Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Phys Chem Chem Phys ; 26(18): 13850-13861, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38656824

RESUMEN

Isocyanates play an essential role in modern manufacturing processes, especially in polyurethane production. There are numerous synthesis strategies for isocyanates both under industrial and laboratory conditions, which do not prevent searching for alternative highly efficient synthetic protocols. Here, we report a detailed theoretical investigation of the mechanism of sulfur dioxide-catalyzed rearrangement of phenylnitrile oxide into phenyl isocyanate, which was first reported in 1977. The DLPNO-CCSD(T) method and up-to-date DFT protocols were used to perform a highly accurate quantum-chemical study of the rearrangement mechanism. An overview of various organic and inorganic catalysts has revealed other potential catalysts, such as sulfur trioxide and selenium dioxide. Furthermore, the present study elucidated how substituents in phenylnitrile oxide influence reaction kinetics. This study was performed by a self-organized collaboration of scientists initiated by a humorous post on the VK social network.

2.
J Phys Chem A ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39362650

RESUMEN

The current state-of-the-art electron-transfer modeling primarily focuses on the kinetics of charge transfer between an electroactive species and an inert electrode. Experimental studies have revealed that the existing Butler-Volmer model fails to satisfactorily replicate experimental voltammetry results for both solution-based and surface-bound redox couples. Consequently, experimentalists lack an accurate tool for predicting electron-transfer kinetics. In response to this challenge, we developed a density functional theory-based approach for accurately predicting current peak potentials by using the Marcus-Hush model. Through extensive cyclic voltammetry simulations, we conducted a thorough exploration that offers valuable insights for conducting well-informed studies in the field of electrochemistry.

3.
Angew Chem Int Ed Engl ; : e202410646, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972838

RESUMEN

Ethylene dimerization is an industrial process that is currently carried out using homogeneous catalysts. Here we present a highly active heterogeneous catalyst containing minute amounts of atomically dispersed Pd. It requires no co-catalyst(s) or activator(s) and significantly outperforms previously reported catalysts tested under similar reaction conditions. The selectivity to C4- and C6-hydrocarbons was about 80 % and 10 % at 42 % ethylene conversion at 200 °C using an industrially relevant feed containing 50 vol % ethylene, respectively. Our kinetic and catalyst characterization experiments complemented by density functional theory calculations provide molecular insights into the local environment of isolated Pd(II)Ox species and their role in achieving high activity in the target reaction. When the developed catalyst was rationally integrated with a Mo-containing olefin metathesis catalyst in the same reactor, the formed butenes reacted with ethylene to propylene with a selectivity of 98 % at about 24 % ethylene conversion.

4.
Chemistry ; 29(70): e202302778, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37801357

RESUMEN

A novel buckybowl catcher with an extended π-surface has been synthesized via cross-coupling of two bowl shaped bromoindacenopicene moieties with a tolyl linker. The obtained catcher has been unambiguously characterized by 2D-NMR and mass spectrometry. DFT calculations indicate that the curved shape of the receptor moieties is favourable for binding fullerenes. Effective binding was confirmed for interactions with C60 and C70 utilizing NMR spectroscopy and isothermal titration calorimetry (ITC). The resulting binding values show a higher affinity of the catcher towards C70 over C60 . The designed catcher demonstrated the fundamental possibility of creating sensors for spherical aromaticity.

5.
Chemistry ; 29(70): e202303814, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38019120

RESUMEN

Invited for the cover of this issue are the groups of Alexander S. Oshchepkov, Konstantin Y. Amsharov, and M. Eugenia Pérez-Ojeda at the Max Planck Institute for the Science of Light, Martin-Luther-University Halle-Wittenberg and Friedrich-Alexander-Universität Erlangen-Nürnberg, respectively. The image depicts a buckybowl catcher carefully framing the C70 fullerene which is associated with miraculous, marvellous Fabergé artworks. Read the full text of the article at 10.1002/chem.202302778.

6.
J Phys Chem A ; 126(50): 9440-9446, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36512375

RESUMEN

The correct description of catalytic reactions happening on bimetallic particles is not feasible without proper accounting of the segregation process. In this study, we tried to shed light on the structure of large CoCu particles, for which quite controversial results were published before. However, density functional theory (DFT) is challenging to be directly used for the systematic study of nanometer-sized particles. Therefore, we constructed a neural network-based potential and further applied it to the Monte Carlo simulations for the description of the segregation phenomenon. The resulting approach shows high efficiency and can be used in systems with thousands of atoms. The accuracy and transferability of the model to other sizes and compositions make this methodology useful for solving segregation problems.


Asunto(s)
Nanopartículas , Redes Neurales de la Computación , Método de Montecarlo
7.
Molecules ; 27(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35164179

RESUMEN

We report a theoretical study of the adsorption of a set of small molecules (C2H2, CO, CO2, O2, H2O, CH3OH, C2H5OH) on the metal centers of the "copper paddle-wheel"-a key structural motif of many MOFs. A systematic comparison between DFT of different rungs, single-reference post-HF methods (MP2, SOS-MP2, MP3, DLPNO-CCSD(T)), and multi-reference approaches (CASSCF, DCD-CAS(2), NEVPT2) is performed in order to find a methodology that correctly describes the complicated electronic structure of paddle-wheel structure together with a reasonable description of non-covalent interactions. Apart from comparison with literature data (experimental values wherever possible), benchmark calculations with DLPNO-MR-CCSD were also performed. Despite tested methods show qualitative agreement in the majority of cases, we showed and discussed reasons for quantitative differences as well as more fundamental problems of specific cases.

8.
J Am Chem Soc ; 143(37): 15420-15426, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34499504

RESUMEN

The ability to induce powerful atom-economic transformation of alkynes is the key feature of carbophilic π-Lewis acids such as gold- and platinum-based catalysts. The unique catalytic activity of these compounds in electrophilic activations of alkynes is explained through relativistic effects, enabling efficient orbital overlapping with π-systems. For this reason, it is believed that noble metals are indispensable components in the catalysis of such reactions. In this study, we report that thermally activated γ-Al2O3 activates enynes, diynes, and arene-ynes in a manner enabling reactions that were typically assigned to the softest π-Lewis acids, while some were known to be triggered exclusively by gold catalysts. We demonstrate the scope of these transformations and suggest a qualitative explanation of this phenomenon based on the Dewar-Chatt-Duncanson model confirmed by density functional theory calculations.

9.
Chemistry ; 27(7): 2332-2341, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32815577

RESUMEN

The synthesis of an unprecedented, π-extended hexabenzocorene (HBC)-based diaza[7]helicene is presented. The target compound was synthesized by an ortho-fusion of two naphthalene diimide (NDI) units to a HBC-skeleton. A combination of Diels-Alder and Scholl-type oxidation reactions involving a symmetric di-NDI-tolane precursor were crucial for the very selective formation of the helical superstructure via a hexaphenyl-benzene (HPB) derivative. The formation of the diaza[7]helicene moiety in the final Scholl oxidation is favoured, affording the symmetric π-extended helicene as the major product as a pair of enantiomers. The separation of the enantiomers was successfully accomplished by HPLC involving a chiral stationary phase. The absolute configuration of the enantiomers was assigned by comparison of circular dichroism spectra with quantum mechanical calculations.

10.
Chemistry ; 27(20): 6223-6229, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32871018

RESUMEN

The synthesis of pristine non-planar nanographenes (NGs) via a cyclodehydrofluorination strategy is reported and the creation of highly strained systems via alumina-assisted C-F bond activation is shown. Steric hindrance could execute an alternative coupling program leading to rare octagon formation offering access to elusive non-classical NGs. The combination of two alternative ways of folding could lead to the formation of various 3D NG objects, resembling the Japanese art of origami. The power of the presented "origami" approach is proved by the assembly of 12 challenging nanographenes that are π-isoelectronic to planar hexabenzocoronene but forced out of planarity.

11.
Chemistry ; 26(62): 14100-14108, 2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-32449817

RESUMEN

The synthesis of a new type of chiral and dynamic nonplanar aromatics containing a combination of fused perylene-based coronenes and helicenes is reported. Either one or two helicene moieties were fused to the bay regions of an extended perylene core. The target compounds contain either identical or two different helicene building blocks. The combination with two helicene units leads to six different isomers, including two pairs of enantiomers and two meso forms. The experimental determination of the isomerization barriers the corresponding double [5]-helicenes revealed activation energies of Ea =24.81 and 25.38 kcal mol-1 , which is slightly above the barrier of the parent [5]-helicene. Resolution of all possible regio- and stereoisomers allowed for the systematic investigation of the chiroptical properties. They revealed remarkable dissymmetry factors Igabs I of up to 1.2×10-2 , which mirror the synergy between the strong absorbing perylenes and the inherent chirality of helicenes.

12.
Angew Chem Int Ed Engl ; 59(26): 10514-10518, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32196128

RESUMEN

In contrast to catalytically active metal single atoms deposited on oxide nanoparticles, the crystalline nature of metal-organic frameworks (MOFs) allows for a thorough characterization of reaction mechanisms. Using defect-free HKUST-1 MOF thin films, we demonstrate that Cu+ /Cu2+ dimer defects, created in a controlled fashion by reducing the pristine Cu2+ /Cu2+ pairs of the intact framework, account for the high catalytic activity in low-temperature CO oxidation. Combining advanced IR spectroscopy and density functional theory we propose a new reaction mechanism where the key intermediate is an uncharged O2 species, weakly bound to Cu+ /Cu2+ . Our results reveal a complex interplay between electronic and steric effects at defect sites in MOFs and provide important guidelines for tailoring and exploiting the catalytic activity of single metal atom sites.

13.
J Comput Chem ; 40(26): 2293-2300, 2019 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-31254480

RESUMEN

A superhalogen F@C20 (CN)20 and a corresponding Brønsted superacid were designed and investigated on DFT and DLPNO-CCSD(T) levels of theory. Calculated compounds have outstanding electron affinity and deprotonation energy, respectively. We consider superacid H[F@C20 (CN)20 ] to be able to protonate molecular nitrogen. The stability of these structures is discussed, while some of the previous predictions concerning neutral Brønsted superacids of record strength are doubted. © 2019 Wiley Periodicals, Inc.

14.
Chemphyschem ; 20(1): 92-102, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30443980

RESUMEN

Several standard semiempirical methods as well as the MMFF94 force field approximation have been tested in reproducing 8 DLPNO-CCSD(T)/cc-pVTZ level conformational energies and spatial structures for 37 organic molecules representing pharmaceuticals, drugs, catalysts, synthetic precursors, industry-related chemicals (37conf8 database). All contemporary semiempirical methods surpass their standard counterparts resulting in more reliable conformational energies and spatial structures, even though at significantly higher computational costs. However, even these methods show unexpected failures in reproducing energy differences between several conformers of the crown ether 1,4,7,10,13,16-hexaoxacyclooctadecane (18-crown-6). Inexpensive force field MMFF94 approximation groups with contemporary semiempirical methods in reproducing the correct order of conformational energies and spatial structures, although the performance in predicting absolute conformational energies compares to standard semiempirical methods. Based on these findings, we suggest a two-step strategy for reliable yet feasible conformational search and sampling in realistic-size flexible organic molecules: i) geometry optimization/preselection of relevant conformers using the MMFF94 force field; ii) single-point energy evaluations using a contemporary semiempirical method. We expect that developed database 37conf8 is going to be useful for development of semiempirical methods.

15.
J Phys Chem A ; 122(6): 1691-1701, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29360361

RESUMEN

The conformational properties of the nitro group in nitroxoline (8-hydroxy-5-nitroquinoline, NXN) were investigated in the gas phase by means of gas electron diffraction (GED) and quantum chemical calculations, and also with solid-state analysis performed using terahertz time-domain spectroscopy (THz-TDS). The results of the GED refinement show that in the equilibrium structure the NO2 group is twisted by angle ϕ = 8 ± 3° with respect to the 8-hydroxyoquinoline plane. This is the result of interatomic repulsion of oxygen in the NO2 group from the closest hydrogen, which overcomes the energy gain from the π-π conjugation of the nitro group and aromatic system of 8-hydroxyoquinoline. The computation of equilibrium geometry using MP2/cc-pVXZ (X = T, Q) shows a large overestimation of the ϕ value, while DFT with the cc-pVTZ basis set performs reasonably well. On the other hand, DFT computations with double-ζ basis sets yield a planar structure of NXN. The refined potential energy surface of the torsion vibration the of nitro group in the condensed phase derived from the THz-TDS data indicates the NXN molecule to be planar. This result stays in good agreement with the previous X-ray structure determination. The strength of the π-system conjugation for the NO2 group and 8-hydroxyoquinoline is discussed using NBO analysis, being further supported by comparison of the refined semiexperimental gas-phase structure of NXN from GED with other nitrocompounds.

16.
Chemistry ; 23(38): 9014-9017, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28464445

RESUMEN

We report on the synthesis and the structure elucidation of the elusive azafullerene pentachloride C59 NCl5 , which was obtained by high temperature halogenation of (C59 N)2 . The exceptionally strong host-guest interaction of the title compound in the solid is discussed.

17.
Angew Chem Int Ed Engl ; 56(40): 12184-12190, 2017 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-28782166

RESUMEN

Hexa-peri-hexabenzocoronides (HBC) was successfully used as a model system for investigating the complex mechanism of the reductive functionalization of graphene. The well-defined molecular HBC system enabled deeper insights into the mechanism of the alkylation of reductively activated nanographenes. The separation and complete characterization of alkylation products clearly demonstrate that nanographene functionalization proceeds with exceptionally high regio- and stereoselectivities on the HBC scaffold. Experimental and theoretical studies lead to the conclusion that the intact basal graphene plane is chemically inert and addend binding can only take place at either preexisting defects or close to the periphery.

18.
Phys Chem Chem Phys ; 18(40): 28325-28338, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27722605

RESUMEN

In this study, we investigate the ability of classical molecular dynamics (MD) and Monte-Carlo (MC) simulations for modeling the intramolecular vibrational motion. These simulations were used to compute thermally-averaged geometrical structures and infrared vibrational intensities for a benchmark set previously studied by gas electron diffraction (GED): CS2, benzene, chloromethylthiocyanate, pyrazinamide and 9,12-I2-1,2-closo-C2B10H10. The MD sampling of NVT ensembles was performed using chains of Nose-Hoover thermostats (NH) as well as the generalized Langevin equation thermostat (GLE). The performance of the theoretical models based on the classical MD and MC simulations was compared with the experimental data and also with the alternative computational techniques: a conventional approach based on the Taylor expansion of potential energy surface, path-integral MD and MD with quantum-thermal bath (QTB) based on the generalized Langevin equation (GLE). A straightforward application of the classical simulations resulted, as expected, in poor accuracy of the calculated observables due to the complete neglect of quantum effects. However, the introduction of a posteriori quantum corrections significantly improved the situation. The application of these corrections for MD simulations of the systems with large-amplitude motions was demonstrated for chloromethylthiocyanate. The comparison of the theoretical vibrational spectra has revealed that the GLE thermostat used in this work is not applicable for this purpose. On the other hand, the NH chains yielded reasonably good results.

19.
J Am Chem Soc ; 136(31): 10890-3, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25047127

RESUMEN

Density functional theory calculations indicate that van der Waals fullerene dimers and larger oligomers can form interstitial electron traps in which the electrons are even more strongly bound than in isolated fullerene radical anions. The fullerenes behave like "super atoms", and the interstitial electron traps represent one-electron intermolecular σ-bonds. Spectroelectrochemical measurements on a bis-fullerene-substituted peptide provide experimental support. The proposed deep electron traps are relevant for all organic electronics applications in which non-covalently linked fullerenes in van der Waals contact with one another serve as n-type semiconductors.

20.
ACS Omega ; 9(33): 35449-35457, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39184516

RESUMEN

The stability of hydroxylated terminations of the 0001 surface of α-Fe2O3 (hematite) is investigated computationally using PBE + U calculations with dispersion corrections. Hydroxylated surfaces with low OH concentrations are found to be most stable in a range of the chemical potential of water of -0.95 eV > µH2O > -2.22 eV. These surfaces can be described as isolated Fe(OH)3 groups adsorbed on the dry hematite surface and are predicted to be the exposed termination of the 0001 surface in a wide range of relevant experimental conditions. Most investigated reduced surfaces, containing Fe in oxidation state +2, are only stable in a range of the chemical potential of oxygen µO < -2.44 eV, where bulk hematite is less than magnetite. The only reduced surface stable at a higher µO is derived from the most stable nonreduced hydroxylated surfaces by removing a single OH group per unit cell.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA