Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Org Chem ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240126

RESUMEN

A sustainable protocol for Ru(II)-catalyzed regioselective C(sp2)-H methylation of indolines in the presence of ethanol has been explored. A wide array of substituted indolines were successfully methylated via the developed protocol with good to excellent yields. Deuterium labeling experiments suggested the reversible nature of the C-H activation step. Kinetic isotope effect studies revealed that C-H activation might be the rate-determining step. Gram scale reaction and post-transformation reactions of the methylated product demonstrated the potential of the developed protocol.

2.
Org Biomol Chem ; 22(32): 6612-6616, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39101476

RESUMEN

A simple and rapid access to isoquinolone aldehyde scaffolds has been established by a rhodium-catalyzed reaction between isoquinolone and methoxyallene that forges alkenylation in an explicit regioselective manner. Herein, methoxyallene serving as an acrolein equivalent results in execution of this unique functionalization. Furthermore, the compatibility with complex molecules underscores the significance of this developed protocol. The mechanistic proposal for this regioselective transformation was consistent with kinetic studies and several control reactions.

3.
Org Biomol Chem ; 22(25): 5032-5051, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38837336

RESUMEN

This review covers the journey of chiral amino acids as ligands in atroposelective C-H bond activation/functionalization via transition metal catalysis. Herein, we intend to demonstrate how these chiral amino acids have evolved and flourished in this stimulating field. Unprotected amino acids, mono-N-protected amino acids, and di-N-protected amino acids have been devised for atroposelective C-H activation. In each section, we have briefly discuss the key successes of amino acids in the atroposelective synthesis of biaryls, heterobiaryls, and non-biaryl atropisomers and their advantages in atroposelective C-H activation.

4.
Pestic Biochem Physiol ; 198: 105720, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225075

RESUMEN

Cyperus rotundus L. is a widely distributed invasive weed plant with vast traditional medicinal uses. Herein, the methanolic root extract of C. rotundus and its fractions (n-hexane, chloroform, n-butanol, and aqueous) were evaluated for insecticidal activity against nymphs of Aphis craccivora Koch and crawlers of Planococcus lilacinus (Cockerell) to find promising lead (s). In contact topical assay, among extract/fractions, n-hexane fraction exhibited more toxicity against A. craccivora (LD50 = 1.12 µg/insect) and P. lilacinus (LD50 = 0.94 µg/insect). The chemical analysis of n-hexane fraction revealed a volatile composition similar to that of the essential oil (EO) of C. rotundus roots. Hence, EO was extracted using water and deep eutectic solvents (DESs) as cosolvent, which revealed enhancement in EO yield (from 0.28 to 0.46% w/w) on implementing DESs. A total of 35 diverse volatile metabolites were identified in all EO samples, accounting for 85.0 to 91.8% of chemical composition, having cyperotundone, cyperene mustakone, isolongifolen-5-one, boronia butenal as major constituents. The EO obtained with DES-7 [choline chloride: ethylene glycol (1:4)] and DES-6 [choline chloride: lactic acid (1:3)] were found effective against A. craccivora (LD50 = 0.62-0.87 µg/insect) and P. lilacinus (LD50= 0.59-0.67 µg/insect) after 96 h. NMR analysis of EO revealed cyperotundone as a major compound, which was isolated along with cyperene and cyperene epoxide. All the molecules were found effective against P. lilacinus, whereas against A. craccivora cyperotundone, cyperene and cyperene epoxide showed promising toxicity (LD50 = 0.74-0.86 µg/insect). Extract/fractions, EO, and isolated molecules showed a significant reproductive inhibition rate of A. craccivora at higher concentrations. All the tested concentrations of cyperotundone showed significant inhibition of acetylcholinesterase (AChE) and glutathione-S-transferase (GST) in A. craccivora and P. lilacinus. Based upon the present study, C. rotundus can be recommended to control targeted insects in the greenhouse/field conditions after performing bio-efficacy and phytotoxicity studies.


Asunto(s)
Cyperus , Hexanos , Insecticidas , Sesquiterpenos , Insecticidas/farmacología , Malezas , Cyperus/química , Acetilcolinesterasa , Extractos Vegetales/farmacología , Extractos Vegetales/química , Colina , Compuestos Epoxi
5.
Chem Biodivers ; : e202401324, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352134

RESUMEN

This work employed a green approach utilizing natural deep eutectic solvent (NADES)-assisted hydrodistillation for EO extraction from the aerial part of Ageratum conyzoides. Out of seven eutectic combinations used, glycerol-lactic acid (GLY:LA) (1:1) mixture significantly enhanced the yield from 0.78 mg/g (water as extraction media) to 1.00 mg/g. GC and GC-MS analysis revealed that EOs mainly contain (E)-ß-caryophyllene (15.2-25.3%), (E)-ß-farnesene (2.7-8.2 %), and notably, precocene-I (8.5-18.0 %) and precocene-II (31.8-51.4 %), which varied significantly across different extraction media. Further column chromatography-based purification of EO led to the isolation of two known chromene derivatives precocene-I (1) and precocene-II (2). Precocene-I exhibited potent anti-diabetic activity (IC50 0.26 mg/mL) compared to the standard drug acarbose. Among the EO samples, USK-N7, which had the highest percentage of precocene-I, showed the highest activity. The present study demonstrated the potential use of this weed plant as an anti-diabetic agent.

6.
Chem Biodivers ; 21(6): e202400588, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38651315

RESUMEN

Trillium govanianum, a medicinal herb, exhibiting diverse morphometric traits and phytochemicals across developmental stages of plants. The changes in the chemical profile and steroidal saponin levels in the rhizome of T. govanianum across different developmental stages were previously unknown. This study categorizes rhizomes into three types based on scar presence: juvenile (5-10 scars, Type I), young (11-19 scars, Type II), and mature (21-29 scars, Type III). Rhizomes show varying sizes (length 1.2-4.7 cm, girth 0.3-1.6 cm), weight (0.18-5.0 g), and extractive yields (9.7-16.1 % w w-1), with notable differences in saponin content (5.95-21.9 mg g-1). Ultra-high performance liquid chromatography-MS/MS (UHPLC-QTOF-MS/MS)-based chemical profiling identifies 31 phytochemicals, mainly including diverse saponins. Ultra-high performance liquid chromatography coupled with evaporative light scattering detection (UHPLC-ELSD)-based quantitative analysis of seven key saponins reveals stage-specific accumulation patterns, with protodioscin (P) and dioscin (DS) predominant in mature rhizomes. Statistical analysis confirms significant variation (p=0.001) in saponin levels across developmental stages with chemical constituent protodioscin (P=4.03±0.03-15.76±0.14 mg g-1, PAve=9.79±3.03 mg g-1) and dioscin (DS=1.23±0.06-3.93±0.07 mg g-1, DSAve=2.59±0.70 mg g-1), with acceptable power (p=0.738; |δ|>0.5) statistics for effective sample size (n=27 samples used in the study) of T. govanianum. Principal Component Analysis (PCA) and Euclidean clustering further highlighted chemotype distinctions.


Asunto(s)
Rizoma , Saponinas , Esteroides , Trillium , Trillium/química , Saponinas/química , Saponinas/aislamiento & purificación , Rizoma/química , Cromatografía Líquida de Alta Presión , Esteroides/química , Plantas Medicinales/química , Plantas Medicinales/metabolismo , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Espectrometría de Masas en Tándem , Humanos
7.
Phytochem Anal ; 35(6): 1265-1277, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38659229

RESUMEN

INTRODUCTION: Trillium govanianum Wall. ex D.Don is a folk medicinal herb rich in structurally diverse steroidal saponins. The annual demand for this herb in India is about 200-500 metric tons, highlighting the need for a thorough quality assessment. OBJECTIVE: The objective of this study is to develop an easy and reliable ultrahigh-performance liquid chromatography-evaporative light scattering detector (UHPLC-ELSD)-based quality assessment method with 14 specialised metabolites of T. govanianum and identify the potential targets of this herb using network pharmacology. MATERIAL AND METHODS: A UHPLC-ELSD method was developed and validated with 14 markers of T. govanianum. The developed method and natural deep eutectic solvent (NADES)-assisted extraction were utilised for the recovery enhancement study of targeted specialised metabolites from rhizome samples (collected from five geographically distinct areas). In addition, the network pharmacology approach was performed for these 14 markers to predict the plausible biological targets of T. govanianum. RESULT: The developed method showed good linearity (r2: 0.940-0.998), limit of detection (LOD) (2.4-9.0 µg), limit of quantification (LOQ) (7.92-29.7 µg), precision (intra-day relative standard deviations [RSDs] 0.77%-1.96% and inter-day RSDs 2.19-4.97%), and accuracy (83.24%-118.90%). NADES sample TG-1* showed the highest recovery (yield: 167.66 ± 4.39 mg/g of dry weight) of total saponin content (TSC) as compared to its hydroethanolic extract (yield: 103.95 ± 5.36 mg/g of dry weight). Sample TG-1* was the most favourable (yield: 167.66 ± 4.39 mg/g) in terms of TSC as compared to other analysed samples (32.68 ± 1.04-88.22 ± 6.79 mg/g). Govanoside D (yield: 3.43-28.06 mg/g), 22ß-hydroxyprotodioscin (yield: 3.22-114.79 mg/g), and dioscin (yield: 1.07-20.82 mg/g) were quantified as the major metabolites. Furthermore, network pharmacology analysis of targeted 14 markers indicated that these molecules could be possible therapeutic agents for managing neuralgia, diabetes mellitus, and hyperalgesia. CONCLUSION: The current study represents the first report for the simultaneous quantification and a network pharmacology-based analysis of 14 chemical marker compounds isolated from T. govanianum.


Asunto(s)
Farmacología en Red , Trillium , Cromatografía Líquida de Alta Presión/métodos , Trillium/química , Saponinas/análisis , Saponinas/química , Extractos Vegetales/química , Solventes/química , Rizoma/química , Límite de Detección
8.
Chemistry ; 29(50): e202301360, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37358247

RESUMEN

The selective C7-allylation of indolines with allyl bromide under ruthenium catalysis has been revealed here. Under established reaction conditions, C7-allylation of various indolines, including drug compounds, was accomplished with good selectivity and yields. Based on combined experimental and density functional theory (DFT) studies, the olefin insertion route was energetically favorable among four possible pathways. Experimental and DFT studies further revealed that the C-H activation is a reversible rate-limiting step.

9.
J Org Chem ; 88(4): 2314-2321, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36705295

RESUMEN

A straightforward photocatalytic approach has been demonstrated to incorporate a trifluoroethanol unit onto the isoquinolines. Herein, we report N-trifluoroethoxyphthalimide as a hydroxyfluoroalkyl radical precursor, enabling efficient synthesis of trifluoroethanol-substituted heteroarenes. Radical quenching experiments confirmed the involvement of a free-radical pathway under developed photocatalytic conditions. The DFT calculations confirmed the intramolecular 1,2-HAT reactivity of the O-centered trifluoroethoxy radical (generated from N-trifluoroethoxyphthalimide under photocatalytic condition) to the C-centered trifluoroethanol radical. Fluorescence quenching studies suggested that isoquinoline was responsible for the quenching of Ir-photocatalyst emission. A catalytic cycle involving trifluoroethanol radical reaction with isoquinolines has been proposed.

