Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bull Environ Contam Toxicol ; 109(4): 578-584, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35107595

RESUMEN

Risk assessment of soil metal pollution based on total metal contents might give overestimates by neglecting the bioaccessibility of the pollutants to soil biota. Physiologically-based extraction tests (PBET) are in vitro methods for evaluation of bioaccessibility of soil pollutants. A total of 27 soil samples collected from four types of legacy industrial site representing metal smelting, lead-acid battery factories, chemical plants and steel plants were analyzed for the bioaccessibility of six potentially toxic metals using a PBET method. The metal pollutants at the industrial sites depended on the former industrial processes and emissions. The highest proportions of gastric phase and intestinal phase in these soil samples were 43.9% for Cd and 27% for Cu, respectively. Factors affecting metal bioaccessibility included type of industry and soil properties. The soils at a lead-acid battery factory showed relatively high bioaccessibility of Pb, Zn and Cd and those at the steel plant showed relatively low metal bioaccessibility. Soil organic matter and clay contents were positively related to metal bioaccessibility but soil pH and CEC showed negative relationships. Further studies are recommended to determine the speciation of the bioaccessible metals in these soils.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Disponibilidad Biológica , Cadmio/análisis , Arcilla , Monitoreo del Ambiente/métodos , Plomo , Metales Pesados/análisis , Suelo/química , Contaminantes del Suelo/análisis , Acero
2.
Sci Total Environ ; 924: 171598, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461995

RESUMEN

Understanding the source identification and distribution of heavy metal(loid)s in soil is essential for risk management. The sources of heavy metal(loid)s in farmland soil, especially in areas with rapid economic development, were complicated and need to be explored urgently. This study combined geographic information system (GIS) mapping, positive matrix factorization (PMF) model and cadmium (Cd) isotope fingerprinting methods to identify heavy metal(loid) sources in a typical town in the economically developed Yangtze River Delta region of China. Cd, As, Cu, Zn, Pb, Ni and Co in different samples were detected. The results showed that Cd was the most severely contaminated element, with an exceedance rate of 78.0 %. GIS mapping results indicated that the hotspot area was located in the northeastern area with prolonged operational histories of electroplating and non-ferrous metal smelting industries. The PMF model analysis also identified emissions from smelting and electroplating enterprises as the main sources of Cd in the soil, counted for 49.28 %, followed by traffic (25.66 %) and agricultural (25.06 %) sources. Through further isotopic analysis, it was found that in soil samples near the industrial park, the contribution of electroplating and non-ferrous metal smelting enterprises to cadmium pollution was significantly higher than other regions. The integrated use of various methodologies allows for precise analysis of sources and input pathways, offering valuable insights for future pollution control and soil remediation endeavors.

3.
Sci Total Environ ; 893: 164821, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37315604

RESUMEN

The application of plastic mulch film could effectively enhance the productivity of facility agriculture. However, releasing microplastic and phthalate from mulch films in soil has attracted increasing concerns, and releasing characters of microplastic and phthalate from mulch films during their mechanical abrasion remains unclear. This study elucidated the dynamics and impact factors of microplastic generation, including the thickness, polymer types and ageing of mulch film during mechanical abrasion. Releasing characters of the di(2-Ethylhexyl) phthalate (DEHP), a common type of phthalate in soil, from mulch film during mechanical abrasion were also explored. Results showed that 2 pieces of mulch film debris increased to 1291 pieces of microplastic after five days of mechanical abrasion, with exponential growth in the microplastic generation. After mechanical abrasion, the thinnest (0.008 mm) mulch film completely transformed into microplastics. However, the thicker mulch (>0.01 mm) suffered slight disintegration, making it feasible to be recycled. The biodegradable mulch film discharged the most microplastics (906 pieces) compared with the HDPE (359 pieces) and LDPE (703 pieces) mulch film after three days of mechanical abrasion. In addition, the mild thermal and oxidative ageing could result in 3047 and 4532 pieces of microplastic emissions from mulch film after three days of mechanical abrasion, which were ten times more than the original mulch film (359 pieces). Furthermore, negligible DEHP was released from mulch film without mechanical abrasion, while the released DEHP significantly correlated with generated microplastics during mechanical abrasion. These results demonstrated the crucial role of mulch film disintegration in phthalate emissions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA