Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell Biol ; 22(6): 1819-33, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11865060

RESUMEN

Study of the mechanism(s) of genomic instability induced by the c-myc proto-oncogene has the potential to shed new light on its well-known oncogenic activity. However, an underlying mechanism(s) for this phenotype is largely unknown. In the present study, we investigated the effects of c-Myc overexpression on the DNA damage-induced G(1)/S checkpoint, in order to obtain mechanistic insights into how deregulated c-Myc destabilizes the cellular genome. The DNA damage-induced checkpoints are among the primary safeguard mechanisms for genomic stability, and alterations of cell cycle checkpoints are known to be crucial for certain types of genomic instability, such as gene amplification. The effects of c-Myc overexpression were studied in human mammary epithelial cells (HMEC) as one approach to understanding the c-Myc-induced genomic instability in the context of mammary tumorigenesis. Initially, flow-cytometric analyses were used with two c-Myc-overexpressing, nontransformed immortal lines (184A1N4 and MCF10A) to determine whether c-Myc overexpression leads to alteration of cell cycle arrest following ionizing radiation (IR). Inappropriate entry into S phase was then confirmed with a bromodeoxyuridine incorporation assay measuring de novo DNA synthesis following IR. Direct involvement of c-Myc overexpression in alteration of the G(1)/S checkpoint was then confirmed by utilizing the MycER construct, a regulatable c-Myc. A transient excess of c-Myc activity, provided by the activated MycER, was similarly able to induce the inappropriate de novo DNA synthesis following IR. Significantly, the transient expression of full-length c-Myc in normal mortal HMECs also facilitated entry into S phase and the inappropriate de novo DNA synthesis following IR. Furthermore, irradiated, c-Myc-infected, normal HMECs developed a sub-G(1) population and a >4N population of cells. The c-Myc-induced alteration of the G(1)/S checkpoint was also compared to the effects of expression of MycS (N-terminally truncated c-Myc) and p53DD (a dominant negative p53) in the HMECs. We observed inappropriate hyperphosphorylation of retinoblastoma protein and then the reappearance of cyclin A, following IR, selectively in full-length c-Myc- and p53DD-overexpressing MCF10A cells. Based on these results, we propose that c-Myc attenuates a safeguard mechanism for genomic stability; this property may contribute to c-Myc-induced genomic instability and to the potent oncogenic activity of c-Myc.


Asunto(s)
Células Epiteliales/metabolismo , Células Epiteliales/efectos de la radiación , Fase G1 , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Fase S , Adulto , Mama/citología , Mama/metabolismo , Mama/efectos de la radiación , Células Cultivadas , Ciclina A/metabolismo , ADN/biosíntesis , ADN/efectos de la radiación , Células Epiteliales/citología , Femenino , Citometría de Flujo , Fase G1/fisiología , Fase G1/efectos de la radiación , Rayos gamma , Expresión Génica , Genes Dominantes , Humanos , Fosforilación/efectos de la radiación , Poliploidía , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-myc/genética , Proteína de Retinoblastoma/metabolismo , Retroviridae/genética , Fase S/fisiología , Fase S/efectos de la radiación , Eliminación de Secuencia , Transfección , Transgenes
2.
Cancer Cell ; 19(5): 613-28, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21575862

RESUMEN

Autophagy is of increasing interest as a target for cancer therapy. We find that leucine deprivation causes the caspase-dependent apoptotic death of melanoma cells because it fails to appropriately activate autophagy. Hyperactivation of the RAS-MEK pathway, which is common in melanoma, prevents leucine deprivation from inhibiting mTORC1, the main repressor of autophagy under nutrient-rich conditions. In an in vivo tumor xenograft model, the combination of a leucine-free diet and an autophagy inhibitor synergistically suppresses the growth of human melanoma tumors and triggers widespread apoptosis of the cancer cells. Together, our study represents proof of principle that anticancer effects can be obtained with a combination of autophagy inhibition and strategies to deprive tumors of leucine.


Asunto(s)
Autofagia , Leucina/deficiencia , Melanocitos/metabolismo , Melanoma/metabolismo , Animales , Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Autofagia/genética , Caspasa 3/metabolismo , Línea Celular Tumoral , Cloroquina/farmacología , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Melanocitos/efectos de los fármacos , Melanocitos/patología , Melanoma/dietoterapia , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Ratones , Ratones Desnudos , Mitocondrias/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Complejos Multiproteicos , Proteínas/metabolismo , Interferencia de ARN , Transducción de Señal , Serina-Treonina Quinasas TOR , Factores de Tiempo , Transfección , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas ras/metabolismo
3.
Cancer Cell ; 15(2): 148-59, 2009 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-19185849

RESUMEN

mTOR complex 2 (mTORC2) contains the mammalian target of rapamycin (mTOR) kinase and the Rictor regulatory protein and phosphorylates Akt. Whether this function of mTORC2 is critical for cancer progression is unknown. Here, we show that transformed human prostate epithelial cells lacking PTEN require mTORC2 to form tumors when injected into nude mice. Furthermore, we find that Rictor is a haploinsufficient gene and that deleting one copy protects Pten heterozygous mice from prostate cancer. Finally, we show that the development of prostate cancer caused by Pten deletion specifically in prostate epithelium requires mTORC2, but that for normal prostate epithelial cells, mTORC2 activity is nonessential. The selective requirement for mTORC2 in tumor development suggests that mTORC2 inhibitors may be of substantial clinical utility.


Asunto(s)
Proteínas Portadoras/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Neoplasias de la Próstata/fisiopatología , Proteínas Quinasas/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas Portadoras/genética , Transformación Celular Neoplásica , Células Cultivadas , Células Epiteliales/patología , Células Epiteliales/fisiología , Fibroblastos/citología , Fibroblastos/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Trasplante de Neoplasias , Fosfohidrolasa PTEN/genética , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Próstata/citología , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/patología , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Interferencia de ARN , Proteína Asociada al mTOR Insensible a la Rapamicina , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR , Factores de Transcripción/genética , Trasplante Heterólogo
4.
Int J Cancer ; 118(4): 857-68, 2006 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-16152627

RESUMEN

The phytochemical indole-3-carbinol (I3C), from cruciferous vegetables such as broccoli, has been shown to elicit a potent anti-proliferative response in human breast cancer cell lines. Treatment of the immortalized human mammary epithelial cell line MCF10A with I3C induced a G1 cell cycle arrest, elevated p53 tumor suppressor protein levels and stimulated expression of downstream transcriptional target, p21. I3C treatment also elevated p53 levels in several breast cancer cell lines that express mutant p53. I3C did not arrest MCF10A cells stably transfected with dominant-negative p53, establishing a functional requirement for p53. Cell fractionation and immunolocalization studies revealed a large fraction of stabilized p53 protein in the nucleus of I3C-treated MCF10A cells. With I3C treatment, phosphatidyl-inositol-3-kinase family member ataxia telangiectasia-mutated (ATM) was phosphorylated, as were its substrates p53, CHK2 and BRCA1. Phosphorylation of p53 at the N-terminus has previously been shown to disrupt the interaction between p53 and its ubiquitin ligase, MDM2, and therefore stabilizing p53. Coimmunoprecipitation analysis revealed that I3C reduced by 4-fold the level of MDM2 protein that associated with p53. The p53-MDM2 interaction and absence of p21 production were restored in cells treated with I3C and the ATM inhibitor wortmannin. Significantly, I3C does not increase the number of 53BP1 foci or H2AX phosphorylation, indicating that ATM is activated independent of DNA double-strand breaks. Taken together, our results demonstrate that I3C activates ATM signaling through a novel pathway to stimulate p53 phosphorylation and disruption of the p53-MDM2 interaction, which releases p53 to induce the p21 CDK inhibitor and a G1 cell cycle arrest.


Asunto(s)
Anticarcinógenos/farmacología , Proteínas de Ciclo Celular/biosíntesis , Ciclo Celular/efectos de los fármacos , Daño del ADN , Proteínas de Unión al ADN/biosíntesis , Indoles/farmacología , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Supresoras de Tumor/biosíntesis , Proteínas de la Ataxia Telangiectasia Mutada , Neoplasias de la Mama/prevención & control , Técnicas de Cultivo de Célula , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Femenino , Genes p53 , Humanos , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/fisiología , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas c-mdm2/biosíntesis , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/fisiología
5.
Mol Cell ; 22(2): 159-68, 2006 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-16603397

RESUMEN

The drug rapamycin has important uses in oncology, cardiology, and transplantation medicine, but its clinically relevant molecular effects are not understood. When bound to FKBP12, rapamycin interacts with and inhibits the kinase activity of a multiprotein complex composed of mTOR, mLST8, and raptor (mTORC1). The distinct complex of mTOR, mLST8, and rictor (mTORC2) does not interact with FKBP12-rapamycin and is not thought to be rapamycin sensitive. mTORC2 phosphorylates and activates Akt/PKB, a key regulator of cell survival. Here we show that rapamycin inhibits the assembly of mTORC2 and that, in many cell types, prolonged rapamycin treatment reduces the levels of mTORC2 below those needed to maintain Akt/PKB signaling. The proapoptotic and antitumor effects of rapamycin are suppressed in cells expressing an Akt/PKB mutant that is rapamycin resistant. Our work describes an unforeseen mechanism of action for rapamycin that suggests it can be used to inhibit Akt/PKB in certain cell types.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Sirolimus/farmacología , Transactivadores/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células HT29 , Células HeLa , Humanos , Immunoblotting , Inmunohistoquímica , Células Jurkat , Masculino , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Fosforilación/efectos de los fármacos , Pruebas de Precipitina , Proteínas Proto-Oncogénicas c-akt/análisis , Proteínas Proto-Oncogénicas c-akt/genética , Retroviridae/genética , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Factores de Transcripción , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA