RESUMEN
BACKGROUND AND AIMS: Gain-of-function (GOF) mutations of CTNNB1 and loss-of-function (LOF) mutations of AXIN1 are recurrent genetic alterations in hepatocellular carcinoma (HCC). We aim to investigate the functional contribution of Hippo/YAP/TAZ in GOF CTNNB1 or LOF AXIN1 mutant HCCs. APPROACH AND RESULTS: The requirement of YAP/TAZ in c-Met/ß-Catenin and c-Met/sgAxin1-driven HCC was analyzed using conditional Yap , Taz , and Yap;Taz knockout (KO) mice. Mechanisms of AXIN1 in regulating YAP/TAZ were investigated using AXIN1 mutated HCC cells. Hepatocyte-specific inducible TTR-CreER T2KO system was applied to evaluate the role of Yap;Taz during tumor progression. Cabozantinib and G007-LK combinational treatment were tested in vitro and in vivo . Nuclear YAP/TAZ was strongly induced in c-Met/sgAxin1 mouse HCC cells. Activation of Hippo via overexpression of Lats2 or concomitant deletion of Yap and Taz significantly inhibited c-Met/sgAxin1 driven HCC development, whereas the same approaches had mild effects in c-Met/ß-Catenin HCCs. YAP is the major Hippo effector in c-Met/ß-Catenin HCCs, and both YAP and TAZ are required for c-Met/sgAxin1-dependent hepatocarcinogenesis. Mechanistically, AXIN1 binds to YAP/TAZ in human HCC cells and regulates YAP/TAZ stability. Genetic deletion of YAP/TAZ suppresses already formed c-Met/sgAxin1 liver tumors, supporting the requirement of YAP/TAZ during tumor progression. Importantly, tankyrase inhibitor G007-LK, which targets Hippo and Wnt pathways, synergizes with cabozantinib, a c-MET inhibitor, leading to tumor regression in the c-Met/sgAxin1 HCC model. CONCLUSIONS: Our studies demonstrate that YAP/TAZ are major signaling molecules downstream of LOF AXIN1 mutant HCCs, and targeting YAP/TAZ is an effective treatment against AXIN1 mutant human HCCs.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratones , Animales , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , beta Catenina/genética , Carcinogénesis/genética , Mutación , Vía de Señalización Wnt/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteína Axina/genéticaRESUMEN
BACKGROUND AND AIMS: Aberrant activation of fatty acid synthase (FASN) is a major metabolic event during the development of HCC. We evaluated the therapeutic efficacy of TVB3664, a FASN inhibitor, either alone or in combination, for HCC treatment. APPROACH AND RESULTS: The therapeutic efficacy and the molecular pathways targeted by TVB3664, either alone or with tyrosine kinase inhibitors or the checkpoint inhibitor anti-programmed death ligand 1 antibody, were assessed in human HCC cell lines and multiple oncogene-driven HCC mouse models. RNA sequencing was performed to elucidate the effects of TVB3664 on global gene expression and tumor metabolism. TVB3664 significantly ameliorated the fatty liver phenotype in the aged mice and AKT-induced hepatic steatosis. TVB3664 monotherapy showed moderate efficacy in NASH-related murine HCCs, induced by loss of phosphatase and tensin homolog and MET proto-oncogene, receptor tyrosine kinase (c-MET) overexpression. TVB3664, in combination with cabozantinib, triggered tumor regression in this murine model but did not improve the responsiveness to immunotherapy. Global gene expression revealed that TVB3664 predominantly modulated metabolic processes, whereas TVB3664 synergized with cabozantinib to down-regulate multiple cancer-related pathways, especially the AKT/mammalian target of rapamycin pathway and cell proliferation genes. TVB3664 also improved the therapeutic efficacy of sorafenib and cabozantinib in the FASN-dependent c-MYC-driven HCC model. However, TVB3664 had no efficacy nor synergistic effects in FASN-independent murine HCC models. CONCLUSIONS: This preclinical study suggests the limited efficacy of targeting FASN as monotherapy for HCC treatment. However, FASN inhibitors could be combined with other drugs for improved effectiveness. These combination therapies could be developed based on the driver oncogenes, supporting precision medicine approaches for HCC treatment.
Asunto(s)
Carcinoma Hepatocelular , Acido Graso Sintasa Tipo I , Neoplasias Hepáticas , Anilidas , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Acido Graso Sintasa Tipo I/antagonistas & inhibidores , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Ácido Graso Sintasas/antagonistas & inhibidores , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mamíferos/metabolismo , Ratones , Monoéster Fosfórico Hidrolasas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Piridinas , Sorafenib/farmacología , Serina-Treonina Quinasas TOR , TensinasRESUMEN
Resveratrol (RSV) is a natural polyphenolic compound detected in grapes, berries, and red wine. The anticancer activities of RSV have been observed in vivo and in vitro studies. However, the pharmacology mechanism of RSV is confusing due to its low bioavailability. According to studies of the metabolic characteristics of RSV, the gut intestine is a crucial site of its health benefits. Dietary RSV exhibits a profound effect on the gut microbiota structure and metabolic function. In addition, emerging evidence demonstrates a protective effect of RSV metabolites against carcinogenesis. Therefore, to better understand the anticancer mechanisms of dietary RSV, it is vital to evaluate the role of RSV-microbiota-host interactions in cancer therapy. In this review, we summarized significant findings on the anticancer activities of RSV based on epidemiological, experimental and clinical studies involved in investigating the metabolic characteristics and the traditional anticancer mechanisms of RSV. Special attention is given to the putative mechanisms involving microbiota-host interactions, such as the modulation of gut microecology and the anticancer effects of RSV metabolites. The changes in microbiota-host interactions after RSV supplementation play vital roles in cancer prevention and thus offering a new perspective on nutritional interventions to treat cancer.
RESUMEN
Lysyl-oxidase-like 3 (LOXL3) was reported to be essential in epithelial-mesenchymal transition (EMT) of cancers. However, the role of LOXL3 in hepatocellular carcinoma (HCC) remained unclear. In this study, we explored clinical significance, biological functions, and regulatory mechanisms of LOXL3 in HCC. Our study found that LOXL3 expression was markedly associated with the tumor size and clinical stage of HCC, and it was highly expressed in tumor tissues of metastatic HCC patients. High expression of LOXL3 predicted a poor prognosis of HCC. TGF-ß1 treatment elevated LOXL3 protein expression and cell invasion, and reduced cell apoptosis in HCC cell lines (SMMC-7721 and Huh-7), while downregulation of LOXL3 reversed the promotive effects of TGF-ß1 treatment on LOXL3 protein expression and cell invasion, and the inhibitory effect on cell apoptosis. Mechanistically, LOXL3 interacted with snail family transcriptional repressor 1 (Snail1) through STRING database and RIP assay, and Snail1 bound to ubiquitin-specific peptidase 4 (USP4) promoter by JASPAR database, luciferase reporter gene and Co-IP assays. Overexpression of USP4 reversed the inhibitory effect of LOXL3 silence on EMT in HCC cells through deubiquitinating and stabilizing the expression of Snail1. Moreover, LOXL3-promoted HCC EMT through Wnt/ß-catenin/Snail1 signaling pathway. In vivo study revealed that silence of LOXL3-inhibited HCC tumor growth. In conclusion, LOXL3 silence inhibited HCC invasion and EMT through Snail1/USP4-mediated circulation loop and Wnt/ß-catenin signaling pathway.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , Factores de Transcripción de la Familia Snail/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismoRESUMEN
OBJECTIVE: Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer with limited treatment options. Cabozantinib, an orally bioavailable multikinase inhibitor is now approved by Food and Drug Administration (FDA) for HCC patients. We evaluated the therapeutic efficacy of cabozantinib, either alone or in combination, in vitro and in vivo. DESIGN: Human HCC cell lines and HCC mouse models were used to assess the therapeutic efficacy and targeted molecular pathways of cabozantinib, either alone or in combination with the pan-mTOR inhibitor MLN0128 or the checkpoint inhibitor anti-PD-L1 antibody. RESULTS: Cabozantinib treatment led to stable disease in c-Met/ß-catenin and Akt/c-Met mouse HCC while possessing limited efficacy on Akt/Ras and c-Myc liver tumours. Importantly, cabozantinib effectively inhibited c-MET and ERK activity, leading to decreased PKM2 and increased p21 expression in HCC cells and in c-Met/ß-catenin and Akt/c-Met HCC. However, cabozantinib was ineffective in inhibiting the Akt/mTOR cascade. Intriguingly, a strong inhibition of angiogenesis by cabozantinib occurred regardless of the oncogenic drivers. However, cabozantinib had limited impact on other tumour microenvironment parameters, including tumour infiltrating T cells, and did not induce programmed death-ligand 1 (PD-L1) expression. Combining cabozantinib with MLN0128 led to tumour regression in c-Met/ß-catenin mice. In contrast, combined treatment with cabozantinib and the checkpoint inhibitor anti-PD-L1 antibody did not provide any additional therapeutic benefit in the four mouse HCC models tested. CONCLUSION: c-MET/ERK/p21/PKM2 cascade and VEGFR2-induced angiogenesis are the primary targets of cabozantinib in HCC treatment. Combination therapies with cabozantinib and mTOR inhibitors may be effective against human HCC.
Asunto(s)
Anilidas/uso terapéutico , Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Piridinas/uso terapéutico , Anilidas/administración & dosificación , Animales , Antineoplásicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica , Benzoxazoles/administración & dosificación , Benzoxazoles/uso terapéutico , Línea Celular Tumoral , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Piridinas/administración & dosificación , Pirimidinas/administración & dosificación , Pirimidinas/uso terapéutico , Microambiente Tumoral/efectos de los fármacosRESUMEN
Liver regeneration is a fundamental biological process required for sustaining body homeostasis and restoring liver function after injury. Emerging evidence demonstrates that cytokines, growth factors, and multiple signaling pathways contribute to liver regeneration. Mammalian target of rapamycin complex 2 (mTORC2) regulates cell metabolism, proliferation and survival. The major substrates for mTORC2 are the AGC family members of kinases, including AKT, SGK, and PKC-α. We investigated the functional roles of mTORC2 during liver regeneration. Partial hepatectomy (PHx) was performed in liver-specific Rictor (the pivotal unit of mTORC2 complex) knockout (RictorLKO) and wild-type (Rictorfl/fl) mice. Rictor-deficient mice were found to be more intolerant to PHx and displayed higher mortality after PHx. Mechanistically, loss of Rictor resulted in decreased Akt phosphorylation, leading to a delay in hepatocyte proliferation and lipid droplets formation along liver regeneration. Overall, these results indicate an essential role of the mTORC2 signaling pathway during liver regeneration.
Asunto(s)
Proliferación Celular , Hepatectomía , Regeneración Hepática , Hígado/citología , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/fisiología , Animales , Puntos de Control del Ciclo Celular , Femenino , Lípidos/análisis , Hígado/metabolismo , Hígado/cirugía , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Transducción de SeñalRESUMEN
Inactivating mutations of axis inhibition protein 1 (AXIN1), a negative regulator of the Wnt/ß-Catenin cascade, are among the common genetic events in human hepatocellular carcinoma (HCC), affecting approximately 10% of cases. In the present manuscript, we sought to define the genetic crosstalk between Axin1 mutants and Wnt/ß-catenin as well as Notch signaling cascades along hepatocarcinogenesis. We discovered that c-MET activation and AXIN1 mutations occur concomitantly in ~3%-5% of human HCC samples. Subsequently, we generated a murine HCC model by means of CRISPR/Cas9-based gene deletion of Axin1 (sgAxin1) in combination with transposon-based expression of c-Met in the mouse liver (c-Met/sgAxin1). Global gene expression analysis of mouse normal liver, HCCs induced by c-Met/sgAxin1, and HCCs induced by c-Met/∆N90-ß-Catenin revealed activation of the Wnt/ß-Catenin and Notch signaling in c-Met/sgAxin1 HCCs. However, only a few of the canonical Wnt/ß-Catenin target genes were induced in c-Met/sgAxin1 HCC when compared with corresponding lesions from c-Met/∆N90-ß-Catenin mice. To study whether endogenous ß-Catenin is required for c-Met/sgAxin1-driven HCC development, we expressed c-Met/sgAxin1 in liver-specific Ctnnb1 null mice, which completely prevented HCC development. Consistently, in AXIN1 mutant or null human HCC cell lines, silencing of ß-Catenin strongly inhibited cell proliferation. In striking contrast, blocking the Notch cascade through expression of either the dominant negative form of the recombinant signal-binding protein for immunoglobulin kappa J region (RBP-J) or the ablation of Notch2 did not significantly affect c-Met/sgAxin1-driven hepatocarcinogenesis. Conclusion: We demonstrated here that loss of Axin1 cooperates with c-Met to induce HCC in mice, in a ß-Catenin signaling-dependent but Notch cascade-independent way.
Asunto(s)
Proteína Axina/fisiología , Carcinoma Hepatocelular/etiología , Neoplasias Hepáticas Experimentales/etiología , Receptores Notch/fisiología , beta Catenina/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-met/fisiología , Vía de Señalización Wnt/fisiologíaRESUMEN
Hepatocellular carcinoma (HCC) is a deadly form of liver cancer with limited treatment options. The c-Myc transcription factor is a pivotal player in hepatocarcinogenesis, but the mechanisms underlying c-Myc oncogenic activity in the liver remain poorly delineated. Mammalian target of rapamycin complex 2 (mTORC2) has been implicated in cancer by regulating multiple AGC kinases, especially AKT proteins. In the liver, AKT1 and AKT2 are widely expressed. While AKT2 is the major isoform downstream of activated phosphoinositide 3-kinase and loss of phosphatase and tensin homolog-induced HCC, the precise function of AKT1 in hepatocarcinogenesis is largely unknown. In the present study, we demonstrate that mTORC2 is activated in c-Myc-driven mouse HCC, leading to phosphorylation/activation of Akt1 but not Akt2. Ablation of Rictor inhibited c-Myc-induced HCC formation in vivo. Mechanistically, we discovered that loss of Akt1, but not Akt2, completely prevented c-Myc HCC formation in mice. Silencing of Rictor or Akt1 in c-Myc HCC cell lines inhibited phosphorylated forkhead box o1 expression and strongly suppressed cell growth in vitro. In human HCC samples, c-MYC activation is strongly correlated with phosphorylated AKT1 expression. Higher expression of RICTOR and AKT1, but not AKT2, is associated with poor survival of patients with HCC. In c-Myc mice, while rapamycin, an mTORC1 inhibitor, had limited efficacy at preventing c-Myc-driven HCC progression, the dual mTORC1 and mTORC2 inhibitor MLN0128 effectively promoted tumor regression by inducing apoptosis and necrosis. Conclusion: Our study indicates the functional contribution of mTORC2/Akt1 along c-Myc-induced hepatocarcinogenesis, with AKT1 and AKT2 having distinct roles in HCC development and progression; targeting both mTORC1 and mTORC2 may be required for effective treatment of human HCC displaying c-Myc amplification or overexpression.
Asunto(s)
Carcinogénesis , Carcinoma Hepatocelular/etiología , Neoplasias Hepáticas/etiología , Diana Mecanicista del Complejo 2 de la Rapamicina/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Proteínas Proto-Oncogénicas c-myc/fisiología , Animales , Humanos , RatonesRESUMEN
BACKGROUND: The molecular signaling events involving in high malignancy and poor prognosis of hepatocellular carcinoma (HCC) are extremely complicated. Blockade of currently known targets has not yet led to successful clinical outcome. More understanding about the regulatory mechanisms in HCC is necessary for developing new effective therapeutic strategies for HCC patients. METHODS: The expression of Rho GTPase-activating protein 11A (ARHGAP11A) was examined in human normal liver and HCC tissues. The correlations between ARHGAP11A expression and clinicopathological stage or prognosis in HCC patients were analyzed. ARHGAP11A was downregulated to determine its role in the proliferation, invasion, migration, epithelial-to-mesenchymal transition (EMT) development, and regulatory signaling of HCC cells in vitro and in vivo. RESULTS: ARHGAP11A exhibited high expression in HCC, and was significantly correlated with clinicopathological stage and prognosis in HCC patients. Moreover, ARHGAP11A facilitated Hep3B and MHCC97-H cell proliferation, invasion, migration and EMT development in vitro. ARHGAP11A knockdown significantly inhibited the in vivo growth and metastasis of HCC cells. Furthermore, ARHGAP11A directly interacted with Rac1B independent of Rho GTPase- activating activity. Rac1B blockade effectively interrupted ARHGAP11A-elicited HCC malignant phenotype. Meanwhile, upregulation of Rac1B reversed ARHGAP11A knockdown mediated mesenchymal-to-epithelial transition (MET) development in HCC cells. CONCLUSION: ARHGAP11A facilitates malignant progression in HCC patients via ARHGAP11A-Rac1B interaction. The ARHGAP11A/Rac1B signaling could be a potential therapeutic target in the clinical treatment of HCC.
Asunto(s)
Carcinoma Hepatocelular/patología , Proteínas Activadoras de GTPasa/deficiencia , Proteínas Activadoras de GTPasa/genética , Técnicas de Silenciamiento del Gen , Neoplasias Hepáticas/patología , Proteína de Unión al GTP rac1/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transformación Celular Neoplásica , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Metástasis de la NeoplasiaRESUMEN
Hepatocellular carcinoma is one of the most prevalent neoplasms and the leading cause of cancer-related mortality worldwide. Mitochondrial ribosomal protein S23 is encoded by a nuclear gene and participates in mitochondrial protein translation. Mitochondrial ribosomal protein S23 overexpression has been found in many types of cancer. In this study, we explored mitochondrial ribosomal protein S23 expression in primary hepatocellular carcinoma tissues compared with matched adjacent non-tumoral liver tissues using mitochondrial ribosomal protein S23 messenger RNA and protein levels collected from public databases and clinical samples. Immunohistochemistry was performed to analyze the relationship between mitochondrial ribosomal protein S23 and various clinicopathological features. The results indicated that mitochondrial ribosomal protein S23 was significantly overexpressed in hepatocellular carcinoma. High mitochondrial ribosomal protein S23 expression was correlated with the tumor size and tumor-metastasis-node stage. Moreover, patients with high mitochondrial ribosomal protein S23 expression levels presented poorer survival rates. Mitochondrial ribosomal protein S23 was an independent prognostic factor for survival, especially at the early stage of hepatocellular carcinoma. In addition, the downregulation of mitochondrial ribosomal protein S23 decreased the proliferation of hepatocellular carcinoma in vitro and in vivo. In conclusion, we verified for the first time that mitochondrial ribosomal protein S23 expression was upregulated in hepatocellular carcinoma. High mitochondrial ribosomal protein S23 levels can predict poor clinical outcomes in hepatocellular carcinoma, and this protein plays a key role in tumor proliferation. Therefore, mitochondrial ribosomal protein S23 may be a potential therapeutic target for hepatocellular carcinoma.
Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteínas Mitocondriales/genética , Proteínas Ribosómicas/genética , Adulto , Anciano , Carcinoma Hepatocelular/patología , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , PronósticoRESUMEN
Circular RNAs (circRNAs) are a novel class of non-coding RNA that assumes a covalently closed continuous conformation. CircRNAs were previously thought to be the byproducts of splicing errors caused by low abundance and the technological limitations. With the recent development of high-throughput sequencing technology, numerous circRNAs have been discovered in many species. Recent studies have revealed that circRNAs are stable and widely expressed, and often exhibit cell type-specific or tissue-specific expression. Most circRNAs can be generated from exons, introns, or both. Remarkably, emerging evidence indicates that some circRNAs can serve as microRNA (miRNA) sponges, regulate transcription or splicing, and can interact with RNA binding proteins (RBPs). Moreover, circRNAs have been reported to play essential roles in myriad life processes, such as aging, insulin secretion, tissue development, atherosclerotic vascular disease risk, cardiac hypertrophy and cancer. Although circRNAs are ancient molecules, they represent a newly appreciated form of noncoding RNA and as such have great potential implications in clinical and research fields. Here, we review the current understanding of circRNA classification, function and significance in physiological and pathological processes. We believe that future research will increase our understanding of the regulation and function of these novel molecules.
Asunto(s)
Aterosclerosis/genética , Cardiomegalia/genética , MicroARNs/genética , Neoplasias/genética , Empalme del ARN , ARN/genética , Aterosclerosis/diagnóstico , Aterosclerosis/metabolismo , Aterosclerosis/patología , Emparejamiento Base , Biomarcadores/metabolismo , Cardiomegalia/diagnóstico , Cardiomegalia/metabolismo , Cardiomegalia/patología , Exones , Humanos , Intrones , MicroARNs/metabolismo , Neoplasias/diagnóstico , Neoplasias/metabolismo , Neoplasias/patología , ARN/clasificación , ARN/metabolismo , ARN CircularRESUMEN
Long noncoding RNAs (lncRNAs) have been shown to play critical roles in the development and progression of diseases. lncRNA activated by transforming growth factor beta (TGF-ß) (lncRNA-ATB) was discovered as a prognostic factor in hepatocellular carcinoma, gastric cancer, and colorectal cancer. However, little is known about the role of lncRNA-ATB in pancreatic cancer. This study aimed to assess lncRNA-ATB expression in pancreatic cancer and explore its role in pancreatic cancer pathogenesis. Quantitative real-time polymerase chain reaction was performed to detect lncRNA-ATB expression in 150 pancreatic cancer tissues and five pancreatic cancer cell lines compared to paired adjacent normal tissues and normal human pancreatic ductal epithelial cell line HPDE6c-7. The correlations between lncRNA-ATB expression and clinicopathological characteristics and prognosis were also analyzed. We found that lncRNA-ATB expression was decreased in pancreatic cancer tissues and pancreatic cancer cell lines. Low lncRNA-ATB expression levels were significantly correlated with lymph node metastases (yes vs. no, P = 0.009), neural invasion (positive vs. negative, P = 0.049), and clinical stage (early stage vs. advanced stage, P = 0.014). Moreover, patients with low lncRNA-ATB expression levels exhibited markedly worse overall survival prognoses (P < 0.001). Multivariate analysis indicated that decreased lncRNA-ATB expression was an independent predictor of poor prognosis in pancreatic cancer patients (P = 0.005). In conclusion, lncRNA-ATB may play a critical role in pancreatic cancer progression and prognosis and may serve as a potential prognostic biomarker in pancreatic cancer patients.
Asunto(s)
Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/genética , ARN Largo no Codificante/genética , Factor de Crecimiento Transformador beta/genética , Línea Celular , Línea Celular Tumoral , Progresión de la Enfermedad , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Análisis Multivariante , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Pronóstico , Modelos de Riesgos Proporcionales , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/estadística & datos numéricosRESUMEN
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancer worldwide. However, the mechanism underlying the HCC development remains unclear. Ras-related associated with diabetes (RRAD) is a small Ras-related GTPase which has been implicated in metabolic disease and several types of cancer, yet its functions in HCC remain unknown. A tissue microarray constructed by 90 paired HCC tissues and adjacent non-cancerous liver tissues was used to examine the protein levels of RRAD, and the messenger RNA (mRNA) expression of RRAD was also detected in a subset of this cohort. The prognostic significance of RRAD was estimated by the Kaplan-Meier analysis and Cox regression. The glucose utilization assay and lactate production assay were performed to measure the role of RRAD in HCC glycolysis. The effect of RRAD in HCC invasion and metastasis was analyzed by transwell assays. Our results suggested that the expression of RRAD was downregulated in HCC tissues compared to the adjacent non-tumorous liver tissues both in mRNA and protein levels and lower RRAD expression served as an independent prognostic indicator for the survival of HCC patients. Moreover, RRAD inhibited hepatoma cell aerobic glycolysis by negatively regulating the expression of glucose transporter 1 (GLUT1) and hexokinase II (HK-II). In addition, RRAD inhibition dramatically increased hepatoma cell invasion and metastasis. In conclusion, our study revealed that RRAD expression was decreased in HCC tumor tissues and predicted poor clinical outcome for HCC patients and played an important role in regulating aerobic glycolysis and cell invasion and metastasis and may represent potential targets for improving the treatment of HCC.
Asunto(s)
Biomarcadores de Tumor/biosíntesis , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteínas ras/biosíntesis , Adulto , Aerobiosis , Anciano , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Movimiento Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Transportador de Glucosa de Tipo 1/biosíntesis , Glucólisis/genética , Células Hep G2 , Hexoquinasa/biosíntesis , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Pronóstico , Análisis de Matrices Tisulares , Proteínas ras/genéticaRESUMEN
Background: Severely burned children are at high risk of secondary intraabdominal hypertension and abdominal compartment syndrome (ACS). ACS is a life-threatening condition with high mortality and requires an effective, minimally invasive treatment to improve the prognosis when the condition is refractory to conventional therapy. Case presentation: A 4.5-year-old girl was admitted to our hospital 30 h after a severe burn injury. Her symptoms of burn shock were relieved after fluid resuscitation. However, her bloating was aggravated, and ACS developed on Day 5, manifesting as tachycardia, hypoxemia, shock, and oliguria. Invasive mechanical ventilation, vasopressors, and percutaneous catheter drainage were applied in addition to medical treatments (such as gastrointestinal decompression, diuresis, sedation, and neuromuscular blockade). These treatments did not improve the patient's condition until she received continuous renal replacement therapy. Subsequently, her vital signs and laboratory data improved, which were accompanied by decreased intra-abdominal pressure, and she was discharged after nutrition support, antibiotic therapy, and skin grafting. Conclusion: ACS can occur in severely burned children, leading to rapid deterioration of cardiopulmonary function. Patients who fail to respond to conventional medical management should be considered for continuous renal replacement therapy.
RESUMEN
Pyroptosis is an inflammatory form of programmed cell death that is involved in various cancers, including hepatocellular carcinoma (HCC). Long non-coding RNAs (lncRNAs) were recently verified as crucial mediators in the regulation of pyroptosis. However, the role of pyroptosis-related lncRNAs in HCC and their associations with prognosis have not been reported. In this study, we constructed a prognostic signature based on pyroptosis-related differentially expressed lncRNAs in HCC. A co-expression network of pyroptosis-related mRNAs-lncRNAs was constructed based on HCC data from The Cancer Genome Atlas. Cox regression analyses were performed to construct a pyroptosis-related lncRNA signature (PRlncSig) in a training cohort, which was subsequently validated in a testing cohort and a combination of the two cohorts. Kaplan-Meier analyses revealed that patients in the high-risk group had poorer survival times. Receiver operating characteristic curve and principal component analyses further verified the accuracy of the PRlncSig model. Besides, the external cohort validation confirmed the robustness of PRlncSig. Furthermore, a nomogram based on the PRlncSig score and clinical characteristics was established and shown to have robust prediction ability. In addition, gene set enrichment analysis revealed that the RNA degradation, the cell cycle, the WNT signaling pathway, and numerous immune processes were significantly enriched in the high-risk group compared to the low-risk group. Moreover, the immune cell subpopulations, the expression of immune checkpoint genes, and response to chemotherapy and immunotherapy differed significantly between the high- and low-risk groups. Finally, the expression levels of the five lncRNAs in the signature were validated by quantitative real-time PCR. In summary, our PRlncSig model shows significant predictive value with respect to prognosis of HCC patients and could provide clinical guidance for individualized immunotherapy.
RESUMEN
Hepatocellular carcinoma (HCC) is the sixth most common primary cancer with an unsatisfactory long-term survival. Gain of function mutations of PIK3CA occur in a subset of human HCC. Alpelisib, a selective PIK3CA inhibitor, has been approved by the FDA to treat PIK3CA mutant breast cancers. In this manuscript, we evaluated the therapeutic efficacy of alpelisib, either alone or in combination, for the treatment of HCC. We tested alpelisib in mouse HCC induced by hydrodynamic injection of c-Met/PIK3CA(H1047R) (c-Met/H1047R), c-Met/PIK3CA(E545K) (c-Met/E545K), and c-Met/sgPten gene combinations. Alpelisib slowed down the growth of c-Met/H1047R and c-Met/E545K HCC but was ineffective in c-Met/sgPten HCC. Mechanistically, alpelisib inhibited p-ERK and p-AKT in c-Met/H1047R and c-Met/E545K HCC progression but did not affect the mTOR pathway or genes involved in cell proliferation. In human HCC cell lines transfected with PIK3CA(H1047R), alpelisib synergized with the mTOR inhibitor MLN0128 or the CDK4/6 inhibitor palbociclib to suppress HCC cell growth. In c-Met/H1047R mice, alpelisib/MLN0128 or alpelisib/palbociclib combination therapy caused tumor regression. Our study demonstrates that alpelisib is effective for treating PIK3CA-mutated HCC by inhibiting MAPK and AKT cascades. Furthermore, combining alpelisib with mTOR or CDK4/6 inhibitors has a synergistic efficacy against PIK3CA-mutated HCC, providing novel opportunities for precision medicine against HCC.
Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Terapia Molecular Dirigida , Tiazoles/uso terapéutico , Anilidas/farmacología , Anilidas/uso terapéutico , Animales , Benzoxazoles/farmacología , Benzoxazoles/uso terapéutico , Carcinogénesis/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Mutación/genética , Fosfohidrolasa PTEN/metabolismo , Piperazinas/farmacología , Piperazinas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-met/genética , Piridinas/farmacología , Piridinas/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Tiazoles/farmacología , Resultado del Tratamiento , Carga TumoralRESUMEN
Hepatocellular carcinoma (HCC) is one of the most lethal malignant diseases worldwide. Despite advances in the diagnosis and treatment of HCC, its overall prognosis remains poor. Recent studies have shown that long noncoding RNAs (lncRNAs) play crucial roles in various pathophysiological processes, including liver cancer. In the current study, we report that lncRNA SLC2A1-AS1 is frequently downregulated in HCC samples, as shown by quantitative real-time polymerase chain reaction analysis. SLC2A1-AS1 deletion is significantly associated with recurrence-free survival in HCC. By performing glucose uptake, lactate production and ATP detection assays, we found that SLC2A1-AS1-mediated glucose transporter 1 (GLUT1) downregulation significantly suppressed glycolysis of HCC. In vitro Cell Counting Kit-8, colony formation, transwell assays as well as in vivo tumorigenesis and metastasis assays showed that SLC2A1-AS1 overexpression significantly suppressed proliferation and metastasis in HCC through the transcriptional inhibition of GLUT1. Results from fluorescence in situ hybridization, ChIP and luciferase reporter assays demonstrated that SLC2A1-AS1 exerts its regulatory role on GLUT1 by competitively binding to transketolase and signal transducer and activator of transcription 3 (STAT3) and inhibits the transactivation of Forkhead box M1 (FOXM1) via STAT3, thus resulting in inactivation of the FOXM1/GLUT1 axis in HCC cells. Our findings will be helpful for understanding the function and mechanism of lncRNA in HCC. These data also highlight the crucial role of SLC2A1-AS1 in HCC aerobic glycolysis and progression and pave the way for further research regarding the potential of SLC2A1-AS1 as a valuable predictive biomarker for HCC recurrence.
Asunto(s)
Carcinoma Hepatocelular/genética , Progresión de la Enfermedad , Proteína Forkhead Box M1/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Glucólisis/genética , Neoplasias Hepáticas/genética , ARN Largo no Codificante/metabolismo , Factor de Transcripción STAT3/metabolismo , Aerobiosis , Línea Celular Tumoral , Proliferación Celular/genética , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia/patología , Unión Proteica , ARN Largo no Codificante/genética , Transducción de Señal , Activación Transcripcional/genéticaRESUMEN
Hepatocellular carcinoma (HCC) is the major type of primary liver cancer. Genomic studies have revealed that HCC is a heterogeneous disease with multiple subtypes. BRG1, encoded by the SMARCA4 gene, is a key component of SWI/SNF chromatin-remodeling complexes. Based on TCGA studies, somatic mutations of SMARCA4 occur in ~3% of human HCC samples. Additional studies suggest that BRG1 is overexpressed in human HCC specimens and may promote HCC growth and invasion. However, the precise functional roles of BRG1 in HCC remain poorly delineated. Here, we analyzed BRG1 in human HCC samples as well as in mouse models. We found that BRG1 is overexpressed in most of human HCC samples, especially in those associated with poorer prognosis. BRG1 expression levels positively correlate with cell cycle and negatively with metabolic pathways in the Cancer Genome Atlas (TCGA) human HCC data set. In a murine HCC model induced by c-MYC overexpression, ablation of the Brg1 gene completely repressed HCC formation. In striking contrast, however, we discovered that concomitant deletion of Brg1 and overexpression of c-Met or mutant NRas (NRASV12) triggered HCC formation in mice. Altogether, the present data indicate that BRG1 possesses both oncogenic and tumor-suppressing roles depending on the oncogenic stimuli during hepatocarcinogenesis.
Asunto(s)
Carcinogénesis/genética , Carcinoma Hepatocelular/genética , ADN Helicasas/genética , Genes Supresores de Tumor , Neoplasias Hepáticas/genética , Proteínas Nucleares/genética , Oncogenes , Factores de Transcripción/genética , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , ADN Helicasas/metabolismo , Bases de Datos Genéticas , Femenino , Regulación Neoplásica de la Expresión Génica , Genes ras , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Factores de Transcripción/metabolismoRESUMEN
AIM: We aimed to identify the roles of circRHOT1 in pancreatic cancer. MATERIALS & METHODS: The circRHOT1 was acquired from our previous study followed by quantitative real-time PCR and fluorescence in situ hybridization validation in pancreatic cancer. We used siRNA and shRNA to explore the function of circRHOT1 in pancreatic cancer cells. Bioinformatic analyses were applied to study the potential mechanism of circRHOT1. RESULTS: The circRHOT1 was upregulated in pancreatic cancer and predominantly located in the cytoplasm. Reducing the circRHOT1 expression may inhibit the pancreatic cancer cell proliferation, invasion and migration. The circRHOT1 may play a role in pancreatic cancer through binding miR-26b, miR-125a, miR-330 and miR-382 to regulate multiple tumor-associated pathways. CONCLUSION: This study demonstrated that circRHOT1 may serve as an oncogenic circRNA that promotes tumor progression.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteínas Mitocondriales/genética , Neoplasias Pancreáticas/genética , ARN , Proteínas de Unión al GTP rho/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Biología Computacional/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Humanos , Hibridación Fluorescente in Situ , MicroARNs/genética , Neoplasias Pancreáticas/patología , Interferencia de ARN , ARN CircularRESUMEN
Background: Esophageal cancer is a highly aggressive neoplasm. Targeted therapy has been proven to be a promising way for cancer therapy. Here, we report a novel anti-CD147 antibody for esophageal cancer therapy, which is a chimeric antibody with modified glycoform in Fc region. Methods: ADCC assay was used to explore the antitumor efficacy of Metuzumab against esophageal cancer in vitro. Wound healing assay and Boyden Chamber invasion assay were performed to explore whether Metuzumab could inhibit migration and invasion of esophageal cancer in vitro. Insulin-like growth factors 1 (IGF-1) and PI3k/Akt was assayed for elaborating antagonistic mechanism of Metuzumab in migration and invasion of esophageal cancer cells. Subcutaneous xenograft nude mouse model was used to investigate the antitumor efficacy of Metuzumab against esophageal cancer in vivo. The esophageal cancer tissue microarrays (TMA) was examined for identification of association of CD147 with lymph node metastasis, and the footpad xenograft nude mouse model was used to explore whether Metuzumab could inhibit lymph node metastasis of esophageal cancer in vivo. Results: The results showed that Metuzumab exhibited higher ADCC compared to the wild type antibody cHAb18. Metuzumab inhibited migration and invasion of esophageal cancer through blockade of CD147 in vitro. The results of Western blot showed Metuzumab might inhibit migration and invasion of esophageal cancer cells through suppressing activation of PI3k/Akt and expression of IGF-1. Experiments in vivo showed that Metuzumab exhibited significant antitumor efficacy and inhibited lymph node metastasis of esophageal cancer in xenograft models. The immunochemical staining of TMA showed CD147 was high-expressed on various kinds of esophageal cancer tissues and associated with the grade of lymph node-metastasis. Conclusions: The in vitro and in vivo study demonstrated dual effects of Metuzumab in effectively mediating ADCC by activating effector cells, and inhibiting metastasis of esophageal cancer through blockade the function of CD147, providing justification for moving Metuzumab forward to clinical development in esophageal cancer.