivo, and efficient modulation of behavior. CONCLUSIONS: We report a robust new option for achieving multiple modes of control in a single actuator, and a promising engineering strategy for continued improvement of BL-OG.

10.
bioRxiv ; 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37425742

RESUMEN

We developed a platform that utilizes a calcium-dependent luciferase to convert neuronal activity into activation of light sensing domains within the same cell. The platform is based on a Gaussia luciferase variant with high light emission split by calmodulin-M13 sequences that depends on influx of calcium ions (Ca2+) for functional reconstitution. In the presence of its luciferin, coelenterazine (CTZ), Ca2+ influx results in light emission that drives activation of photoreceptors, including optogenetic channels and LOV domains. Critical features of the converter luciferase are light emission low enough to not activate photoreceptors under baseline condition and high enough to activate photosensing elements in the presence of Ca2+ and luciferin. We demonstrate performance of this activity-dependent sensor and integrator for changing membrane potential and driving transcription in individual and populations of neurons in vitro and in vivo.

11.
ACS Synth Biol ; 12(8): 2301-2309, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37450884

RESUMEN

Genetically encoded optical sensors and advancements in microscopy instrumentation and techniques have revolutionized the scientific toolbox available for probing complex biological processes such as release of specific neurotransmitters. Most genetically encoded optical sensors currently used are based on fluorescence and have been highly successful tools for single-cell imaging in superficial brain regions. However, there remains a need to develop new tools for reporting neuronal activity in vivo within deeper structures without the need for hardware such as lenses or fibers to be implanted within the brain. Our approach to this problem is to replace the fluorescent elements of the existing biosensors with bioluminescent elements. This eliminates the need of external light sources to illuminate the sensor, thus allowing deeper brain regions to be imaged noninvasively. Here, we report the development of the first genetically encoded neurotransmitter indicators based on bioluminescent light emission. These probes were optimized by high-throughput screening of linker libraries. The selected probes exhibit robust changes in light output in response to the extracellular presence of the excitatory neurotransmitter glutamate. We expect this new approach to neurotransmitter indicator design to enable the engineering of specific bioluminescent probes for multiple additional neurotransmitters in the future, ultimately allowing neuroscientists to monitor activity associated with a specific neurotransmitter as it relates to behavior in a variety of neuronal and psychiatric disorders, among many other applications.


Asunto(s)
Técnicas Biosensibles , Ácido Glutámico , Humanos , Técnicas Biosensibles/métodos , Encéfalo , Neurotransmisores/genética , Imagen Molecular
12.
bioRxiv ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38045286

RESUMEN

Significance: Luminopsins (LMOs) are bioluminescent-optogenetic tools with a luciferase fused to an opsin that allow bimodal control of neurons by providing both optogenetic and chemogenetic access. Determining which design features contribute to the efficacy of LMOs will be beneficial for further improving LMOs for use in research. Aim: We investigated the relative impact of luciferase brightness, opsin sensitivity, pairing of emission and absorption wavelength, and arrangement of moieties on the function of LMOs. Approach: We quantified efficacy of LMOs through whole cell patch clamp recordings in HEK293 cells by determining coupling efficiency, the percentage of maximum LED induced photocurrent achieved with bioluminescent activation of an opsin. We confirmed key results by multielectrode array (MEAs) recordings in primary neurons. Results: Luciferase brightness and opsin sensitivity had the most impact on the efficacy of LMOs, and N-terminal fusions of luciferases to opsins performed better than C-terminal and multi-terminal fusions. Precise paring of luciferase emission and opsin absorption spectra appeared to be less critical. Conclusions: Whole cell patch clamp recordings allowed us to quantify the impact of different characteristics of LMOs on their function. Our results suggest that coupling brighter bioluminescent sources to more sensitive opsins will improve LMO function. As bioluminescent activation of opsins is most likely based on Förster resonance energy transfer (FRET), the most effective strategy for improving LMOs further will be molecular evolution of luciferase-fluorescent protein-opsin fusions.

13.
bioRxiv ; 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38234789

RESUMEN

Significance: Pain is comprised of a complex interaction between motor action and somatosensation that is dependent on dynamic interactions between the brain and spinal cord. This makes understanding pain particularly challenging as it involves rich interactions between many circuits (e.g., neural and vascular) and signaling cascades throughout the body. As such, experimentation on a single region may lead to an incomplete and potentially incorrect understanding of crucial underlying mechanisms. Aim: Here, we aimed to develop and validate new tools to enable detailed and extended observation of neural and vascular activity in the brain and spinal cord. The first key set of innovations were targeted to developing novel imaging hardware that addresses the many challenges of multi-site imaging. The second key set of innovations were targeted to enabling bioluminescent imaging, as this approach can address limitations of fluorescent microscopy including photobleaching, phototoxicity and decreased resolution due to scattering of excitation signals. Approach: We designed 3D-printed brain and spinal cord implants to enable effective surgical implantations and optical access with wearable miniscopes or an open window (e.g., for one- or two-photon microscopy or optogenetic stimulation). We also tested the viability for bioluminescent imaging, and developed a novel modified miniscope optimized for these signals (BLmini). Results: Here, we describe novel 'universal' implants for acute and chronic simultaneous brain-spinal cord imaging and optical stimulation. We further describe successful imaging of bioluminescent signals in both foci, and a new miniscope, the 'BLmini,' which has reduced weight, cost and form-factor relative to standard wearable miniscopes. Conclusions: The combination of 3D printed implants, advanced imaging tools, and bioluminescence imaging techniques offers a new coalition of methods for understanding spinal cord-brain interactions. This work has the potential for use in future research into neuropathic pain and other sensory disorders and motor behavior.

14.
bioRxiv ; 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37425712

RESUMEN

Ca2+ plays many critical roles in cell physiology and biochemistry, leading researchers to develop a number of fluorescent small molecule dyes and genetically encodable probes that optically report changes in Ca2+ concentrations in living cells. Though such fluorescence-based genetically encoded Ca2+ indicators (GECIs) have become a mainstay of modern Ca2+ sensing and imaging, bioluminescence-based GECIs-probes that generate light through oxidation of a small-molecule by a luciferase or photoprotein-have several distinct advantages over their fluorescent counterparts. Bioluminescent tags do not photobleach, do not suffer from nonspecific autofluorescent background, and do not lead to phototoxicity since they do not require the extremely bright extrinsic excitation light typically required for fluorescence imaging, especially with 2-photon microscopy. Current BL GECIs perform poorly relative to fluorescent GECIs, producing small changes in bioluminescence intensity due to high baseline signal at resting Ca2+ concentrations and suboptimal Ca2+ affinities. Here, we describe the development of a new bioluminescent GECI, "CaBLAM," which displays a much higher contrast (dynamic range) than previously described bioluminescent GECIs coupled with a Ca2+ affinity suitable for capturing physiological changes in cytosolic Ca2+ concentration. Derived from a new variant of Oplophorus gracilirostris luciferase with superior in vitro properties and a highly favorable scaffold for insertion of sensor domains, CaBLAM allows for single-cell and subcellular resolution imaging of Ca2+ dynamics at high frame rates in cultured neurons. CaBLAM marks a significant milestone in the GECI timeline, enabling Ca2+ recordings with high spatial and temporal resolution without perturbing cells with intense excitation light.

15.
Commun Biol ; 5(1): 33, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017641

RESUMEN

Understanding percepts, engrams and actions requires methods for selectively modulating synaptic communication between specific subsets of interconnected cells. Here, we develop an approach to control synaptically connected elements using bioluminescent light: Luciferase-generated light, originating from a presynaptic axon terminal, modulates an opsin in its postsynaptic target. Vesicular-localized luciferase is released into the synaptic cleft in response to presynaptic activity, creating a real-time Optical Synapse. Light production is under experimenter-control by introduction of the small molecule luciferin. Signal transmission across this optical synapse is temporally defined by the presence of both the luciferin and presynaptic activity. We validate synaptic Interluminescence by multi-electrode recording in cultured neurons and in mice in vivo. Interluminescence represents a powerful approach to achieve synapse-specific and activity-dependent circuit control in vivo.


Asunto(s)
Neuronas/metabolismo , Optogenética/métodos , Sinapsis/metabolismo , Animales , Encéfalo/citología , Células Cultivadas , Luciferasas/genética , Luciferasas/metabolismo , Luciferinas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Ratas
16.
Nat Methods ; 5(6): 545-51, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18454154

RESUMEN

All organic fluorophores undergo irreversible photobleaching during prolonged illumination. Although fluorescent proteins typically bleach at a substantially slower rate than many small-molecule dyes, in many cases the lack of sufficient photostability remains an important limiting factor for experiments requiring large numbers of images of single cells. Screening methods focusing solely on brightness or wavelength are highly effective in optimizing both properties, but the absence of selective pressure for photostability in such screens leads to unpredictable photobleaching behavior in the resulting fluorescent proteins. Here we describe an assay for screening libraries of fluorescent proteins for enhanced photostability. With this assay, we developed highly photostable variants of mOrange (a wavelength-shifted monomeric derivative of DsRed from Discosoma sp.) and TagRFP (a monomeric derivative of eqFP578 from Entacmaea quadricolor) that maintain most of the beneficial qualities of the original proteins and perform as reliably as Aequorea victoria GFP derivatives in fusion constructs.


Asunto(s)
Biofisica/métodos , Proteínas Luminiscentes/química , Fotoquímica/métodos , Animales , Escherichia coli/metabolismo , Colorantes Fluorescentes/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Cinética , Luz , Datos de Secuencia Molecular , Mutagénesis , Mutación , Óptica y Fotónica , Fotoblanqueo , Proteína Fluorescente Roja
17.
Front Mol Biosci ; 8: 633217, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33763453

RESUMEN

Genetically encoded probes with red-shifted absorption and fluorescence are highly desirable for imaging applications because they can report from deeper tissue layers with lower background and because they provide additional colors for multicolor imaging. Unfortunately, red and especially far-red fluorescent proteins have very low quantum yields, which undermines their other advantages. Elucidating the mechanism of nonradiative relaxation in red fluorescent proteins (RFPs) could help developing ones with higher quantum yields. Here we consider two possible mechanisms of fast nonradiative relaxation of electronic excitation in RFPs. The first, known as the energy gap law, predicts a steep exponential drop of fluorescence quantum yield with a systematic red shift of fluorescence frequency. In this case the relaxation of excitation occurs in the chromophore without any significant changes of its geometry. The second mechanism is related to a twisted intramolecular charge transfer in the excited state, followed by an ultrafast internal conversion. The chromophore twisting can strongly depend on the local electric field because the field can affect the activation energy. We present a spectroscopic method of evaluating local electric fields experienced by the chromophore in the protein environment. The method is based on linear and two-photon absorption spectroscopy, as well as on quantum-mechanically calculated parameters of the isolated chromophore. Using this method, which is substantiated by our molecular dynamics simulations, we obtain the components of electric field in the chromophore plane for seven different RFPs with the same chromophore structure. We find that in five of these RFPs, the nonradiative relaxation rate increases with the strength of the field along the chromophore axis directed from the center of imidazolinone ring to the center of phenolate ring. Furthermore, this rate depends on the corresponding electrostatic energy change (calculated from the known fields and charge displacements), in quantitative agreement with the Marcus theory of charge transfer. This result supports the dominant role of the twisted intramolecular charge transfer mechanism over the energy gap law for most of the studied RFPs. It provides important guidelines of how to shift the absorption wavelength of an RFP to the red, while keeping its brightness reasonably high.

18.
STAR Protoc ; 2(3): 100667, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34286295

RESUMEN

Bioluminescent optogenetics (BL-OG) allows activation of photosensory proteins, such as opsins, by either fiberoptics or by administering a luciferin. BL-OG thus confers both optogenetic and chemogenetic access within the same genetically targeted neuron. This bimodality offers a powerful approach for non-invasive chemogenetic manipulation of neural activity during brain development and adult behaviors with standard optogenetic spatiotemporal precision. We detail protocols for bioluminescent stimulation of neurons in postnatally developing brain and its validation through bioluminescence imaging and electrophysiological recording in mice. For complete information on the use and execution of this protocol, please refer to Medendorp et al. (2021).


Asunto(s)
Encéfalo , Electrofisiología/métodos , Neuronas , Optogenética/métodos , Animales , Encéfalo/citología , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Fenómenos Electrofisiológicos/fisiología , Mediciones Luminiscentes , Ratones , Neuronas/química , Neuronas/metabolismo , Imagen Óptica , Técnicas de Placa-Clamp
19.
Elife ; 102021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34467852

RESUMEN

The endoplasmic reticulum (ER) is composed of sheets and tubules. Here we report that the COPII coat subunit, SEC24C, works with the long form of the tubular ER-phagy receptor, RTN3, to target dominant-interfering mutant proinsulin Akita puncta to lysosomes. When the delivery of Akita puncta to lysosomes was disrupted, large puncta accumulated in the ER. Unexpectedly, photobleach analysis indicated that Akita puncta behaved as condensates and not aggregates, as previously suggested. Akita puncta enlarged when either RTN3 or SEC24C were depleted, or when ER sheets were proliferated by either knocking out Lunapark or overexpressing CLIMP63. Other ER-phagy substrates that are segregated into tubules behaved like Akita, while a substrate (type I procollagen) that is degraded by the ER-phagy sheets receptor, FAM134B, did not. Conversely, when ER tubules were augmented in Lunapark knock-out cells by overexpressing reticulons, ER-phagy increased and the number of large Akita puncta was reduced. Our findings imply that segregating cargoes into tubules has two beneficial roles. First, it localizes mutant misfolded proteins, the receptor, and SEC24C to the same ER domain. Second, physically restraining condensates within tubules, before they undergo ER-phagy, prevents them from enlarging and impacting cell health.


Asunto(s)
Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proinsulina/metabolismo , Animales , Autofagia , Línea Celular Tumoral , Células HEK293 , Humanos , Lisosomas , Ratones Noqueados , Agregado de Proteínas , Pliegue de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA