Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 80(5): 127, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37081190

RESUMEN

Hyperexcitability is associated with neuronal dysfunction, cellular death, and consequently neurodegeneration. Redox disbalance can contribute to hyperexcitation and increased reactive oxygen species (ROS) levels are observed in various neurological diseases. NOX4 is an NADPH oxidase known to produce ROS and might have a regulating function during oxidative stress. We, therefore, aimed to determine the role of NOX4 on neuronal firing, hyperexcitability, and hyperexcitability-induced changes in neural network function. Using a multidimensional approach of an in vivo model of hyperexcitability, proteomic analysis, and cellular function analysis of ROS, mitochondrial integrity, and calcium levels, we demonstrate that NOX4 is neuroprotective by regulating ROS and calcium homeostasis and thereby preventing hyperexcitability and consequently neuronal death. These results implicate NOX4 as a potential redox regulator that is beneficial in hyperexcitability and thereby might have an important role in neurodegeneration.


Asunto(s)
Calcio , Proteómica , Humanos , NADPH Oxidasa 4 , NADPH Oxidasas/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno
2.
J Neurochem ; 165(4): 550-562, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36807051

RESUMEN

The modulation of the nuclear factor erythroid 2-like 2 (Nrf2) activity has been reported to be implicated in the pathology of various neurological disorders, including epilepsy. Previous studies have demonstrated that Nrf2 is activated in the post-status epilepticus rat model; however, the spatiotemporal as well as cell type-specific expression of Nrf2 following brief epileptic seizures remains unclear. Here, we evaluated how an acute epileptic seizure affected the expression of Nrf2 and its downstream genes in the rats' cortex and the hippocampus up to 1 week following the induced seizure. We found that after a pentylenetetrazol-induced seizure, Nrf2 significantly increased at 24 h at the mRNA level and 3 h at the protein level in the cortex. In the hippocampus, the Nrf2 mRNA level peaked at 3 h after the seizure, and no significant changes were observed in the protein level. Interestingly, the mRNA level of Nrf2 downstream genes peaked at 3-6 h after seizure in both the cortex and the hippocampus. A significant increase in the expression of Nrf2 was observed in the neuronal population of CA1 and CA3 regions of the hippocampus, as well as in the cortex. Moreover, we observed no change in the co-localization of Nrf2 with astrocytes neither in the cortex nor in CA1 and CA3. Our results revealed that following a brief acute epileptic seizure, the expression of Nrf2 and its downstream genes is transiently increased and peaked at early timepoints after the seizure predominantly in the hippocampus, and this expression is restricted to the neuronal population.


Asunto(s)
Epilepsia , Factor 2 Relacionado con NF-E2 , Ratas , Animales , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Astrocitos/metabolismo , Epilepsia/metabolismo , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Neuronas/metabolismo , Hipocampo/metabolismo , Modelos Animales de Enfermedad
3.
J Transl Med ; 21(1): 796, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940957

RESUMEN

BACKGROUND: Epilepsy affects over 65 million people worldwide and significantly burdens patients, caregivers, and society. Drug-resistant epilepsy occurs in approximately 30% of patients and growing evidence indicates that oxidative stress contributes to the development of such epilepsies. Activation of the Nrf2 pathway, which is involved in cellular defense, offers a potential strategy for reducing oxidative stress and epilepsy treatment. Dimethyl fumarate (DMF), an Nrf2 activator, exhibits antioxidant and anti-inflammatory effects and is used to treat multiple sclerosis. METHODS: The expression of Nrf2 and its related genes in vehicle or DMF treated rats were determined via RT-PCR and Western blot analysis. Neuronal cell death was evaluated by immunohistochemical staining. The effects of DMF in preventing the onset of epilepsy and modifying the disease were investigated in the kainic acid-induced status epilepticus model of temporal lobe epilepsy in rats. The open field, elevated plus maze and T-Maze spontaneous alteration tests were used for behavioral assessments. RESULTS: We demonstrate that administration of DMF following status epilepticus increased Nrf2 activity, attenuated status epilepticus-induced neuronal cell death, and decreased seizure frequency and the total number of seizures compared to vehicle-treated animals. Moreover, DMF treatment reversed epilepsy-induced behavioral deficits in the treated rats. Moreover, DMF treatment even when initiated well after the diagnosis of epilepsy, reduced symptomatic seizures long after the drug was eliminated from the body. CONCLUSIONS: Taken together, these findings suggest that DMF, through the activation of Nrf2, has the potential to serve as a therapeutic target for preventing epileptogenesis and modifying epilepsy.


Asunto(s)
Epilepsia , Estado Epiléptico , Humanos , Ratas , Animales , Dimetilfumarato/farmacología , Dimetilfumarato/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Reposicionamiento de Medicamentos , Epilepsia/tratamiento farmacológico , Epilepsia/prevención & control , Convulsiones/tratamiento farmacológico , Estado Epiléptico/complicaciones , Estado Epiléptico/tratamiento farmacológico , Modelos Animales de Enfermedad
4.
J Neurosci ; 39(16): 3159-3169, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30755487

RESUMEN

Refractory focal epilepsy is a devastating disease for which there is frequently no effective treatment. Gene therapy represents a promising alternative, but treating epilepsy in this way involves irreversible changes to brain tissue, so vector design must be carefully optimized to guarantee safety without compromising efficacy. We set out to develop an epilepsy gene therapy vector optimized for clinical translation. The gene encoding the voltage-gated potassium channel Kv1.1, KCNA1, was codon optimized for human expression and mutated to accelerate the recovery of the channels from inactivation. For improved safety, this engineered potassium channel (EKC) gene was packaged into a nonintegrating lentiviral vector under the control of a cell type-specific CAMK2A promoter. In a blinded, randomized, placebo-controlled preclinical trial, the EKC lentivector robustly reduced seizure frequency in a male rat model of focal neocortical epilepsy characterized by discrete spontaneous seizures. When packaged into an adeno-associated viral vector (AAV2/9), the EKC gene was also effective at suppressing seizures in a male rat model of temporal lobe epilepsy. This demonstration of efficacy in a clinically relevant setting, combined with the improved safety conferred by cell type-specific expression and integration-deficient delivery, identify EKC gene therapy as being ready for clinical translation in the treatment of refractory focal epilepsy.SIGNIFICANCE STATEMENT Pharmacoresistant epilepsy affects up to 0.3% of the population. Although epilepsy surgery can be effective, it is limited by risks to normal brain function. We have developed a gene therapy that builds on a mechanistic understanding of altered neuronal and circuit excitability in cortical epilepsy. The potassium channel gene KCNA1 was mutated to bypass post-transcriptional editing and was packaged in a nonintegrating lentivector to reduce the risk of insertional mutagenesis. A randomized, blinded preclinical study demonstrated therapeutic effectiveness in a rodent model of focal neocortical epilepsy. Adeno-associated viral delivery of the channel to both hippocampi was also effective in a model of temporal lobe epilepsy. These results support clinical translation to address a major unmet need.


Asunto(s)
Encéfalo/metabolismo , Epilepsia/terapia , Terapia Genética , Canal de Potasio Kv.1.1/genética , Convulsiones/terapia , Animales , Modelos Animales de Enfermedad , Epilepsia/genética , Vectores Genéticos , Canal de Potasio Kv.1.1/metabolismo , Masculino , Ratas , Convulsiones/genética
5.
Brain ; 142(7): e39, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31145451

RESUMEN

Epilepsy therapy is based on antiseizure drugs that treat the symptom, seizures, rather than the disease and are ineffective in up to 30% of patients. There are no treatments for modifying the disease-preventing seizure onset, reducing severity or improving prognosis. Among the potential molecular targets for attaining these unmet therapeutic needs, we focused on oxidative stress since it is a pathophysiological process commonly occurring in experimental epileptogenesis and observed in human epilepsy. Using a rat model of acquired epilepsy induced by electrical status epilepticus, we show that oxidative stress occurs in both neurons and astrocytes during epileptogenesis, as assessed by measuring biochemical and histological markers. This evidence was validated in the hippocampus of humans who died following status epilepticus. Oxidative stress was reduced in animals undergoing epileptogenesis by a transient treatment with N-acetylcysteine and sulforaphane, which act to increase glutathione levels through complementary mechanisms. These antioxidant drugs are already used in humans for other therapeutic indications. This drug combination transiently administered for 2 weeks during epileptogenesis inhibited oxidative stress more efficiently than either drug alone. The drug combination significantly delayed the onset of epilepsy, blocked disease progression between 2 and 5 months post-status epilepticus and drastically reduced the frequency of spontaneous seizures measured at 5 months without modifying the average seizure duration or the incidence of epilepsy in animals. Treatment also decreased hippocampal neuron loss and rescued cognitive deficits. Oxidative stress during epileptogenesis was associated with de novo brain and blood generation of high mobility group box 1 (HMGB1), a neuroinflammatory molecule implicated in seizure mechanisms. Drug-induced reduction of oxidative stress prevented HMGB1 generation, thus highlighting a potential novel mechanism contributing to therapeutic effects. Our data show that targeting oxidative stress with clinically used drugs for a limited time window starting early after injury significantly improves long-term disease outcomes. This intervention may be considered for patients exposed to potential epileptogenic insults.


Asunto(s)
Acetilcisteína/farmacología , Epilepsia/prevención & control , Glutatión/metabolismo , Isotiocianatos/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Astrocitos/metabolismo , Biomarcadores/metabolismo , Estudios de Casos y Controles , Recuento de Células , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/prevención & control , Modelos Animales de Enfermedad , Estimulación Eléctrica , Epilepsia/complicaciones , Proteína HMGB1/sangre , Hipocampo/metabolismo , Humanos , Masculino , Neuronas/metabolismo , Neuronas/patología , Ratas , Estado Epiléptico/complicaciones , Estado Epiléptico/metabolismo , Estado Epiléptico/prevención & control , Sulfóxidos
6.
Brain ; 141(5): 1390-1403, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29538645

RESUMEN

Hippocampal sclerosis is a common acquired disease that is a major cause of drug-resistant epilepsy. A mechanism that has been proposed to lead from brain insult to hippocampal sclerosis is the excessive generation of reactive oxygen species, and consequent mitochondrial failure. Here we use a novel strategy to increase endogenous antioxidant defences using RTA 408, which we show activates nuclear factor erythroid 2-related factor 2 (Nrf2, encoded by NFE2L2) through inhibition of kelch like ECH associated protein 1 (KEAP1) through its primary sensor C151. Activation of Nrf2 with RTA 408 inhibited reactive oxygen species production, mitochondrial depolarization and cell death in an in vitro model of seizure-like activity. RTA 408 given after status epilepticus in vivo increased ATP, prevented neuronal death, and dramatically reduced (by 94%) the frequency of late spontaneous seizures for at least 4 months following status epilepticus. Thus, acute KEAP1 inhibition following status epilepticus exerts a neuroprotective and disease-modifying effect, supporting the hypothesis that reactive oxygen species generation is a key event in the development of epilepsy.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Epilepsia/metabolismo , Epilepsia/terapia , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Animales , Animales Recién Nacidos , Anticonvulsivantes/química , Células Cultivadas , Corteza Cerebral/citología , Modelos Animales de Enfermedad , Epilepsia/inducido químicamente , Agonistas de Aminoácidos Excitadores/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Glutatión/metabolismo , Ácido Kaínico/toxicidad , Proteína 1 Asociada A ECH Tipo Kelch/genética , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/genética , Ratones Transgénicos , Mutación/genética , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Ratas , Ratas Sprague-Dawley , Triterpenos/química , Triterpenos/uso terapéutico
7.
Brain ; 140(7): 1885-1899, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575153

RESUMEN

Epilepsy therapy is based on antiseizure drugs that treat the symptom, seizures, rather than the disease and are ineffective in up to 30% of patients. There are no treatments for modifying the disease-preventing seizure onset, reducing severity or improving prognosis. Among the potential molecular targets for attaining these unmet therapeutic needs, we focused on oxidative stress since it is a pathophysiological process commonly occurring in experimental epileptogenesis and observed in human epilepsy. Using a rat model of acquired epilepsy induced by electrical status epilepticus, we show that oxidative stress occurs in both neurons and astrocytes during epileptogenesis, as assessed by measuring biochemical and histological markers. This evidence was validated in the hippocampus of humans who died following status epilepticus. Oxidative stress was reduced in animals undergoing epileptogenesis by a transient treatment with N-acetylcysteine and sulforaphane, which act to increase glutathione levels through complementary mechanisms. These antioxidant drugs are already used in humans for other therapeutic indications. This drug combination transiently administered for 2 weeks during epileptogenesis inhibited oxidative stress more efficiently than either drug alone. The drug combination significantly delayed the onset of epilepsy, blocked disease progression between 2 and 5 months post-status epilepticus and drastically reduced the frequency of spontaneous seizures measured at 5 months without modifying the average seizure duration or the incidence of epilepsy in animals. Treatment also decreased hippocampal neuron loss and rescued cognitive deficits. Oxidative stress during epileptogenesis was associated with de novo brain and blood generation of disulfide high mobility group box 1 (HMGB1), a neuroinflammatory molecule implicated in seizure mechanisms. Drug-induced reduction of oxidative stress prevented disulfide HMGB1 generation, thus highlighting a potential novel mechanism contributing to therapeutic effects. Our data show that targeting oxidative stress with clinically used drugs for a limited time window starting early after injury significantly improves long-term disease outcomes. This intervention may be considered for patients exposed to potential epileptogenic insults.


Asunto(s)
Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Epilepsia/tratamiento farmacológico , Dominios HMG-Box/efectos de los fármacos , Proteína HMGB1/sangre , Proteína HMGB1/metabolismo , Isotiocianatos/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Animales , Astrocitos/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/tratamiento farmacológico , Modelos Animales de Enfermedad , Quimioterapia Combinada , Epilepsia/metabolismo , Proteína HMGB1/biosíntesis , Hipocampo/metabolismo , Isotiocianatos/farmacología , Masculino , Degeneración Nerviosa/dietoterapia , Neuronas/metabolismo , Ratas , Sulfóxidos
8.
Bipolar Disord ; 19(4): 285-294, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28605109

RESUMEN

OBJECTIVES: Mood stabilizers administered for bipolar disorder during pregnancy, such as valproic acid, can increase the risk of congenital anomalies in offspring. Valnoctamide is a valproic acid derivative associated with a decreased risk for congenital abnormalities in animals. The present study evaluated the efficacy and safety of valnoctamide monotherapy, compared to placebo, in the treatment of patients in an acute manic episode. METHODS: A 3-week, double-blind, randomized, placebo- and risperidone-controlled, parallel group trial was conducted on 173 patients in an acute manic episode. Patients were randomized to receive valnoctamide 1500 mg/d (n=71), risperidone 6 mg/d (n=32), or matching placebo (n=70). The primary outcome measure was the change in Young Mania Rating Scale (YMRS) scores. RESULTS: Valnoctamide did not differ significantly from placebo on any of the study endpoints (YMRS, Positive and Negative Syndrome Scale, and the Clinical Global Impression Scale for Bipolar Disorder [CGI-BP] scales; all P>.60). Mixed models for repeated measures showed that risperidone produced significantly more improvement than placebo in the overall bipolar disorder CGI-BP severity scale (P=.036), and the CGI-BP severity scale for mania (P=.021). The Kaplan-Meier survival curve revealed higher all-cause discontinuation rates (mainly due to lack of efficacy) in the valnoctamide group compared to the other study groups (P=.026). Patients with higher valnoctamide plasma levels had a numerically higher YMRS response, but this was not statistically significant. CONCLUSIONS: Valnoctamide was well tolerated at 1500 mg/d but lacked efficacy in the treatment of symptoms in patients with acute mania. Possible differences between the biological mechanisms of action of valproic acid and valnoctamide are discussed.


Asunto(s)
Amidas , Trastorno Bipolar , Risperidona , Adulto , Amidas/administración & dosificación , Amidas/efectos adversos , Antimaníacos/administración & dosificación , Antimaníacos/efectos adversos , Antipsicóticos/administración & dosificación , Antipsicóticos/efectos adversos , Trastorno Bipolar/diagnóstico , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/psicología , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Monitoreo de Drogas/métodos , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Escalas de Valoración Psiquiátrica , Risperidona/administración & dosificación , Risperidona/efectos adversos , Resultado del Tratamiento
9.
Mol Pharm ; 13(7): 2492-6, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27218460

RESUMEN

sec-Butylpropylacetamide (SPD) is the amide derivative of valproic acid (VPA). SPD possess a wide-spectrum anticonvulsant profile better than that of VPA and blocks status epilepticus (SE) induced by pilocarpine and organophosphates. The activity of SPD on SE is better than that of benzodiazepines (BZDs) in terms of the ability to block SE when given 20-60 min after the beginning of a seizure. However, intraperitoneal (i.p.) administration to rats cannot be extrapolated to humans. Consequently, in the current study a comparative pharmacokinetic (PK)-pharmacodynamic analysis of SPD was conducted following i.p., intramuscular (i.m.), and intravenous (i.v.) administrations to rats. SPD brain and plasma levels were quantified at various times after dosing following i.p. (60 mg/kg), i.v. (60 mg/kg), and i.m. administrations (120 mg/kg) to rats, and the major PK parameters of SPD were estimated. The antiseizure (SE) efficacies of SPD and its individual stereoisomers were assessed in the pilocarpine-induced BZD-resistant SE model following i.p. and i.m. administrations to rats at 30 min after seizure onset. The absolute bioavailabilities of SPD following i.p. and i.m. administrations were 76% (i.p.) and 96% (i.p.), and its clearance and half-life were 1.8-1.5 L h(-1) kg(-1) and 0.5-1.7 h, respectively. The SPD brain-to-plasma AUC ratios were 1.86 (i.v.), 2.31 (i.p.), and 0.77 (i.m.). Nevertheless, the ED50 values of SPD and its individual stereoisomers were almost identical in the rat pilocarpine-induced SE model following i.p. and i.m. administrations. In conclusion, in rats SPD is completely or almost completely absorbed after i.m. and i.p. administration and readily penetrates into the brain. Consequently, in spite of PK differences, the activities of SPD in the BZD-resistant SE model following i.m. and i.p. administrations are similar.


Asunto(s)
Amidas/farmacocinética , Anticonvulsivantes/farmacocinética , Encéfalo/metabolismo , Fármacos del Sistema Nervioso Central/farmacocinética , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/metabolismo , Ácido Valproico/análogos & derivados , Administración Intravenosa , Amidas/administración & dosificación , Amidas/uso terapéutico , Animales , Anticonvulsivantes/administración & dosificación , Anticonvulsivantes/uso terapéutico , Benzodiazepinas/administración & dosificación , Benzodiazepinas/farmacocinética , Benzodiazepinas/uso terapéutico , Encéfalo/efectos de los fármacos , Fármacos del Sistema Nervioso Central/administración & dosificación , Fármacos del Sistema Nervioso Central/uso terapéutico , Cromatografía de Gases y Espectrometría de Masas , Inyecciones Intraperitoneales , Ratas , Ácido Valproico/administración & dosificación , Ácido Valproico/farmacocinética , Ácido Valproico/uso terapéutico
10.
Epilepsy Behav ; 46: 72-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25863940

RESUMEN

Valnoctamide (VCD) and sec-butylpropylacetamide (SPD) are CNS-active closely related amide derivatives of valproic acid with unique anticonvulsant activity. This study evaluated how small chemical changes affect the pharmacodynamics (PD; anticonvulsant activity and teratogenicity) and pharmacokinetics (PK) of three constitutional isomers of SPD [sec-butylisopropylacetamide (SID) and tert-butylisopropylacetamide (TID)] and of VCD [tert-butylethylacetamide (TED)]. The anticonvulsant activity of SID, TID, and TED was comparatively evaluated in several rodent anticonvulsant models. The PK-PD relationship of SID, TID, and TED was evaluated in rats, and their teratogenicity was evaluated in a mouse strain highly susceptible to teratogen-induced neural tube defects (NTDs). sec-Butylisopropylacetamide and TID have a similar PK profile to SPD which may contribute to their similar anticonvulsant activity. tert-Butylethylacetamide had a better PK profile than VCD (and SPD); however, this did not lead to a superior anticonvulsant activity. sec-Butylisopropylacetamide and TED did not cause NTDs at doses 4-7 times higher than their anticonvulsant ED50 values. In rats, SID, TID (ip), and TED exhibited a broad spectrum of anticonvulsant activity. However, combined anticonvulsant analysis in mice and rats shows SID as the most potent compound with similar activity to that of SPD, demonstrating that substitution of the isobutyl moiety in the SPD or VCD molecule by tert-butyl as well as a propyl-to-isopropyl replacement in the SPD molecule did not majorly affect the anticonvulsant activity.


Asunto(s)
Amidas/farmacología , Anticonvulsivantes , Convulsiones/tratamiento farmacológico , Ácido Valproico/análogos & derivados , Amidas/farmacocinética , Amidas/toxicidad , Animales , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/farmacología , Anticonvulsivantes/toxicidad , Femenino , Isomerismo , Masculino , Ratones , Ratones Transgénicos , Ratas , Ratas Sprague-Dawley , Ácido Valproico/farmacocinética , Ácido Valproico/farmacología , Ácido Valproico/toxicidad
11.
Epilepsy Behav ; 49: 298-302, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25979572

RESUMEN

sec-Butylpropylacetamide (SPD) is a one-carbon homologue of valnoctamide (VCD), a chiral constitutional isomer of valproic acid's (VPA) corresponding amide--valpromide. Racemic-SPD and racemic-VCD possess a unique and broad-spectrum antiseizure profile superior to that of VPA. In addition, SPD blocks behavioral and electrographic status epilepticus (SE) induced by pilocarpine and the organophosphates soman and paraoxon. Valnoctamide has similar activity as SPD in the soman-induced SE model. The activity of SPD and VCD against SE is superior to that of diazepam and midazolam in terms of rapid onset, potency, and ability to block SE when given 20 to 60 min after seizure onset. sec-Butylpropylacetamide and VCD possess two stereogenic carbons in their chemical structure and, thus, exist as a racemic mixture of four individual stereoisomers. The anticonvulsant activity of the individual stereoisomers of SPD and VCD was comparatively evaluated in several anticonvulsant rodent models including the benzodiazepine-resistant SE model. sec-Butylpropylacetamide has stereoselective pharmacokinetics (PK) and pharmacodynamics (PD). The higher clearance of (2R,3S)-SPD and (2S,3R)-SPD led to a 50% lower plasma exposure and, consequently, to a lower anticonvulsant activity compared to racemic-SPD and its two other stereoisomers. Racemic-SPD, (2S,3S)-SPD, and (2R,3R)-SPD have similar anticonvulsant activities and PK profiles that are better than those of (2R,3S)-SPD and (2S,3R)-SPD. Valnoctamide has a stereoselective PK with (2S,3S)-VCD exhibiting the lowest clearance and, consequently, a twice-higher plasma exposure than all other stereoisomers. Nevertheless, there was less stereoselectivity in VCD anticonvulsant activity, and each stereoisomer had similar ED50 values in most models. sec-Butylpropylacetamide and VCD stereoisomers did not cause teratogenicity (i.e., neural tube defect) in mice at doses 3-12 times higher than their anticonvulsant-ED50 values. This article is part of a Special Issue entitled "Status Epilepticus".


Asunto(s)
Amidas/uso terapéutico , Anticonvulsivantes/uso terapéutico , Estado Epiléptico/tratamiento farmacológico , Ácido Valproico/análogos & derivados , Amidas/química , Animales , Anticonvulsivantes/química , Humanos , Estereoisomerismo , Ácido Valproico/química , Ácido Valproico/uso terapéutico
12.
Epilepsia ; 55(12): 1953-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25377630

RESUMEN

OBJECTIVE: Organophosphates (OPs) are commonly used insecticides for agriculture and domestic purposes, but may also serve as nerve agents. Exposure to OPs result in overstimulation of the cholinergic system and lead to status epilepticus (SE), a life-threatening condition that is often resistant to treatment. SE is associated with significant neuronal damage, neurocognitive dysfunction, and the development of lifelong epilepsy. Therefore, rapid termination of SE and prevention of brain damage is of high interest. Here we tested the efficacy of sec-butyl-propylacetamide (SPD) and two of its individual stereoisomers, (2S,3S)-SPD and (2R,3R)-SPD, in discontinuing OP-induced seizures. SPD is a one carbon homolog of valnoctamide, a central nervous system (CNS)-active constitutional isomer of valproic acid (VPA) corresponding amide valpromide. METHODS: Rats were implanted with epidural telemetric electrodes to allow electrocorticography (ECoG) recording 24 h prior, during and 24 h after poisoning with the OP paraoxon (at a dose equivalent to 1.4 LD50 Median lethal dose). All rats were provided with antidotal treatment of atropine and toxogonin. Epileptic activity was measured using a novel automated system to evaluate the different effects of midazolam, SPD, and its individual stereoisomers in comparison to nontreated controls. RESULTS: Treatment with SPD or its individual stereoisomer (2S,3S)-SPD significantly shorten paraoxon-induced SE and reduced the duration of recorded pathologic activity after SE was terminated. (2S,3S)-SPD was superior to racemic-SPD in diminishing delayed pathologic epileptiform activity within the first 8 h after SE. SIGNIFICANCE: These results suggest SPD as an efficient drug for the rapid termination of SE and pathological epileptiform activity following OP poisoning, a strategy to reduce neuronal dysfunction and the risk for lifelong epilepsy.


Asunto(s)
Amidas/uso terapéutico , Anticonvulsivantes/uso terapéutico , Estado Epiléptico/tratamiento farmacológico , Ácido Valproico/análogos & derivados , Amidas/química , Animales , Anticonvulsivantes/química , Modelos Animales de Enfermedad , Electroencefalografía , Insecticidas/toxicidad , Masculino , Paraoxon/toxicidad , Ratas , Ratas Sprague-Dawley , Estadísticas no Paramétricas , Estado Epiléptico/inducido químicamente , Estereoisomerismo , Resultado del Tratamiento , Ácido Valproico/química , Ácido Valproico/uso terapéutico
13.
Epilepsia ; 55(12): 1944-52, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25442425

RESUMEN

OBJECTIVE: 2-Ethyl-3-methylbutyl-carbamate (EMC) and 2-isopropylpentyl-carbamate (IPC) are among the most potent anticonvulsant carbamate derivatives of valproic acid. EMC and IPC are chiral compounds. Consequently, the aim of the current study was to comparatively evaluate the pharmacokinetic (PK) and pharmacodynamic (PD anticonvulsant activity) profile of EMC and IPC individual enantiomers. METHODS: The anticonvulsant activity of EMC and IPC individual enantiomers was evaluated in several anticonvulsant rodent models including maximal electroshock (MES), 6 Hz psychomotor, subcutaneous (pentylenetetrazole) (scMet), and the pilocarpine-induced and soman-induced status epilepticus (SE). The PK-PD relationship of EMC and IPC individual enantiomers was evaluated following intraperitoneal administration (50 mg/kg) to rats. Induction of neural tube defects (NTDs) was evaluated in a mouse strain that was highly susceptible to teratogen-induced NTDs. RESULTS: In mice and rats, (2S)-EMC exhibited anticonvulsant activity similar to that of racemic EMC in the MES and scMet tests, whereas in the 6 Hz test, racemic EMC was more potent than its two individual enantiomers. Racemic EMC exhibited a potent activity in the soman-induced SE model when administered 5 and 20 min after seizure onset with median effective dose (ED50 ) values of 33 and 48 mg/kg, respectively. (2R)-IPC and (2S)-IPC exhibited ED50 values similar to those of racemic IPC in the mouse and rat MES and scMet models. (2R)-IPC had similar ED50 values on the 6 Hz tests. Racemic IPC had an ED50 value of 107 mg/kg in the pilocarpine-induced SE model when given 30 min after seizure onset. Racemic EMC and IPC and their enantiomers had similar clearance (3.8-5.5 L/h/kg) and short half-life (<1 h). EMC and its enantiomers did not cause NTDs at doses 3-10 times higher than their anticonvulsant ED50 values. SIGNIFICANCE: EMC and IPC did not exhibit enantioselective PK, a fact that may contribute to their nonenantioselective activity in any of the anticonvulsant models. The nonsignificant difference between racemic EMC and racemic IPC and their enantiomers, suggests that their wide spectrum of anticonvulsant activity is likely to be caused by multiple mechanisms of action.


Asunto(s)
Anticonvulsivantes/química , Anticonvulsivantes/farmacocinética , Carbamatos/química , Carbamatos/farmacocinética , Epilepsia/tratamiento farmacológico , Defectos del Tubo Neural/inducido químicamente , Animales , Anticonvulsivantes/sangre , Anticonvulsivantes/uso terapéutico , Área Bajo la Curva , Carbamatos/efectos adversos , Carbamatos/sangre , Sistema Nervioso Central/efectos de los fármacos , Convulsivantes/toxicidad , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Electrochoque/efectos adversos , Epilepsia/sangre , Epilepsia/etiología , Cromatografía de Gases y Espectrometría de Masas , Masculino , Ratones , Pentilenotetrazol/toxicidad , Ratas , Ratas Sprague-Dawley , Soman/toxicidad , Relación Estructura-Actividad
14.
Epilepsia ; 55(2): 353-61, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24313671

RESUMEN

OBJECTIVE: Valnoctamide (VCD), a central nervous system (CNS)-active chiral constitutional isomer of valpromide, the corresponding amide of valproic acid (VPA), is currently undergoing phase IIb clinical trials in acute mania. VCD exhibits stereoselective pharmacokinetics (PK) in animals and humans. The current study comparatively evaluated the pharmacodynamics (PD; anticonvulsant activity and teratogenicity) and PK of the four individual stereoisomers of VCD. METHODS: The anticonvulsant activity of VCD individual stereoisomers was evaluated in several rodent anticonvulsant models including maximal electroshock, 6 Hz psychomotor, subcutaneous metrazol, and the pilocarpine-induced and soman-induced status epilepticus (SE). The PK-PD (anticonvulsant activity) relationship of VCD stereoisomers was evaluated following intraperitoneal administration (70 mg/kg) to rats. Induction of neural tube defects (NTDs) by VCD stereoisomers was evaluated in a mouse strain that was highly susceptible to teratogen-induced NTDs. RESULTS: VCD had a stereoselective PK, with (2S,3S)-VCD exhibiting the lowest clearance, and consequently a twice-higher plasma exposure than all other stereoisomers. Nervertheless, there was less stereoselectivity in VCD anticonvulsant activity and each stereoisomer had similar median effective dose (ED)50 values in most models. VCD stereoisomers (258 or 389 mg/kg) did not cause NTDs. These doses are 3-12 times higher than VCD anticonvulsant ED50 values. SIGNIFICANCE: VCD displayed stereoselective PK that did not lead to significant stereoselective activity in various anticonvulsant rodent models. If VCD exerted its broad-spectrum anticonvulsant activity using a single mechanism of action (MOA), it is likely that it would exhibit a stereoselective PD. The fact that there was no significant difference between racemic VCD and its individual stereoisomers suggests that VCD's anticonvulsant activity is due to multiple MOAs.


Asunto(s)
Amidas/farmacocinética , Anticonvulsivantes/farmacocinética , Estimulantes del Sistema Nervioso Central/farmacocinética , Teratógenos/farmacocinética , Ácido Valproico/farmacocinética , Amidas/química , Amidas/toxicidad , Animales , Anticonvulsivantes/química , Anticonvulsivantes/toxicidad , Estimulantes del Sistema Nervioso Central/química , Estimulantes del Sistema Nervioso Central/toxicidad , Masculino , Ratones , Defectos del Tubo Neural/inducido químicamente , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Estado Epiléptico/inducido químicamente , Estado Epiléptico/prevención & control , Estereoisomerismo , Teratógenos/química , Teratógenos/toxicidad , Ácido Valproico/química , Ácido Valproico/toxicidad
15.
Epilepsia ; 54 Suppl 6: 99-102, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24001086

RESUMEN

sec-Butyl-propylacetamide (SPD) is a one-carbon homolog of valnoctamide (VCD), a chiral constitutional isomer of valproic acid's (VPA) corresponding amide valpromide. VCD has potential as a therapy in epilepsy including status epilepticus (SE) and neuropathic pain, and is currently being developed for the treatment of bipolar disorder. Both VCD and SPD possess two stereogenic carbons in their chemical structure. SPD possesses a unique and broad-spectrum antiseizure profile superior to that of valproic acid (VPA) and better than that of VCD. In addition SPD blocked behavioral- and electrographic-SE induced by pilocarpine and soman (organophosphate nerve gas) and afforded in vivo neuroprotection that was associated with cognitive sparing. VCD has activity similar to that of SPD in pilocarpine-induced status epilepticus (SE), although at higher doses. The activity of SPD and VCD against SE is superior to that of diazepam in terms of rapid onset, potency, and ability to block SE when given 20-60 min after seizure onset. When administered 20 and 40 min after SE onset, SPD (100-174 mg/kg) produced long-lasting efficacy (e.g., 4-8 h) against soman-induced convulsive and electrographic SE in both rats and guinea pigs. SPD activity in the pilocarpine and soman-induced SE models when administered 20-60 min after seizure onset, differentiates SPD from benzodiazepines and all other antiepileptic drugs .


Asunto(s)
Amidas/uso terapéutico , Anticonvulsivantes/uso terapéutico , Convulsiones/tratamiento farmacológico , Estado Epiléptico/tratamiento farmacológico , Ácido Valproico/análogos & derivados , Enfermedad Aguda , Amidas/química , Animales , Modelos Animales de Enfermedad , Cobayas , Humanos , Ratas , Convulsiones/inducido químicamente , Estado Epiléptico/inducido químicamente , Resultado del Tratamiento , Ácido Valproico/química , Ácido Valproico/uso terapéutico
16.
Epilepsia ; 54(8): 1444-52, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23692553

RESUMEN

PURPOSE: Compare the pharmacokinetic (PK) profiles of immediate- and extended-release formulations of topiramate (TPM) in healthy subjects following multiple dosing, and evaluate maintenance of topiramate exposures after switching formulations. METHODS: A randomized, open-label, single-center, two-way crossover, multiple-dose study comparing the steady-state PK profile of once-daily extended-release topiramate (USL255) to immediate-release topiramate (TPM-IR) administered twice-daily. The TPM PK profile was evaluated using standard PK parameters (e.g., AUC0-24 , Cmax , Cmin ) as well as less common PK criteria such as fluctuation index (FI), peak occupancy time (POT), and percent coefficient of variation (%CV). In addition, partial AUC (AUCp ) analyses provided comparisons of the AUC profiles over predetermined time intervals between TPM-IR and USL255. Pharmacokinetic equivalence between formulations was defined as containment of the 90% confidence intervals (CIs) of the USL255/TPM-IR geometric least-squares mean (GLSM) ratio within the equivalence limits of 80-125%. The effect of switching between treatments was assessed by evaluating equivalence of PK parameters between the day prior to formulation switch and the day immediately following formulation switch. Maintenance of steady state after switching formulations was also evaluated by comparing the slope between Cmin values at formulation switch and 24 h postswitch. Tolerability was evaluated through adverse event monitoring, vital sign measurements, and clinical laboratory evaluations. KEY FINDINGS: USL255 was well tolerated and provided TPM plasma exposure equivalent to TPM-IR at various time intervals. USL255 also demonstrated a significantly lower Cmax (p < 0.001) and higher Cmin (p < 0.001), longer tmax , lower %CV, and 26% decreased FI, as compared with TPM-IR. Further, switching between TPM-IR and USL255 did not affect TPM concentrations, including Cmin , immediately after transitioning and at steady state. SIGNIFICANCE: As compared with TPM-IR, USL255 provided equivalent plasma exposure with an extended absorption profile. Therefore, USL255 offers a once-daily alternative to twice-daily TPM-IR, with reduced TPM fluctuations.


Asunto(s)
Anticonvulsivantes/administración & dosificación , Anticonvulsivantes/farmacocinética , Sistemas de Liberación de Medicamentos , Fructosa/análogos & derivados , Adolescente , Adulto , Anciano , Análisis de Varianza , Anticonvulsivantes/sangre , Área Bajo la Curva , Disponibilidad Biológica , Química Farmacéutica , Intervalos de Confianza , Estudios Cruzados , Esquema de Medicación , Femenino , Fructosa/administración & dosificación , Fructosa/sangre , Fructosa/farmacocinética , Fructosa/uso terapéutico , Humanos , Masculino , Persona de Mediana Edad , Factores de Tiempo , Topiramato , Adulto Joven
17.
Cell Biosci ; 13(1): 3, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36600279

RESUMEN

BACKGROUND: Drug resistance is a particular problem in patients with temporal lobe epilepsy, where seizures originate mainly from the hippocampus. Many of these epilepsies are acquired conditions following an insult to the brain such as a prolonged seizure. Such conditions are characterized by pathophysiological mechanisms including massive oxidative stress that synergistically mediate the secondary brain damage, contributing to the development of epilepsy. The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) has emerged in recent years as an attractive therapeutic approach targeting to upregulate the antioxidative defenses in the cell, to ameliorate the oxidative stress-induced damage. Thus, it is important to understand the characteristics of Nrf2 activation during epileptogenesis and epilepsy. Here, we studied the temporal, regional, and cell-type specific expression of Nrf2 in the brain, in a rat model of temporal lobe epilepsy. RESULTS: Early after status-epilepticus, Nrf2 is mainly activated in the hippocampus and maintained during the whole period of epileptogenesis. Only transient expression of Nrf2 was observed in the cortex. Nevertheless, the expression of several Nrf2 antioxidant target genes was increased within 24 h after status-epilepticus in both the cortex and the hippocampus. We demonstrated that after status-epilepticus in rats, Nrf2 is predominantly expressed in neurons in the CA1 and CA3 regions of the hippocampus, and only astrocytes in the CA1 increase their Nrf2 expression. CONCLUSIONS: In conclusion, our data identify previously unrecognized spatial and cell-type dependent activation of Nrf2 during epilepsy development, highlighting the need for a time-controlled, and cell-type specific activation of the Nrf2 pathway for mediating anti-oxidant response after brain insult, to modify the development of epilepsy.

18.
Neuropharmacology ; 238: 109670, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37482179

RESUMEN

Epilepsy affects approximately 1% of the global population, with 30% of patients experiencing uncontrolled seizures despite treatment. Reactive oxygen species (ROS) and oxidative stress have been implicated in the pathogenesis of epilepsy. Sestrins are stress-inducible proteins that regulate the ROS response. In particular, Sestrin 3 (SESN3) has been implicated in ROS accumulation and the regulation of proconvulsant genes. To investigate the role of SESN3 in epilepsy, we studied its involvement in rat models of acute seizures and temporal lobe epilepsy. Our results showed that downregulation of SESN3 reduced the oxidative stress induced by seizure activity in neuronal cultures. After acute seizure activity, SESN3 protein levels temporarily increased as early as 3 h after the seizure, whereas kainic acid-induced status epilepticus led to a significant and persistent increase in SESN3 protein levels in the cortex and hippocampus for up to 2 weeks post-status epilepticus. In the chronic epilepsy phase, when spontaneous seizures emerge, SESN3 protein expression is significantly increased in both regions 6 and 12 weeks after status epilepticus. Interestingly, immunohistochemical staining showed a predominant increase in the oxidative stress marker 8-OHdG in neurons in both regions after an acute seizure, whereas following status epilepticus, the marker was detected in both neurons and astrocytes. Our findings suggest that SESN3 may contribute to the development and establishment of epilepsy, and could be a potential therapeutic target for more effective treatments.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Estado Epiléptico , Animales , Ratas , Modelos Animales de Enfermedad , Epilepsia/metabolismo , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/patología , Hipocampo , Ácido Kaínico/toxicidad , Neuronas , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Convulsiones/tratamiento farmacológico , Sestrinas/metabolismo , Estado Epiléptico/tratamiento farmacológico , Factores de Transcripción/metabolismo
19.
Transl Psychiatry ; 13(1): 273, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37524707

RESUMEN

The endocannabinoid system (ECS) plays a key modulatory role during synaptic plasticity and homeostatic processes in the brain and has an important role in the neurobiological processes underlying drug addiction. We have previously shown that an elevated ECS response to psychostimulant (cocaine) is involved in regulating the development and expression of cocaine-conditioned reward and sensitization. We therefore hypothesized that drug-induced elevation in endocannabinoids (eCBs) and/or eCB-like molecules (eCB-Ls) may represent a protective mechanism against drug insult, and boosting their levels exogenously may strengthen their neuroprotective effects. Here, we determine the involvement of ECS in alcohol addiction. We first measured the eCBs and eCB-Ls levels in different brain reward system regions following chronic alcohol self-administration using LC-MS. We have found that following chronic intermittent alcohol consumption, N-oleoyl glycine (OlGly) levels were significantly elevated in the prefrontal cortex (PFC), and N-oleoyl alanine (OlAla) was significantly elevated in the PFC, nucleus accumbens (NAc) and ventral tegmental area (VTA) in a region-specific manner. We next tested whether exogenous administration of OlGly or OlAla would attenuate alcohol consumption and preference. We found that systemic administration of OlGly or OlAla (60 mg/kg, intraperitoneal) during intermittent alcohol consumption significantly reduced alcohol intake and preference without affecting the hedonic state. These findings suggest that the ECS negatively regulates alcohol consumption and boosting selective eCBs exogenously has beneficial effects against alcohol consumption and potentially in preventing relapse.


Asunto(s)
Cocaína , Glicina , Ratones , Animales , Glicina/farmacología , Glicina/metabolismo , Etanol/metabolismo , Encéfalo , Núcleo Accumbens , Recompensa , Área Tegmental Ventral
20.
Epilepsia Open ; 8(3): 1169-1174, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37328275

RESUMEN

Transient receptor potential cation subfamily M7 (TRPM7) channels are ion channels permeable to divalent cations. They are abundantly expressed with particularly high expression in the brain. Previous studies have highlighted the importance of TRPM7 channels in brain diseases such as stroke and traumatic brain injury, yet evidence for a role in seizures and epilepsy is lacking. Here, we show that carvacrol, a food additive that inhibits TRPM7 channels, and waixenicin A, a novel selective and potent TRPM7 inhibitor, completely suppressed seizure-like activity in rodent hippocampal-entorhinal brain slices exposed to pentylenetetrazole or low magnesium. These findings support inhibition of TRPM7 channels as a novel target for antiseizure medications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA