RESUMEN
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a worldwide threat in the past 3 years. Although it has been widely and intensively investigated, the mechanism underlying the coronavirus-host interaction requires further elucidation, which may contribute to the development of new antiviral strategies. Here, we demonstrated that the host cAMP-responsive element-binding protein (CREB1) interacts with the non-structural protein 13 (nsp13) of SARS-CoV-2, a conserved helicase for coronavirus replication, both in cells and in lung tissues subjected to SARS-CoV-2 infection. The ATPase and helicase activity of viral nsp13 were shown to be potentiated by CREB1 association, as well as by Protein kinase A (PKA)-mediated CREB1 activation. SARS-CoV-2 replication is significantly suppressed by PKA Cα, cAMP-activated protein kinase catalytic subunit alpha (PRKACA), and CREB1 knockdown or inhibition. Consistently, the CREB1 inhibitor 666-15 has shown significant antiviral effects against both the WIV04 strain and the Omicron strain of the SARS-CoV-2. Our findings indicate that the PKA-CREB1 signaling axis may serve as a novel therapeutic target against coronavirus infection. IMPORTANCE: In this study, we provide solid evidence that host transcription factor cAMP-responsive element-binding protein (CREB1) interacts directly with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) helicase non-structural protein 13 (nsp13) and potentiate its ATPase and helicase activity. And by live SARS-CoV-2 virus infection, the inhibition of CREB1 dramatically impairs SARS-CoV-2 replication in vivo. Notably, the IC50 of CREB1 inhibitor 666-15 is comparable to that of remdesivir. These results may extend to all highly pathogenic coronaviruses due to the conserved nsp13 sequences in the virus.
Asunto(s)
ARN Polimerasa Dependiente de ARN de Coronavirus , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Proteínas Quinasas Dependientes de AMP Cíclico , Interacciones Microbiota-Huesped , SARS-CoV-2 , Proteínas no Estructurales Virales , Replicación Viral , Humanos , Adenosina Trifosfatasas/metabolismo , Antivirales/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , COVID-19/virología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/antagonistas & inhibidores , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/deficiencia , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , ADN Helicasas/metabolismo , Concentración 50 Inhibidora , ARN Helicasas/metabolismo , SARS-CoV-2/clasificación , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , SARS-CoV-2/crecimiento & desarrollo , Transducción de Señal/efectos de los fármacos , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos , Femenino , Animales , RatonesRESUMEN
BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes non-symptomatic infection, mild influenza-like symptoms to pneumonia, severe acute respiratory distress syndrome, and even death, reflecting different clinical symptoms of viral infection. However, the mechanism of its pathogenicity remains unclear. Host-specific traits have a breakthrough significance for studying the pathogenicity of SARS-CoV-2. We previously reported SARS-CoV-2/BMA8, a mouse-adapted strain, was lethal to aged BALB/c mice but not to aged C57BL/6N mice. Here, we further investigate the differences in pathogenicity of BMA8 strain against wild-type aged C57BL/6N and BALB/c mice. METHODS: Whole blood and tissues were collected from mice before and after BMA8 strain infection. Viral replication and infectivity were assessed by detection of viral RNA copies and viral titers; the degree of inflammation in mice was tested by whole blood cell count, ELISA and RT-qPCR assays; the pathogenicity of SARS-CoV-2/BMA8 in mice was measured by Histopathology and Immunohistochemistry; and the immune level of mice was evaluated by flow cytometry to detect the number of CD8+ T cells. RESULTS: Our results suggest that SARS-CoV-2/BMA8 strain caused lower pathogenicity and inflammation level in C57BL/6N mice than in BALB/c mice. Interestingly, BALB/c mice whose MHC class I haplotype is H-2Kd showed more severe pathogenicity after infection with BMA8 strain, while blockade of H-2Kb in C57BL/6N mice was also able to cause this phenomenon. Furthermore, H-2Kb inhibition increased the expression of cytokines/chemokines and accelerated the decrease of CD8+ T cells caused by SARS-CoV-2/BMA8 infection. CONCLUSIONS: Taken together, our work shows that host MHC molecules play a crucial role in the pathogenicity differences of SARS-CoV-2/BMA8 infection. This provides a more profound insight into the pathogenesis of SARS-CoV-2, and contributes enlightenment and guidance for controlling the virus spread.
Asunto(s)
COVID-19 , SARS-CoV-2 , Ratones , Animales , Linfocitos T CD8-positivos , Virulencia , COVID-19/patología , Ratones Endogámicos C57BL , Ratones Endogámicos BALB C , Inflamación , Pulmón/patología , Modelos Animales de EnfermedadRESUMEN
Glioma is the most common primary brain tumor and the most malignant type of glioma is glioblastoma with the character of high mortality, high recurrence rate and poor prognosis. MicroRNAs act as an important component in glioma development and thus may be a potential target for the treatment of glioma. There were some researches indicated that miR-210-3p played a role in glioma development, but if it can inhibit glioma growth, as well as the underlying mechanism, is still uncertain. In the present study, we investigated the effects of miR-210-3p and its potential target gene Iscu on glioma (C6) cells proliferation and migration in vitro as well as the influence of miR-210-3p on glioma growth in vivo. The results showed that miR-210-3p inhibited the proliferation and migration of C6 cells by regulating the expression of its target gene Iscu in vitro. We also demonstrated that glioma growth was suppressed in immunodeficient mice when they were implanted with C6 cells overexpressing miR-210-3p. Our data indicated that miR-210-3p played an important role in the prevention of glioma growth by targeting Iscu and so miR-210-3p/Iscu axis might be a potential target for the treatment of glioma.
Asunto(s)
Movimiento Celular/fisiología , Proliferación Celular/fisiología , Glioma/fisiopatología , Proteínas Hierro-Azufre/metabolismo , MicroARNs/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Técnicas de Silenciamiento del Gen , Glioma/genética , Proteínas Hierro-Azufre/genética , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , RatasRESUMEN
Valproate (VPA), an effective clinical approved anti-epileptic drug and mood stabilizer, has been believed to induce neuronal differentiation at the expense of inhibiting astrocytic and oligodendrocytic differentiation. Nevertheless, the involving mechanisms of it remain unclear yet. In the present study, we explored the global gene expression changes of fetus rat hippocampal neural stem cells following VPA treatment by high-throughput microarray. We obtained 874 significantly upregulated genes and 258 obviously downregulated genes (fold change > 2 and P < 0.05). Then, we performed gene ontology and pathway analyses of these differentially expressed genes and chose several genes associated with nervous system according to gene ontology analysis to conduct expression analysis to validate the reliability of the array results as well as reveal possible mechanisms of VPA. To get a better comprehension of the differentially regulated genes by VPA, we conducted protein-protein association analysis of these genes, which offered a source for further studies. In addition, we made the overlap between the VPA-downregulated genes and the predicted target genes of VPA-upregulated microRNAs (miRNAs), which were previously demonstrated. These overlapped genes may provide a source to find functional VPA/miRNA/mRNA axes during neuronal differentiation. This study first constructed a comprehensive potential downstream gene map of VPA in the process of neuronal differentiation.
Asunto(s)
Diferenciación Celular , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/citología , Células-Madre Neurales/citología , Neurogénesis , Ácido Valproico/farmacología , Animales , Anticonvulsivantes/farmacología , Células Cultivadas , Femenino , Perfilación de la Expresión Génica , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Ratas , Ratas Sprague-DawleyRESUMEN
Lipid-lowering drugs, especially statins, are extensively utilized in clinical settings for the prevention of hyperlipidemia. Nevertheless, prolonged usage of current lipid-lowering medications is associated with significant adverse reactions. Therefore, it is imperative to develop novel therapeutic agents for lipid-lowering therapy. In this study, a chenodeoxycholic acid and lactobionic acid double-modified polyethyleneimine (PDL) nanocomposite as a gene delivery vehicle for lipid-lowering therapy by targeting the liver, are synthesized. Results from the in vitro experiments demonstrate that PDL exhibits superior transfection efficiency compared to polyethyleneimine in alpha mouse liver 12 (AML12) cells and effectively carries plasmids. Moreover, PDL can be internalized by AML12 cells and rapidly escape lysosomal entrapment. Intravenous administration of cyanine5.5 (Cy5.5)-conjugated PDL nanocomposites reveals their preferential accumulation in the liver compared to polyethyleneimine counterparts. Systemic delivery of low-density lipoprotein receptor plasmid-loaded PDL nanocomposites into mice leads to reduced levels of low-density lipoprotein cholesterol (LDL-C) and triglycerides (TC) in the bloodstream without any observed adverse effects on mouse health or well-being. Collectively, these findings suggest that low-density lipoprotein receptor plasmid-loaded PDL nanocomposites hold promise as potential therapeutics for lipid-lowering therapy.
Asunto(s)
Ácido Quenodesoxicólico , Hígado , Nanocompuestos , Polietileneimina , Receptores de LDL , Animales , Polietileneimina/química , Ratones , Hígado/metabolismo , Hígado/efectos de los fármacos , Ácido Quenodesoxicólico/química , Ácido Quenodesoxicólico/farmacología , Receptores de LDL/metabolismo , Receptores de LDL/genética , Nanocompuestos/química , Línea Celular , Masculino , Transfección/métodos , Técnicas de Transferencia de Gen , Plásmidos/genética , Plásmidos/químicaRESUMEN
BACKGROUND: Influenza viruses, especially Influenza A virus and Influenza B virus, are respiratory pathogens and can cause seasonal epidemics and pandemics. Severe influenza viruses infection induces strong host-defense response and excessive inflammatory response, resulting in acute lung damage, multiple organ failure and high mortality. Isoquercitrin is a Chinese medicine monomer, which was reported to have multiple biological activities, including antiviral activity against HSV, IAV, SARS-CoV-2 and so on. Aims of this study were to assess the in vitro anti-IAV and anti-IBV activity, evaluate the in vivo protective efficacy against lethal infection of the influenza virus and searched for the more optimal method of drug administration of isoquercitrin. METHODS: In vitro infection model (MDCK and A549 cells) and mouse lethal infection model of Influenza A virus and Influenza B virus were used to evaluate the antiviral activity of isoquercitrin. RESULTS: Isoquercitrin could significantly suppress the replication in vitro and in vivo and reduced the mortality of mouse lethal infection models. Compared with virus infection group, isoquercitrin mitigated lung and multiple organ damage. Moreover, isoquercitrin blocked hyperproduction of cytokines induced by virus infection via inactivating NF-κB signaling. Among these routes of isoquercitrin administration, intramuscular injection is a better drug delivery method. CONCLUSION: Isoquercitrin is a potential Chinese medicine monomer Against Influenza A Virus and Influenza B Virus infection.
RESUMEN
OBJECTIVE: This study aimed to evaluate the value of multislice spiral computed tomography (CT) in differential diagnosis of benign or malignant pulmonary ground-glass opacity (GGO). MATERIALS AND METHODS: A total of 68 patients with pulmonary GGO who received surgical treatment in our hospital from January 2014 to January 2017 were retrospectively analyzed. Postoperative pathology showed that there were 22 cases of benign GGO and 47 cases of malignant GGO (adenocarcinoma). The diameter, maximum CT value, and mean CT value of benign and malignant GGOs were determined and compared. The clinical value of identifying benign or malignant GGOs with these indices was analyzed through receiver operating characteristic (ROC) curve. RESULTS: The mean GGO diameter, maximum CT value, and mean CT value in the benign group were significantly lower than those of in the malignant group, and the difference was statistically significant (P < 0.05). The diameter, maximum CT value, and mean CT value of GGO were applied to identify benign or malignant GGO: sensitivity was 60.87%, 69.57%, and 63.04%; and the specificity was 63.64%, 63.64%, and 81.82%; the cutoff values were 13.89 (mm), 26.18 (Hu), and 24.61 (Hu); and areas under the ROC curves were 0.66, 0.71, and 0.69, respectively. CONCLUSION: The possibility of malignancy has been significantly increased for GGOs with a large diameter, high mean CT value and maximum CT value. Surgical treatment should be performed for this type of GGOs.
Asunto(s)
Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Nódulo Pulmonar Solitario/diagnóstico por imagen , Nódulo Pulmonar Solitario/patología , Tomografía Computarizada Espiral , Adulto , Anciano , Diagnóstico Diferencial , Femenino , Humanos , Imagenología Tridimensional , Neoplasias Pulmonares/cirugía , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Curva ROC , Nódulo Pulmonar Solitario/cirugía , Tomografía Computarizada Espiral/métodosRESUMEN
Background. Systemic lupus erythematosus (SLE) is an autoimmune disease with great heterogeneity in pathogenesis and clinical symptoms. Rheumatoid factor (RF) is one key indicator for rheumatoid arthritis (RA) while immunoglobulin E (IgE) is associated with type I hypersensitivity. To better categorize SLE subtypes, we determined the dominant cytokines based on familial SLE patients. Methods. RF, IgE, and multiple cytokines (i.e., IL-1ß, IL-6, IL-8, IL-10, IL-17, IFN-γ, IP-10, MCP-1, and MIP-1ß) were measured in sera of familial SLE patients (n = 3), noninherited SLE patients (n = 108), and healthy controls (n = 80). Results. Three familial SLE patients and 5 noninherited SLE cases are with features of RF+IgE+. These RF+IgE+ SLE patients expressed significantly higher levels of IL-1ß and IL-6 than the other SLE patients (P < 0.05). IL-6 correlated with both IgE and IL-1ß levels in RF+IgE+ SLE patients (r2 = 0.583, P = 0.027; r2 = 0.847, P = 0.001), and IgE also correlated with IL-1ß (r2 = 0.567, P = 0.031). Conclusion. Both IL-1ß and IL-6 are highly expressed cytokines in RF+IgE+ SLE subtype which may be related to the pathogenesis of this special SLE subtype and provide accurate treatment strategy by neutralizing IL-1ß and IL-6.