10.
Chem Soc Rev ; 51(6): 2313-2382, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35244107

RESUMEN

Visible-light photoredox catalysis has been regarded as an extremely powerful tool in organic chemistry, bringing the spotlight back to radical processes. The versatility of photocatalyzed reactions has already been demonstrated to be effective in providing alternative routes for cross-coupling as well as multicomponent reactions. The photocatalyst allows the generation of high-energy intermediates through light irradiation rather than using highly reactive reagents or harsh reaction conditions. In a similar vein, organic electrochemistry has experienced a fruitful renaissance as a tool for generating reactive intermediates without the need for any catalyst. Such milder approaches pose the basis toward higher selectivity and broader applicability. In photocatalyzed and electrochemical multicomponent reactions, the generation of the radical species acts as a starter of the cascade of events. This allows for diverse reactivity and the use of reagents is usually not covered by classical methods. Owing to the availability of cheaper and more standardized photo- and electrochemical reactors, as well as easily scalable flow-setups, it is not surprising that these two fields have become areas of increased research interest. Keeping these in view, this review is aimed at providing an overview of the synthetic approaches in the design of MCRs involving photoredox catalysis and/or electrochemical activation as a crucial step with particular focus on the choice of the difunctionalized reagent.

11.
Chimia (Aarau) ; 77(5): 327-338, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38047829

RESUMEN

The popularity of microflow chemistry has skyrocketed in the last 20 years, more and more chemists are switching from macro-batch reactors to miniaturized flow devices. As a result, microfluidics is paving its way into the future by consolidating its position in organic chemistry not only as a trend but as a new, effective, and sustainable way of conducting chemistry, that clearly will continue to grow and evolve. This perspective highlights the most relevant examples of innovative enhancing technologies applied to microflow reactors aimed to improve and intensify chemical processes. The extensive applicability of microflow chemistry is further illustrated by briefly discussing examples of complex integrated microsystems and scale-up technologies, demonstrating ultimately that microflow chemistry has the potential to become the ideal technology for the future.

12.
Crit Rev Biotechnol ; : 1-16, 2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36184806

RESUMEN

Iridoid glycosides are monoterpenoids synthesized in several plant species known to exhibit a diverse range of pharmacological activities. They are used as important bioactive ingredients in many commercially available drug formulations and as lead compounds in pharmaceutical research. The genus Picrorhiza comprises two medicinally important herbs endemic to the Himalayan region viz. Picrorhiza kurrooa Royle and Picrorhiza scrophulariiflora Hong. The medicinal properties of these two species are mainly due to iridoid glycosides present in their root, rhizome, and leaves. Unregulated harvesting from the wild, habitat specificity, narrow distribution range, small population size and lack of organized cultivation led to the enrolling of these species in the endangered category by the International Union for Conservation of Nature and Natural Resources (IUCN). Therefore, there is a need for immediate biotechnological and molecular interventions. Such intercessions will open up new vistas for large-scale propagation, development of genomic/transcriptomic resources for understanding the biosynthetic pathway, the possibility of genetic/metabolic manipulations, and possible commercialization of iridoid glycosides. The current review article elucidates the phytochemistry and pharmacological importance of iridoid glycosides from the genus Picrorhiza. In addition, the role of biotechnological approaches and opportunities offered by next-generation sequencing technologies in overcoming challenges associated with the genetic engineering of these species are also discussed.

13.
Chem Rec ; 22(3): e202100271, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34932274

RESUMEN

Direct functionalization of heterocycles using C-H activation widely relies on the precious metal complexes. In past decade, the use of earth abundant and inexpensive transition metal to functionalize heterocycles has become an attractive alternate strategy. This concept is also interesting due to the unique reactivity pattern of these inexpensive metals. In this context we and other research groups have utilized the high-valent cobalt complexes as an inexpensive and readily available catalyst for the functionalization of heterocycles. In this review, we intend to brief recent progress made in the area of high-valent cobalt complexes catalyzed C-H functionalization of N-containing heterocycles.


Asunto(s)
Cobalto , Complejos de Coordinación , Catálisis , Metales
14.
J Org Chem ; 87(14): 9069-9087, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35758768

RESUMEN

Herein we report Cp*Co(III)-catalyzed site-selective (C8)-H olefination and oxyarylation of quinoline N-oxides with terminal alkynes. The selectivity for C8-olefination and oxyarylation is sterically and electronically controlled. In the case of quinoline N-oxides (unsubstituted at the C2 position), only the olefination product was obtained irrespective of the nature of the alkynes. In contrast, oxyarylation was observed exclusively when 2-substituted quinoline N-oxides were reacted with 9-ethynylphenanthrene. However, alkynes with electron-withdrawing groups provided only olefination products with 2-substituted quinoline N-oxides. The developed strategy allowed a facile functionalization of quinoline N-oxides bearing natural molecules and an estrone-derived terminal alkyne to deliver the corresponding olefinated and oxyarylated products. To understand the reaction mechanism, control experiments, deuterium-labeling experiments, and kinetic isotope effect (KIE) studies were performed.


Asunto(s)
Alquinos , Quinolinas , Catálisis , Óxidos
15.
Molecules ; 27(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35163898

RESUMEN

Aphis craccivora Koch is a polyphagous and major pest of leguminous crops causing significant damage by reducing the yield. Repeated application of synthetic insecticides for the control of aphids has led to development of resistance. Therefore, the present study aimed to screen the insecticidal activity of root/stem extracts/fractions, and pure molecules from Cissampelos pareira Linnaeus against A. craccivora for identification of lead(s). Among root extract/fractions, the n-hexane fraction was found most effective (LC50 = 1828.19 mg/L) against A. craccivora, followed by parent extract (LC50 = 2211.54 mg/L). Among stem extract/fractions, the n-hexane fraction (LC50 = 1246.92 mg/L) was more effective than the water and n-butanol fractions. Based on GC and GC-MS analysis, among different compounds identified in the n-hexane fraction of root and stem, ethyl palmitate (known to possess insecticidal activity) was present in the highest concentration (24.94 to 52.95%) in both the fractions. Among pure molecules, pareirarineformate was found most effective (LC50 = 1491.93 mg/L) against A. craccivora, followed by cissamine (LC50 = 1556.31 mg/L). Parent extract and fractions of C. pareira possess promising activity against aphid. Further, field bio-efficacy studies are necessary to validate the current findings for the development of botanical formulation.


Asunto(s)
Áfidos , Cissampelos , Insecticidas , Animales , Insecticidas/farmacología , Extractos Vegetales/farmacología
16.
Molecules ; 27(11)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35684419

RESUMEN

Onosma bracteata Wall. is an important medicinal and immunity-enhancing herbs. This plant is commonly used in the preparation of traditional Ayurvedic drugs to treat numerous diseases. Inspired by the medicinal properties of this plant, the present study aimed to investigate the antiproliferative potential and the primary molecular mechanisms of the apoptotic induction against human osteosarcoma (MG-63) cells. Among all the fractions isolated from O. bracteata, ethyl acetate fraction (Obea) showed good antioxidant activity in superoxide radical scavenging assay and lipid peroxidation assay with an EC50 value of 95.12 and 80.67 µg/mL, respectively. Silica gel column chromatography of ethyl acetate (Obea) fraction of O. bracteata yielded a pure compound, which was characterized by NMR, FTIR, and HR-MS analysis and was identified as 1,2-benzene dicarboxylic acid, bis (2-methyl propyl) ester (BDCe fraction). BDCe fraction was evaluated for the antiproliferative potential against human osteosarcoma MG-63, human neuroblastoma IMR-32, and human lung carcinoma A549 cell lines by MTT assay and exhibited GI50 values of 37.53 µM, 56.05 µM, and 47.12 µM, respectively. In MG-63 cells, the BDCe fraction increased the level of ROS and simultaneously decreased the mitochondria membrane potential (MMP) potential by arresting cells at the G0/G1 phase, suggesting the initiation of apoptosis. Western blotting analysis revealed the upregulation of p53, caspase3, and caspase9 while the expressions of p-NF-κB, p-Akt and Bcl-xl were decreased. RT-qPCR studies also showed upregulation in the expression of p53 and caspase3 and downregulation in the expression of CDK2, Bcl-2 and Cyclin E genes. Molecular docking analysis displayed the interaction between BDCe fraction with p53 (-151.13 kcal/mol) and CDK1 (-133.96 kcal/mol). The results of the present work suggest that the BDCe fraction has chemopreventive properties against osteosarcoma (MG-63) cells through the induction of cell cycle arrest and apoptosis via Akt/NF-κB/p53 pathways. This study contributes to the understanding of the utilization of BDCe fraction in osteosarcoma treatment.


Asunto(s)
Neoplasias Óseas , Boraginaceae , Osteosarcoma , Apoptosis , Boraginaceae/metabolismo , Línea Celular Tumoral , Proliferación Celular , Ésteres , Humanos , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Osteosarcoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
17.
Indian J Plast Surg ; 55(3): 282-286, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36325084

RESUMEN

Background Abnormalities of fingernail growth and appearance are among the most common deformities encountered after burn injury to the hand. Various techniques used for resurfacing defects include incision of the scarred eponychium and advancement of the distal segment, flap reconstruction-distally, and proximally based transposition/advancement flaps, composite graft techniques, microvascular transfer. In the present study, we used an onion flap to release scarred eponychium and nail fold reconstruction in a single stage without using soft tissue from another area. Materials and methods Forty-four burnt fingers were operated using Yang's onion flap technique. Patients were assessed for flap necrosis, hematoma and infection in the early postoperative period and for donor site scar, nail appearance, and symptomatic relief in a follow-up for at least 4 months. Results The flap was successfully performed on all fingers. Only two fingers had flap necrosis. There was no incidence of hematoma or infection. The donor site scar and nail plate appearance improved and was acceptable to most patients after surgery. There was also significant relief in daily activities in 19 out of 28 symptomatic patients. Conclusion Yang's flap to correct nail deformities in burn patients is feasible in Indian scenario. It is associated with a low complication rate and improved nail appearance. There is also significant symptomatic relief in performing daily activities after surgery.

18.
J Org Chem ; 86(9): 6612-6621, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33881315

RESUMEN

Herein, we disclose the Rh(III)-catalyzed selective C8-alkylation of quinoline N-oxides with maleimides and acrylates. The main features of the reaction include complete C8-selectivity and broad substrate scope with good to excellent yields. The reaction also proceeded well with unprotected maleimide. The applicability of the developed methodology is demonstrated with gram-scale synthesis and post-modification of the alkylated product. Preliminary mechanistic study revealed that the reaction proceeds through a five-membered rhodacycle and involves proto-demetalation step.

19.
J Org Chem ; 86(19): 13754-13761, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34553929

RESUMEN

Rh(III)-catalyzed regioselective trifluoromethylthiolation of the unactivated C(sp3)-H bond of 8-methylquinolines with bench-stable electrophilic trifluoromethylthiolating reagent via C(sp3)-H activation is explored. Various substituted 8-methylquinolines provided the products in good yields with high regioselectivity. Current reaction conditions are also applicable for the late-stage functionalization of natural molecule santonin and caffeine-substituted 8-methylquinoline.

20.
J Org Chem ; 86(9): 6449-6457, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33886326

RESUMEN

C70 fullerene catalyzed photoinduced oxidation of benzylic amines at ambient conditions has been explored here. The developed strategy's main feature includes the additive/oxidant-free conversion of benzylic amine to corresponding imine and aldehydes. The reaction manifests broad substrate scope with excellent function group leniency and is applicable up to the gram scale. Further, symmetrical secondary amines can also be synthesized from benzylic amine in a one-pot two-step process. Various experiments and density functional theory studies revealed that the current reaction involves the generation of reactive oxygen species, single electron transfer reaction, and benzyl radical formation as key steps under photocatalytic conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA