Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Infect Dis ; 24(1): 1193, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39438795

RESUMEN

BACKGROUND: Ongoing studies have revealed the global prevalence of severe infections caused by the hypervirulent strains of Klebsiella pneumoniae (K. pneumoniae). Meanwhile, the World Health Organization and the Centers for Disease Control declared carbapenem-resistant K. pneumoniae as an urgent public health threat, requiring swift and effective action to mitigate its spread. Low- and middle-income countries are severely impacted by such devastating infectious diseases owing to the ill implementation of antimicrobial practices and infection control policies. Having both hypervirulence and carbapenemase gene determinants, the emergence of convergent hypervirulent carbapenem-resistant K. pneumoniae is now being reported worldwide. METHODS: In this study, we sequenced 19 carbapenemase-producing K. pneumoniae strains recovered from various clinical specimens. Additionally, we evaluated the phenotypic antimicrobial susceptibility to multiple antimicrobial classes using the VITEK2 automated system. Utilizing the sequencing data, we characterized the sequence types, serotypes, pangenome, resistance profiles, virulence profiles, and mobile genetic elements of the examined isolates. We highlighted the emergence of high-risk clones carrying hypervirulence genetic determinants among the screened isolates. RESULTS: Our findings revealed that all carbapenem-resistant isolates exhibited either extensive- or pan-drug resistance and harbored multiple variants of resistance genes spanning nearly all the antimicrobial classes. The most prevalent carbapenemase genes detected within the isolates were blaNDM-5 and blaOXA-48. We identified high-risk clones, such as ST383-K30, ST147-K64, ST11-K15, and ST14-K2, which may have evolved into putative convergent strains by acquiring the full set of hypervirulence-associated genetic determinants (iucABCD, rmpA and/ or rmpA2, putative transporter peg-344). Additionally, this study identified ST709-K9 as a high-risk clone for the first time and uncovered that capsule types K15 and K9 carried hypervirulence genetic determinants. The most frequent Inc types found in these isolates were Col440I, IncHI1B, and Inc FII(K). CONCLUSION: This study highlights the emergence of high-risk, extensively carbapenem-resistant K. pneumoniae strains co-carrying hypervirulence determinants in Egyptian clinical settings. This poses an imminent threat not only to Egypt but also to the global community, underscoring the urgent need for enhanced surveillance and control strategies to combat this pathogen.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Carbapenémicos , Infecciones por Klebsiella , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/patogenicidad , Klebsiella pneumoniae/aislamiento & purificación , Humanos , Egipto/epidemiología , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/epidemiología , Carbapenémicos/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , beta-Lactamasas/genética , Virulencia/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Enterobacteriaceae Resistentes a los Carbapenémicos/patogenicidad , Enterobacteriaceae Resistentes a los Carbapenémicos/aislamiento & purificación , Farmacorresistencia Bacteriana Múltiple/genética , Masculino , Factores de Virulencia/genética , Femenino , Genoma Bacteriano
2.
FASEB J ; 36(9): e22496, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35947115

RESUMEN

Ulcerative colitis (UC) is a chronic inflammatory bowel disease of unknown etiology that increases the risk of developing colorectal cancer and imposes a lifelong healthcare burden on millions of patients worldwide. Current treatment strategies are associated with significant risks and have been shown to be fairly effective. Hence, discovering new therapies that have better efficacy and safety profiles than currently exploited therapeutic strategies is challenging. It has been well delineated that NF-κB/Nrf2 crosstalk is a chief player in the interplay between oxidative stress and inflammation. Ambroxol hydrochloride, a mucolytic agent, has shown antioxidant and anti-inflammatory activity in humans and animals and has not yet been examined for the management of UC. Therefore, our approach was to investigate whether ambroxol could be effective to combat UC using the common acetic acid rat model. Interestingly, a high dose of oral ambroxol (200 mg/kg/day) reasonably improved the microscopic and macroscopic features of the injured colon. This was linked to low disease activity and a reduction in the colonic weight/length ratio. In the context of that, ambroxol boosted Nrf2 activity and upregulated HO-1 and catalase to augment the antioxidant defense against oxidative damage. Besides, ambroxol inactivated NF-κB signaling and its consequent target pro-inflammatory mediators, IL-6 and TNF-α. In contrast, IL-10 is upregulated. Consistent with these results, myeloperoxidase activity is suppressed. Moreover, ambroxol decreased the susceptibility of the injured colon to apoptosis. To conclude, our findings highlight the potential application of ambroxol to modify the progression of UC by its anti-inflammatory, antioxidant, and antiapoptotic properties.


Asunto(s)
Ambroxol , Colitis Ulcerosa , Hemo-Oxigenasa 1/metabolismo , Ambroxol/farmacología , Ambroxol/uso terapéutico , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Apoptosis , Colitis Ulcerosa/tratamiento farmacológico , Colon , Expectorantes/farmacología , Expectorantes/uso terapéutico , Humanos , Factor 2 Relacionado con NF-E2 , FN-kappa B/farmacología , Ratas
3.
Ann Clin Microbiol Antimicrob ; 22(1): 109, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098126

RESUMEN

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is a rapidly evolving pathogen that is frequently associated with outbreaks and sustained epidemics. This study investigated the population structure, resistome, virulome, and the correlation between antimicrobial resistance determinants with phenotypic resistance profiles of 36 representative hospital-acquired MRSA isolates recovered from hospital settings in Egypt. RESULTS: The community-acquired MRSA lineage, clonal complex 1 (CC1) was the most frequently detected clone, followed by three other globally disseminated clones, CC121, CC8, and CC22. Most isolates carried SCCmec type V and more than half of isolates demonstrated multi-drug resistant phenotypes. Resistance to linezolid, a last resort antibiotic for treating multidrug resistant MRSA, was observed in 11.11% of the isolates belonging to different genetic backgrounds. Virulome analysis indicated that most isolates harboured a large pool of virulence factors and toxins. Genes encoding aureolysin, gamma hemolysins, and serine proteases were the most frequently detected virulence encoding genes. CC1 was observed to have a high pool of AMR resistance determinants including cfr, qacA, and qacB genes, which are involved in linezolid and quaternary ammonium compounds resistance, as well as high content of virulence-related genes, including both of the PVL toxin genes. Molecular clock analysis revealed that CC1 had the greatest frequency of recombination (compared to mutation) among the four major clones, supporting the role of horizontal gene transfer in modulating AMR and hypervirulence in this clone. CONCLUSIONS: This pilot study provided evidence on the dissemination success of CA-MRSA clone CC1 among Egyptian hospitals. Co-detection of multiple AMR and virulence genes in this lineage pose a broad public health risk, with implications for successful treatment. The results of this study, together with other surveillance studies in Egypt, should be used to develop strategies for controlling MRSA infections in Egyptian health-care settings.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Resistencia a la Meticilina/genética , Egipto/epidemiología , Linezolid/farmacología , Proyectos Piloto , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Células Clonales , Recombinación Genética , Atención a la Salud , Pruebas de Sensibilidad Microbiana
4.
Pak J Pharm Sci ; 35(2): 401-408, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35642394

RESUMEN

The coronavirus pandemic 2019 (COVID-19) is changing the world and reshape all aspects of life. Side by side to global efforts to develop potential vaccines and effective drugs against COVID-19, clinical parameters scanning the prognosis of COVID-19 infection are badly required to help the clinicians in premature management of COVID-19 cases before critical progression. The main objective of our study is to specify reliable biomarkers which differentially change upon case progression and clearly reflect the extent of lung lesions. Forty-one patients from Mansoura area, confirmed for COVID-19 infection were classified according to the diameter of lung lesions measured by lung computed tomography (CT) into mild and severe cases including 66% and 34% of all patients, respectively. COVID-19 patients were followed since hospital admission for comparative studies covering measured biochemical and hematological parameters. Based on the degree of severity, five different biomarkers mainly; D-dimer, lactate dehydrogenase (LDH), C-reactive protein (CRP), lymphocytes and ferritin were found to clearly oscillate in response to COVID-19 infection and upon case transition from mild to severe. In our study, significantly higher levels of almost all the biomarkers except lymphocyte count, were detected in patients having severe complications of COVID-19 infection in contrast with non-severe patients.


Asunto(s)
COVID-19 , Enfermedad Aguda , Biomarcadores , Proteína C-Reactiva/metabolismo , Egipto/epidemiología , Humanos
5.
Toxicol Appl Pharmacol ; 407: 115246, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32956689

RESUMEN

Mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-ĸB signaling have been recognized for their causal connection with liver fibrosis. Hence, it is encouraging to discover drugs that can modify the interactions between these signaling cascades. It has been suggested that glucagon-like peptide-1 receptors (GLP-1Rs) might have a role in the observed hepatoprotection of dipeptidyl peptidase-4 inhibitors other than vildagliptin (VLD). Consequently, we aimed to elucidate the mechanisms underlying its potential antifibrotic activity in a CCl4-intoxicated mouse model. VLD increased the percentage of viable CCl4-intoxicated primary rat hepatocytes in vitro. It also attenuated hepatic fibrosis, improved liver function, and prolonged survival of CCl4-intoxicated mice in a dose-dependent manner. This hepatoprotection might be mediated mainly through interference with extracellular signal-regulated protein kinase 1/2 phosphorylation, the most downstream signal of the MAPK pathway. In addition, VLD hepatoprotective activity could be partially mediated through inhibition of p38α phosphorylation and phosphorylation-induced NF-ĸB activation. As a result, VLD downregulated profibrogenic mediators, such as tumor necrosis factor α, transforming growth factor ß, tissue inhibitor of metalloproteinase 1 and platelet-derived growth factor BB. Consequently, decreased expression levels of fibrosis markers, such as hydroxyproline and α smooth muscle actin, were confirmed. VLD showed a strong trend toward increasing the antioxidant defense machinery of fibrotic tissue, and we confirmed that GLP-1Rs were not implicated in the observed hepatoprotection. Since VLD poses little risk of hypoglycemia and is a safe drug for patients with liver injury, it may be a hopeful candidate for adjuvant treatment of liver fibrosis in humans.


Asunto(s)
Intoxicación por Tetracloruro de Carbono/tratamiento farmacológico , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Cirrosis Hepática/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Vildagliptina/farmacología , Animales , Intoxicación por Tetracloruro de Carbono/patología , Supervivencia Celular/efectos de los fármacos , Inhibidores de la Dipeptidil-Peptidasa IV/administración & dosificación , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Relación Dosis-Respuesta a Droga , Mediadores de Inflamación/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/patología , Pruebas de Función Hepática , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , FN-kappa B/efectos de los fármacos , Fosforilación , Cultivo Primario de Células , Ratas , Sobrevida , Vildagliptina/administración & dosificación , Vildagliptina/uso terapéutico , Proteínas Quinasas p38 Activadas por Mitógenos/efectos de los fármacos
6.
Toxicol Appl Pharmacol ; 400: 115075, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32470352

RESUMEN

NLRP3, one of the HSP-90 clients, has been defined as a critical component of IBD. In a rat model of DSS-induced colitis, we investigated the anti-inflammatory potential of the combined therapy with CP-456773 (CP), an NLRP3 inhibitor, and celastrol (CSR), an NF-κB inhibitor. Our results revealed that the CSR/CP combined therapy (CCCT) attenuated colon shortening, DAI and MDI in addition to improvement of the colonic histological picture. Moreover, the CCCT increased the antioxidant defense machinery of the colonic tissue and decreased MPO activity. Furthermore, the inflammation markers such as TNF-α and IL-6 were downregulated. These effects might be attributed to the inhibitory effect of CSR on the priming step of the NLRP3 inflammasome activation by interrupting NF-κB signalling and inhibition of HSP-90 (at the protein and mRNA levels) along with inhibitory effect of CP on the expression of the NLRP3. These latter effects resulted in decreased tissue expression and activity of the caspase-1 and repressing the subsequent release of the active forms of IL-1ß and IL-18, hence, the pyroptosis process is restrained. Additionally, the CCCT resulted in inducing autophagy by AMPK/mTOR-dependent mechanisms leading to the accumulation of BECN1 protein and a significant decrease in the levels of p62 SQSTM1. The inhibitory effect on HSP-90 in conjunction with induction of autophagy suggest increased autophagic degradation of NLRP3. This novel approach provides a basis for the clinical application of this combination in IBD treatment and might also be promising for the pharmacological intervention of other NLRP3 inflammasome-dependent inflammatory conditions.


Asunto(s)
Antiinflamatorios/farmacología , Autofagia/efectos de los fármacos , Colitis/tratamiento farmacológico , Proteínas HSP90 de Choque Térmico/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Sulfonas/farmacología , Triterpenos/farmacología , Animales , Antiinflamatorios/administración & dosificación , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/patología , Citocinas/metabolismo , Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad , Quimioterapia Combinada , Furanos , Proteínas HSP90 de Choque Térmico/sangre , Compuestos Heterocíclicos de 4 o más Anillos/administración & dosificación , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Indenos , Inflamasomas/efectos de los fármacos , Inflamasomas/inmunología , Masculino , Triterpenos Pentacíclicos , Ratas Sprague-Dawley , Sulfonamidas , Sulfonas/administración & dosificación , Sulfonas/uso terapéutico , Triterpenos/administración & dosificación , Triterpenos/uso terapéutico
7.
World J Surg ; 41(5): 1313-1321, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28050664

RESUMEN

BACKGROUND: Idiopathic granulomatous lobular mastitis (IGLM) is a chronic, non-caseating, inflammatory breast disease of obscure aetiology characterized by multiple masses, abscesses and sinus formation. There is no standard treatment to date, but surgical procedures and systemic corticosteroids are effective in its treatment despite high recurrence rates. PATIENTS AND METHODS: This prospective study including 30 patients with IGLM between November 2012 and May 2016 aimed to investigate the possibility of administration of Rifampicin (300 mg twice daily for a period of 6-9 months) as an alternative therapy for both surgery and corticosteroids in patients with IGLM. All patients were diagnosed by core needle biopsy. RESULTS: All patients were of reproductive age and had a history of breast feeding, which is the most important predisposing factor for IGLM. The mean age was 31.6 ± 5.8 years (range 23-42 years). Eighteen patients (60%) were treated by Rifampicin for 6 months, whereas 12 patients (40%) were treated for 9 months. Twelve months after the beginning of therapy, all patients showed complete clinical and ultrasonographic responses. No serious side effects were reported to stop the treatment course. The median follow-up after finishing the course of treatment was 15.5 months (average 3-35 months) with no episodes of disease relapse. CONCLUSION: Rifampicin is effective in the treatment of patients with IGLM with complete clinical and ultrasonographic response after 6-9 months and could be used as a solo medical therapy alternative to both surgery and corticosteroids.


Asunto(s)
Antibacterianos/uso terapéutico , Mastitis Granulomatosa/tratamiento farmacológico , Rifampin/uso terapéutico , Adulto , Femenino , Estudios de Seguimiento , Humanos , Estudios Prospectivos , Adulto Joven
8.
Sci Rep ; 14(1): 15500, 2024 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969684

RESUMEN

The incidence of Pseudomonas aeruginosa infections in healthcare environments, particularly in low-and middle-income countries, is on the rise. The purpose of this study was to provide comprehensive genomic insights into thirteen P. aeruginosa isolates obtained from Egyptian healthcare settings. Phenotypic analysis of the antimicrobial resistance profile and biofilm formation were performed using minimum inhibitory concentration and microtiter plate assay, respectively. Whole genome sequencing was employed to identify sequence typing, resistome, virulome, and mobile genetic elements. Our findings indicate that 92.3% of the isolates were classified as extensively drug-resistant, with 53.85% of these demonstrating strong biofilm production capabilities. The predominant clone observed in the study was ST773, followed by ST235, both of which were associated with the O11 serotype. Core genome multi-locus sequence typing comparison of these clones with global isolates suggested their potential global expansion and adaptation. A significant portion of the isolates harbored Col plasmids and various MGEs, all of which were linked to antimicrobial resistance genes. Single nucleotide polymorphisms in different genes were associated with the development of antimicrobial resistance in these isolates. In conclusion, this pilot study underscores the prevalence of extensively drug-resistant P. aeruginosa isolates and emphasizes the role of horizontal gene transfer facilitated by a diverse array of mobile genetic elements within various clones. Furthermore, specific insertion sequences and mutations were found to be associated with antibiotic resistance.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/aislamiento & purificación , Egipto/epidemiología , Humanos , Antibacterianos/farmacología , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/epidemiología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Secuenciación Completa del Genoma/métodos , Genómica/métodos , Genoma Bacteriano , Evolución Molecular , Farmacorresistencia Bacteriana/genética , Tipificación de Secuencias Multilocus , Polimorfismo de Nucleótido Simple , Farmacorresistencia Bacteriana Múltiple/genética , Filogenia
9.
J Genet Eng Biotechnol ; 22(1): 100351, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38494251

RESUMEN

The current study investigated the temporal phenotypic and genotypic antimicrobial resistance (AMR) trends among multi-drug resistant and carbapenem-resistant Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa recovered from Egyptian clinical settings between 2020 and 2021. Bacterial identification and antimicrobial sensitivity of 111 clinical isolates against a panel of antibiotics were performed. Molecular screening for antibiotic resistance determinants along with integrons and associated gene cassettes was implemented. An alarming rate (98.2%) of these isolates were found to be phenotypically resistant to carbapenem. Although 23.9 % K. pneumoniae isolates were phenotypically resistant to colistin, no mobile colistin resistance (mcr) genes were detected. Among carbapenem-resistant isolates, blaNDM and blaOXA-48-like were the most prevalent genetic determinants and were significantly overrepresented among K. pneumoniae. Furthermore, 84.78% of K. pneumoniae isolates co-produced these two carbapenemase genes. The plasmid-mediated quinolone resistance genes (qnrS and qnrB) were detected among the bacterial species and were significantly more prevalent among K. pneumoniae. Moreover, Class 1 integron was detected in 82% of the bacterial isolates. This study alarmingly reveals elevated resistance to last-resort antibiotics such as carbapenems as well as colistin which impose a considerable burden in the health care settings in Egypt. Our future work will implement high throughput sequencing-based antimicrobial resistance surveillance analysis for characterization of novel AMR determinants. This information could be applied as a step forward to establish a robust antibiotic stewardship program in Egyptian clinical settings, thereby addressing the rising challenges of AMR.

10.
AMB Express ; 14(1): 89, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095672

RESUMEN

Therapeutics that interfere with the damage/pathogen-associated molecular patterns (DAMPs/PAMPs) have evolved as promising candidates for hepatic inflammation like that occurring in non-alcoholic fatty liver disease (NAFLD). In the current study, we examined the therapeutic impact of the phosphodiesterase-1 inhibitor vinpocetine (Vinpo), alone or when combined with Lactobacillus, on hepatic abnormalities caused by a 13-week high-fat diet (HFD) and diabetes in rats. The results show that Vinpo (10 and 20 mg/kg/day) dose-dependently curbed HFD-induced elevation of liver injury parameters in serum (ALT, AST) and tissue histopathology. These effects were concordant with Vinpo's potential to ameliorate HFD-induced fibrosis (Histological fibrosis score, hydroxyproline, TGF-ß1) and oxidative stress (MDA, NOx) alongside restoring the antioxidant-related parameters (GSH, SOD, Nrf-2, HO-1) in the liver. Mechanistically, Vinpo attenuated the hepatocellular release of DAMPs like high mobility group box (HMGB)1 alongside lowering the overactivation of the pattern recognition receptors including, toll-like receptor (TLR)4 and receptor for advanced glycation end-products (RAGE). Consequently, there was less activation of the transcription factor nuclear factor-kappa B that lowered production of the proinflammatory cytokines TNF-α and IL-6 in Vinpo-treated HFD/diabetes rats. Compared to Vinpo treatment alone, Lactobacillus probiotics as adjunctive therapy with Vinpo significantly improved the disease-associated inflammation and oxidative stress injury, as well as the insulin resistance and lipid profile abnormalities via enhancing the restoration of the symbiotic microbiota. In conclusion, combining Vinpo and Lactobacillus probiotics may be a successful approach for limiting NAFLD in humans.

11.
Life Sci ; 331: 121931, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37442416

RESUMEN

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.

12.
Biomed Pharmacother ; 161: 114553, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36934553

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible lung disease with a poor prognosis. There is currently no definitive cure for IPF. The present study establishes a platform for the development of a novel therapeutic approach for the treatment of PF using the atypical antidepressant, mirtazapine. In the endotracheal bleomycin rat model, mirtazapine interfered with the activation of NLRP3 inflammasome via downregulating the NLRP3 on the gene and protein expression levels. Accordingly, the downstream mediators IL-1ß and IL-18 were repressed. Such observation is potentially a direct result of the reported improvement in oxidative stress. Additionally, mirtazapine corrected the bleomycin-induced disparities in the levels of the fibrogenic mediators TGF-ß, PDGF-BB, and TIMP-1, in consequence, the lung content of hydroxyproline and the expression of α-SMA were reduced. Besides, mirtazapine curbed the ICAM-1 and the chemotactic cytokines MCP-1 and CXCL4. This protective property of mirtazapine resulted in improving the BALF total and differential cell counts, diminishing LDH activity, and reducing the BALF total protein. Moreover, the inflammation and fibrosis scores were accordingly lower. To conclude, we reveal for the first time the efficacy of mirtazapine as a potential treatment for PF. The combination of social isolation, sleep problems, breathing difficulties, and fear of death can lead to psychological distress and depression in patients with IPF. Hence, mirtazapine is a promising treatment option that may improve the prognosis for IPF patients due to its antifibrotic effects, as well as its ability to alleviate depressive episodes.


Asunto(s)
Antidepresivos de Segunda Generación , Fibrosis Pulmonar Idiopática , Ratas , Animales , Inflamasomas/metabolismo , Mirtazapina/metabolismo , Mirtazapina/farmacología , Antidepresivos de Segunda Generación/metabolismo , Antidepresivos de Segunda Generación/farmacología , Bleomicina/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Pulmón , Fibrosis , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Antidepresivos/farmacología
13.
Biomed Pharmacother ; 158: 114196, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36916405

RESUMEN

Hepatocellular carcinoma (HCC) is the third foremost cause of cancer-related deaths. HCC has a very bad prognosis because it is asymptomatic in the early stages, resulting in a late diagnosis, and it is highly resistant to conventional chemotherapy. Such chemotherapies have been proven disappointing because they provide extremely low survival benefits. This study discloses that the STAT3/HIF-1α is an auspicious therapeutic attack site for conceivable repression of HCC development. A site that can be targeted by simultaneous administration of a STAT3 inhibitor in the context of HSP90 inhibition. 17-DMAG binds to HSP90 and constrains its function, resulting in the degradation of HSP90 client proteins HIF-1α and STAT3. Hypoxia recruits STAT3/HIF-1α complex within the VEGF promoter. Additionally, it was acknowledged that STAT3 is an essential mediator of VEGF transcription by direct binding to its promoter. Furthermore, it induces HIF-1α stability and enhances its transcriptional activity. Herein, we revealed that the combination therapy using 17-DMAG and nifuroxazide, a STAT3 inhibitor, repressed the diethylnitrosamine-induced alterations in the structure of the liver. This effect was mediated via decreasing the levels of the HSP90 client proteins HIF-1α and pSTAT3 resulting in the suppression of the STAT3/HIF-1α complex transcriptional activity. To conclude, 17-DMAG/NFXZD combination therapy-induced disruption in the STAT3/HIF-1α loop led to a potential antiangiogenic activity and showed apoptotic potential by inhibiting autophagy and inducing ROS/apoptosis signaling. Additionally, this combination therapy exhibited promising survival prolongation in mice with HCC. Consequently, the use of 17-DMAG/NFXZD renders an inspirational perspective in managing HCC. However, further investigations are compulsory.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Línea Celular Tumoral , Subunidad alfa del Factor 1 Inducible por Hipoxia
14.
AMB Express ; 13(1): 57, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291355

RESUMEN

Non-alcoholic steatohepatitis (NASH) is a more dangerous form of chronic non-alcoholic fatty liver disease (NAFLD). In the current investigation, the influence of citicoline on high-fat diet (HFD)-induced NASH was examined, both alone and in combination with Lactobacillus (probiotic). NASH was induced by feeding HFD (10% sugar, 10% lard stearin, 2% cholesterol, and 0.5% cholic acid) to rats for 13 weeks and received single i.p. injection of streptozotocin (STZ, 30 mg/kg) after 4 weeks. Citicoline was given at two dose levels (250 mg and 500 mg, i.p.) at the beginning of the sixth week, and in combination with an oral suspension of Lactobacillus every day for eight weeks until the study's conclusion. HFD/STZ induced steatohepatitis as shown by histopathological changes, elevated serum liver enzymes, serum hyperlipidemia and hepatic fat accumulation. Moreover, HFD convinced oxidative stress by increased lipid peroxidation marker (MDA) and decreased antioxidant enzymes (GSH and TAC). Upregulation of TLR4/NF-kB and the downstream inflammatory cascade (TNF-α, and IL-6) as well as Pentaraxin, fetuin-B and apoptotic markers (caspase-3 and Bax) were observed. NASH rats also had massive increase in Bacteroides spp., Fusobacterium spp., E. coli, Clostridium spp., Providencia spp., Prevotella interrmedia, and P. gingivalis while remarkable drop in Bifidobacteria spp. and Lactobacillus spp. Co-treatment with citicoline alone and with Lactobacillus improve histopathological NASH outcomes and reversed all of these molecular pathological alterations linked to NASH via upregulating the expression of Nrf2/HO-1 and downregulating TLR4/NF-kB signaling pathways. These results suggest that citicoline and lactobacillus may represent new hepatoprotective strategies against NASH progression.

15.
Biomed Pharmacother ; 147: 112628, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35032769

RESUMEN

Acute lung injury (ALI) is one the most common causes of morbidity and mortality in critically ill patients. In this study, we examined for first time the role of dapagliflozin (DPGZ) in lipopolysaccharide (LPS)-induced ALI in rats and determined the underlying molecular mechanisms by evaluating the effects of DPGZ on adenosine monophosphate kinase (AMPK), nuclear transcription factor kappa B, nucleotide-binding and oligomerization domain-like receptor 3 inflammasome activation. Treatment of acute lung injured rats with either low dose (5 mg/kg) or high dose (10 mg/kg) DPGZ significantly decreased oxidative stress by decreasing malondialdehyde and nitric oxide tissue levels with a significant increase in spectrophotometric measurements of superoxide dismutase, catalase, and reduced glutathione levels. DPGZ treatment resulted in a significant anti-inflammatory effect as indicated by suppression in myeloperoxidase activity, MCP-1, IL-1ß, IL-18, and TNF-α levels. DPGZ treatment also increased p-AMPK/t-AMPK with a significant reduction in NF-kB P65 binding activity and NFĸB p65 (pSer536) levels. These effects of DPGZ were accompanied by a significant reduction in NLRP3 levels and NLRP3 gene expression and a significant decrease in caspase-1 activity, which were also confirmed by histopathological examinations. We conclude that DPGZ antioxidant and anti-inflammatory activity may occur through regulation of AMPK/NFĸB pathway and inhibition of NLRP3 activation. These results suggest that DPGZ represents a promising intervention for the treatment of ALI, particularly in patients with type 2 diabetes.


Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Compuestos de Bencidrilo/farmacología , Glucósidos/farmacología , Inflamación/prevención & control , Transducción de Señal/efectos de los fármacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Animales , Compuestos de Bencidrilo/química , Modelos Animales de Enfermedad , Glucósidos/química , Inflamación/inducido químicamente , Lipopolisacáridos , Masculino , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas , Ratas Sprague-Dawley , Inhibidores del Cotransportador de Sodio-Glucosa 2/química
16.
Eur J Pharmacol ; 931: 175172, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35944619

RESUMEN

AIMS: Diabetic cardiomyopathy is diagnosed by the development of abnormality in the structure and performance of myocardium in diabetic mellitus (DM) patients. Recent studies reported the association between altered gut microbiota and metabolic disorders like diabetes and cardiovascular diseases. Here, we aimed to investigate the gut-heart axis in an experimental animal model where we developed a novel therapeutic combination of dapagliflozin, crocin prebiotic and Lactobacilli probiotic to correct induced diabetic cardiomyopathy. MATERIALS AND METHODS: Diabetes mellitus was induced by Intraperitoneal (i.p) streptozotocin in male rats. The experimental design includes the administration of the tested drugs (Crocin, Dapagliflozin) solely and with Lactobacillus, or in combination therapy with and without Lactobacillus to the diabetic rats for six weeks. Clinical and microscopic evaluation scoring for cardiac tissues were determined. Biochemical markers including blood glucose level, adiponectin, resistin, cardiac injury markers, lipid profile, antioxidant enzymes, pro and anti-inflammatory markers were assessed. In addition, quantitative relative expression of PPARγ and TXINP genes and capsase-3 levels were measured. The change in the microbiota abundance was investigated using real-time PCR. KEY FINDINGS: This study demonstrated the synergistic effect of the triple combination; dapagliflozin, crocin prebiotic, and Lactobacillus fermentum and Lactobacillus delbrueckii probiotic in treating diabetic cardiomyopathy in rats. The triple combination significantly reduced the oxidative, inflammatory, apoptotic activities induced by streptozotocin STZ and helped in restoring the symbiotic gut microbiota. SIGNIFICANCE: It is worthy to perform this study in clinical trials as a primary step to include crocin and Lactobacilli in the therapeutic protocols of diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Microbioma Gastrointestinal , Animales , Compuestos de Bencidrilo , Carotenoides , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/metabolismo , Glucósidos , Lactobacillus/metabolismo , Masculino , Estrés Oxidativo , PPAR gamma/metabolismo , Ratas , Ratas Wistar , Estreptozocina
17.
Biomed Pharmacother ; 154: 113651, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36081290

RESUMEN

Ulcerative colitis (UC) is a chronic inflammatory life-threatening and premalignant disorder with no cure that even might end up with surgical removal of a large section or even all of the colon. It is characterized by relapsing-remitting courses of intestinal inflammation and mucosal damage in which oxidative stress and exaggerated inflammatory response play a significant role. Most of the current medications to maintain remission are symptomatic and have many adverse reactions. Therefore, the potential for improved management of patients with UC continues to increase. Yet, the benefits of using the antiarthritic agent diacetylrhein to counteract inflammation in UC are still obscure. Hence, our study was designed to explore its potential role in UC using a model of dextran sodium sulfate-induced acute colitis in rats. Our results revealed that diacetylrhein targeted the NLRP3 and inhibited the inflammasome assembly. Consequently, caspase-1 activity and the inflammatory cytokines IL-1ß and IL-18 were inhibited leading to a curbed pyroptosis process. Additionally, diacetylrhein revealed a significant antiapoptotic potential as revealed by the levels of pro-apoptotic and anti-apoptotic proteins. Concomitant to these effects, diacetylrhein also interrupted NFκB signals leading to improved microscopic features of inflamed colon and decreased colon weight to length ratio, indices of disease activity, and macroscopic damage. Additionally, a reduction in the myeloperoxidase activity, IL-6, and TGF-ß alongside an increase in the gene expression of Ocln and ZO-1 were detected. To conclude diacetylrhein showed a significant antioxidant and anti-inflammatory potential and therefore might represent a promising agent in the management of acute UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Antraquinonas/farmacología , Antraquinonas/uso terapéutico , Colitis/metabolismo , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Colon , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Inflamación/metabolismo , Ratas , Sulfatos
18.
Biomed Pharmacother ; 153: 113487, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36076505

RESUMEN

Idiopathic pulmonary fibrosis is a fatal lung disorder in which the etiology and pathogenesis are still unobvious. Effective treatments are urgently needed considering that lung transplantation is the only treatment that could improve outcomes. This study aimed to investigate the therapeutic significance of the dual administration of pimitespib, an HSP90 inhibitor, and nifuroxazide, a STAT3 inhibitor, against bleomycin-induced pulmonary fibrosis in rats. Our results revealed that pimitespib/nifuroxazide inhibited bleomycin-induced alterations in the structure and the function of the lungs. They demonstrated significant decreases in the BALF total and differential cell counts, LDH activity, and total protein. Concurrently, there was a reduction in the accumulation of collagen as proved by decreased hydroxyproline and the gene expression of COL1A1 accompanied by lower levels of PDGF-BB, TIMP-1, and TGF-ß. The levels of IL-6 were also downregulated. Pimitespib-induced inhibition of HSP90 led to subsequent inhibition of HIF-1α and STAT3 client proteins since the closed HSP90 would not enclose its client proteins. Therefore, pimitespib resulted in the repression of HIF-1α/CREB-p300 HAT as well as the STAT3/CREB-p300 HAT nuclear interactions. On the other hand, nifuroxazide resulted in a notable decline in pSTAT3 and HIF-1α levels. Subsequently, the combined effects of both drugs led to a substantial reduction in ECM deposition. Herein, pimitespib augmented nifuroxazide-induced disruption in the IL-6/STAT3/HIF-1α autocrine loop. Our findings also disclose that this novel loop is a promising therapeutic attack site for possible pulmonary fibrosis repression studies. Therefore, the use of pimitespib/nifuroxazide embodies an evolutionary perspective in managing pulmonary fibrosis.


Asunto(s)
Antineoplásicos , Fibrosis Pulmonar Idiopática , Animales , Antineoplásicos/farmacología , Bleomicina/toxicidad , Hidroxibenzoatos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Interleucina-6/metabolismo , Pulmón , Nitrofuranos , Ratas , Factor de Transcripción STAT3
19.
Biomed Pharmacother ; 148: 112723, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35202914

RESUMEN

Pulmonary fibrosis (PF) is a life-threatening disorder with a very poor prognosis. Because of the complexity of PF pathological mechanisms, filling such an unmet medical need is challenging. A number of pulmonary diseases have been linked to the activation of NF-κB and the NLRP3 inflammasome. Coomassie brilliant blue G-250 (CBBG) is proved to be a safe highly selective P2×7R antagonist with promising consequent inactivation of NLRP3 inflammasome. This is the first report to investigate the effect of CBBG on the bleomycin-induced lung fibrosis in rats. Our findings revealed that CBBG resulted in a significant improvement in histological features and oxidative status biomarkers of bleomycin-exposed lung tissue. Additionally, CBBG repressed collagen deposition as indicated after the analysis of hydroxyproline, TGF-ß, PDGF-BB, TIMP-1, MMP-9, Col1a1, SMA and ICAM-1. It also exhibited anti-inflammatory potential as revealed by the determination of TNF-α, IL-1ß, IL-18, MCP-1 in the lung tissue. In the bronchoalveolar lavage, the total protein and the LDH activity were substantially reduced. The lung protective effects of CBBG might be attributed on the one hand to the inhibition of NLRP3 inflammasome and on the other hand to the inactivation of NF-κB. Decreased levels of phospho-p65 and its DNA-binding activity as well as the analysis of TLR4 confirmed NF-κB inactivation. Caspase-1 activity is suppressed as a consequence of inhibiting NLRP3 inflammasome assembly. To conclude, CBBG may act as a primary or adjuvant therapy for the management of PF and therefore it may pose an opportunity for a novel approach to an unmet medical need.


Asunto(s)
FN-kappa B , Fibrosis Pulmonar , Animales , Bleomicina/toxicidad , Inflamasomas/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Ratas , Colorantes de Rosanilina
20.
Biomed Pharmacother ; 148: 112731, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35220029

RESUMEN

Pulmonary fibrosis (PF) is a chronic progressive disease that portends a very poor prognosis. It has been suggested that STAT3 is a potential target in PF. This study highlights the importance of cubosomes as a drug delivery system in enhancing the bioavailability of nifuroxazide (NXZD), a poorly soluble STAT3 inhibitor. NXZD-loaded cubosomes (NXZD-LC) were in vitro and in vivo evaluated. In vitro, cubosomes presented a poly-angular nanosized particles with a mean size and zeta potential of 223.73 ± 4.73 nm and - 20.93 ± 2.38 mV, respectively. The entrapment efficiency of nifuroxazide was 90.56 ± 4.25%. The in vivo pharmacokinetic study and the lung tissue accumulation of NXZD were performed by liquid chromatography-tandem mass spectrometry after oral administration to rats. The nanoparticles exhibited a two-fold increase and 1.33 times of bioavailability and lung tissue concentration of NXZD compared to NXZD dispersion, respectively. In view of this, NXZD-LC effectively attenuated PF by targeting STAT3 and NF-κB signals. As a result, NXZD-LC showed a potential anti-inflammatory effect as revealed by the significant decrease in MCP-1, ICAM-1, IL-6, and TNF-α and suppressed fibrogenic mediators as indicated by the significant reduction in TGF-ß, TIMP-1, and PDGF-BB in lung tissues. Besides, NXZD-LC improved antioxidant defense mechanisms and decreased LDH and BALF total protein. These effects contributed to decreased collagen deposition. To conclude, cubosomes represent an advantageous pharmaceutical delivery system for enhancing pulmonary delivery of poorly soluble drugs. Additionally, repurposing NXZD as an antifibrotic agent is a promising challenge and new therapeutic approach for unmet therapeutic needs.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Hidroxibenzoatos/farmacología , FN-kappa B/metabolismo , Nanopartículas/química , Nitrofuranos/farmacología , Fibrosis Pulmonar/tratamiento farmacológico , Factor de Transcripción STAT3/metabolismo , Administración Oral , Animales , Antiinflamatorios/farmacología , Antifibróticos/farmacocinética , Antifibróticos/farmacología , Disponibilidad Biológica , Bleomicina/efectos adversos , Hidroxibenzoatos/farmacocinética , Pulmón/patología , Masculino , Nitrofuranos/farmacocinética , Fibrosis Pulmonar/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA