Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sensors (Basel) ; 24(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38793996

RESUMEN

The substantial data volume within dynamic point clouds representing three-dimensional moving entities necessitates advancements in compression techniques. Motion estimation (ME) is crucial for reducing point cloud temporal redundancy. Standard block-based ME schemes, which typically utilize the previously decoded point clouds as inter-reference frames, often yield inaccurate and translation-only estimates for dynamic point clouds. To overcome this limitation, we propose an advanced patch-based affine ME scheme for dynamic point cloud geometry compression. Our approach employs a forward-backward jointing ME strategy, generating affine motion-compensated frames for improved inter-geometry references. Before the forward ME process, point cloud motion analysis is conducted on previous frames to perceive motion characteristics. Then, a point cloud is segmented into deformable patches based on geometry correlation and motion coherence. During the forward ME process, affine motion models are introduced to depict the deformable patch motions from the reference to the current frame. Later, affine motion-compensated frames are exploited in the backward ME process to obtain refined motions for better coding performance. Experimental results demonstrate the superiority of our proposed scheme, achieving an average 6.28% geometry bitrate gain over the inter codec anchor. Additional results also validate the effectiveness of key modules within the proposed ME scheme.

2.
Small ; 18(20): e2200306, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35481721

RESUMEN

Mesenchymal stem cell (MSC) therapy can attenuate organ damage and reduce mortality in sepsis; however, the detailed mechanism is not fully elucidated. In this study, it is shown that MSC-derived apoptotic vesicles (apoVs) can ameliorate multiple organ dysfunction and improve survival in septic mice. Mechanistically, it is found that tail vein-infused apoVs mainly accumulate in the bone marrow of septic mice via electrostatic charge interactions with positively charged neutrophil extracellular traps (NETs). Moreover, apoVs switch neutrophils NETosis to apoptosis via the apoV-Fas ligand (FasL)-activated Fas pathway. In summary, these findings uncover a previously unknown role of apoVs in sepsis treatment and an electrostatic charge-directed target therapeutic mechanism, suggesting that cell death is associated with disease development and therapy.


Asunto(s)
Neutrófilos , Sepsis , Animales , Apoptosis/fisiología , Ratones , Sepsis/terapia , Electricidad Estática , Distribución Tisular
3.
Regen Ther ; 27: 268-278, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38617443

RESUMEN

Introduction: Orthodontic tooth movement (OTM) involves complex interactions between mechanical forces and periodontal tissue adaptation, mainly mediated by periodontal ligament cells, including periodontal ligament stem cells (PDLSCs), osteoblasts, and osteoclasts. Dopamine (DA), a neurotransmitter known for its critical role in bone metabolism, is investigated in this study for its potential to enhance osteogenic differentiation in PDLSCs, which are pivotal in OTM. This study examined the potential of DA to facilitate OTM by binding to DA receptors (D1R and D2R) and activating the ERK1/2 signaling pathway. We propose that DA's interaction with these receptors on PDLSCs could enhance osteogenic differentiation, thereby accelerating bone remodeling and reducing the duration of orthodontic treatments, which offering a novel approach to improve clinical outcomes in orthodontic care. Methods: This study utilized a rat OTM model, micro-CT, histological analyses, and in vitro assays to investigate dopamine's effect on osteogenesis. PDLSCs were cultured and treated with DA, and cytotoxicity, osteogenic differentiation, gene and protein expression assessed. Results: Dopamine administration significantly increased trabecular bone density and osteogenic marker expression in an OTM rat model. In vitro, DA at 10 nM optimally promoted human PDLSCs osteogenesis without affecting proliferation. Blocking DA receptors or inhibiting the ERK1/2 pathway attenuated these effects, underscoring the importance of dopaminergic signaling in tension-induced osteogenesis during OTM. Conclusion: Taken together, our study reveals that local dopamine administration at a concentration of 10 nM not only enhances tension-induced osteogenesis in vivo but also significantly promotes osteogenic differentiation of PDLSCs in vitro through D1 and D2 receptor-mediated ERK1/2 signaling pathway activation.

4.
Stem Cells Int ; 2023: 5671809, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910334

RESUMEN

Periodontal ligament stem cells (PDLSCs) are considered ideal cell sources for the regeneration of periodontal and alveolar bone tissue. Cytoskeleton Regulator RNA (CYTOR), a newly discovered long noncoding RNA, has been reported to function as competing endogenous RNA (ceRNA) and to be involved in many biological processes. However, its roles in PDLSC osteogenic differentiation remain unclear. Here, we firstly found CYTOR was mainly sublocalized in the cytoplasm of PDLSCs and CYTOR expression was increased during osteogenic differentiation of PDLSCs. By employing gain- and loss-of-function approaches, we then identified CYTOR overexpression promoted osteogenic differentiation of PDLSCs while CYTOR knockdown inhibited this process. Furthermore, bioinformatics analysis was utilized to show that both CYTOR and SOX11 mRNA contained the same seed sites for miR-6512-3p, which was further confirmed by dual luciferase reporter assay and RNA-binding protein immunoprecipitation. Notably, CYTOR conferred its functions by directly binding to miR-6512-3p and an inverse correlation between CYTOR and miR-6512-3p on the level on SOX11 and osteogenic differentiation of PDLSCs was obtained. Additionally, miR-6512-3p could bind to SOX11 mRNA 3' UTR and repressed SOX11 expression. Moreover, level of SOX11 was significantly increased during osteogenic differentiation of PDLSCs. Knockdown of SOX11 attenuated the increasing effect of CYTOR overexpression on osteogenic differentiation of PDLSCs. Collectively, these data supported that CYTOR positively modulated the expression of SOX11 through competitively binding to miR-6512-3p, thus promoting osteogenic differentiation of PDLSCs. The CYTOR/miR-6512-3p/SOX11 axis could be a novel therapeutic target for periodontal regeneration medicine.

5.
Front Cell Infect Microbiol ; 12: 780416, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35321317

RESUMEN

Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC) is a distinct entity with a conspicuous tumor microenvironment compared with EBV-negative gastric carcinoma. However, the exact role of EBV in gastric carcinogenesis remains elusive. In the present study, we found that EBV upregulated CXCL8 expression, and CXCL8 significantly promoted vasculogenic mimicry (VM) formation of gastric carcinoma (GC) cells. In accordance with these observations, overexpression of CXCL8 increased cell proliferation and migration of AGS and BGC823 cells, while knockdown of CXCL8 with siRNA inhibited cell proliferation and migration of AGS-EBV cells. In addition, activation of NF-κB signaling was involved in VM formation induced by CXCL8, which was blocked by NF-κB inhibitors BAY 11-7082 and BMS345541. Furthermore, EBV-encoded lncRNA RPMS1 activated the NF-κB signaling cascade, which is responsible for EBV-induced VM formation. Both xenografts and clinical samples of EBVaGC exhibit VM histologically, which are correlated with CXCL8 overexpression. Finally, CXCL8 is positively correlated with overall survival in GC patients. In conclusion, EBV-upregulated CXCL8 expression promotes VM formation in GC via NF-κB signaling, and CXCL8 might serve as a novel anti-tumor target for EBVaGC.


Asunto(s)
Carcinoma , Infecciones por Virus de Epstein-Barr , Interleucina-8 , FN-kappa B , Neoplasias Gástricas , Carcinoma/patología , Carcinoma/virología , Línea Celular Tumoral , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/patología , Herpesvirus Humano 4 , Humanos , FN-kappa B/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/virología , Microambiente Tumoral , Regulación hacia Arriba
6.
Cancer Lett ; 535: 215646, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35304258

RESUMEN

Epstein-Barr virus (EBV) is a tumor virus that is associated with a variety of neoplasms, including EBV-associated gastric carcinoma (EBVaGC). Recently, EBV was reported to generate various circular RNAs (circRNAs). CircRNAs are important regulators of tumorigenesis by modulating the malignant behaviors of tumor cells. However, to date, the functions of ebv-circRNAs in EBVaGC remain poorly understood. In the present study, we observed high ebv-circRPMS1 expression in EBVaGC and showed that ebv-circRPMS1 promoted the proliferation, migration, and invasion and inhibited the apoptosis of EBVaGC cells. In addition, METTL3 was upregulated in GC cells overexpressing ebv-circRPMS1. Mechanistically, ebv-circRPMS1 bound to Sam68 to facilitate its physical interaction with the METTL3 promotor, resulting in the transactivation of METTL3 and cancer progression. In clinical EBVaGC samples, ebv-circRPMS1 was associated with distant metastasis and a poor prognosis. Based on these findings, ebv-circRPMS1 contributed to EBVaGC progression by recruiting Sam68 to the METTL3 promoter to induce METTL3 expression. ebv-circRPMS1, Sam68, and METTL3 might serve as therapeutic targets for EBVaGC.


Asunto(s)
Carcinoma , Infecciones por Virus de Epstein-Barr , Neoplasias Gástricas , Carcinoma/patología , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Humanos , Metiltransferasas/genética , ARN Circular , Neoplasias Gástricas/patología
8.
Biomed Mater Eng ; 24(6): 3223-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25227031

RESUMEN

It has been demonstrated that shape, area and depth of the optic disc are relevant indices of diabetic retinopathy. In this paper, we present a new fundus optic disc localization and segmentation method based on phase congruency (PC). Firstly, in order to highlight the optic disc, channel images with the highest contrast between optic disc and background are selected in LAB, YUV, YIQ and HSV spaces respectively. Secondly, with the use of PC, features of four selected channel images can be extracted. Multiplication operation is then used to enhance PC detection results. Thirdly, window scanning and gray accumulating are utilized to locate the optic disc. Finally, iterative OTSU automatic threshold segmentation and Hough transform are performed on location images, before the final optic disc segmentation result can be obtained. The experimental results showed that the proposed method can effectively and accurately perform optic disc location and segmentation.


Asunto(s)
Algoritmos , Colorimetría/métodos , Retinopatía Diabética/patología , Interpretación de Imagen Asistida por Computador/métodos , Disco Óptico/patología , Reconocimiento de Normas Patrones Automatizadas/métodos , Retinoscopía/métodos , Fondo de Ojo , Humanos , Aumento de la Imagen/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Técnica de Sustracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA