Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomacromolecules ; 25(1): 89-103, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38056946

RESUMEN

Antimicrobial peptide mimics have been used to kill bacteria and construct antibacterial materials. Precise design and construction of chemical structure are essential for easy access to highly effective antimicrobial peptide mimics. Herein, cationic guanidinium-based polymers (PGXs) with varying hydrophobic structures were synthesized to explore the structure and antibacterial activity relationship of antimicrobial peptide mimics and to construct antibacterial implants. The effect of the hydrophobic chemical structure, including carbon chain length and configuration, on the antimicrobial activities against both Escherichia coli and Staphylococcus aureus was investigated. The antibacterial activities of PGXs improved with increasing alkyl chain length, and PGXs with a straight-chain hydrophobic structure exhibited better bactericidal activities than those with cyclic alkane and aromatic hydrocarbon. Furthermore, PGXs grafted with poly(dimethylsiloxane) (PDMS-PGXs) showed a similar bactericidal change tendency of PGXs in solution. Additionally, the PDMS-PGXs showed potent antibiofilm performance in vitro, which can inhibit bacterial infection in vivo as subcutaneous implants. This study may propose a basis for the precise design and construction of antibacterial materials and provide a promising way of designing biomedical devices and implants with bacterial infection-combating activities.


Asunto(s)
Polímeros , Infecciones Estafilocócicas , Humanos , Polímeros/farmacología , Polímeros/química , Guanidina/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Péptidos Antimicrobianos , Escherichia coli , Pruebas de Sensibilidad Microbiana
2.
Small ; 16(8): e1906005, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31971660

RESUMEN

In this work, a phosphine-based covalent organic framework (Phos-COF-1) is successfully synthesized and employed as a template for the confined growth of broad-scope nanoparticles (NPs). Ascribed to the ordered distribution of phosphine coordination sites in the well-defined pores, various stable and well-dispersed ultrafine metal NPs including Pd, Pt, Au, and bimetallic PdAuNPs with narrow size distributions are successfully prepared as determined by transmission electron microscopy, X-ray photoelectron spectroscopy, inductively coupled plasma, and powder X-ray diffraction analyses. It is also demonstrated that the as-prepared Phos-COF-1-supported ultrafine NPs exhibit excellent catalytic activities and recyclability toward the Suzuki-Miyaura coupling reaction, reduction of nitro-phenol and 1-bromo-4-nitrobenzene, and even tandem coupling and reduction of p-nitroiodobenzene. This work will open many new possibilities for preparing COF-supported ultrafine NPs with good dispersity and stability for a broad range of applications.

3.
Polymers (Basel) ; 16(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675001

RESUMEN

Polypeptoids with well-designed structures have the ability to self-assemble into nanomaterials, which have wide potential applications. In this study, a series of diblock copolypeptoids were synthesized via ring-opening polymerization followed by click chemistry and exhibited both temperature and pH stimulation responsiveness. Under specific temperature and pH conditions, the responsive blocks in the copolypeptoids became hydrophobic and aggregated to form micelles. The self-assembly process was monitored using the UV-Vis and DLS methods, which suggested the reversible transition of free molecules to micelles and bigger aggregates upon instituting temperature and pH changes. By altering the length and proportion of each block, the copolypeptoids displayed varying self-assembly characteristics, and the transition temperature could be tuned. With good biocompatibility, stability, and no cytotoxicity, the polypeptoids reported in this study are expected to be applied as bionanomaterials in fields including drug delivery, tissue engineering, and intelligent biosensing.

4.
Polymers (Basel) ; 16(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38611248

RESUMEN

The development of nontoxic and efficient antifreeze agents for organ cryopreservation is crucial. However, the research remains highly challenging. In this study, we designed and synthesized a series of peptoid oligomers using the solid-phase submonomer synthesis method by mimicking the amphiphilic structures of antifreeze proteins (AFPs). The obtained peptoid oligomers showed excellent antifreeze properties, reducing the ice crystal growth rate and inhibiting ice recrystallization. The effects of the hydrophobicity and sequence of the peptoid side chains were also studied to reveal the structure-property relationship. The prepared peptoid oligomers were detected as non-cytotoxic and considered to be useful in the biological field. We hope that the peptoid oligomers presented in this study can provide effective strategies for the design of biological cryoprotectants for organ preservation in the future.

5.
J Mater Chem B ; 11(25): 5786-5793, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37326556

RESUMEN

The overuse of antibiotics has triggered a new infection crisis and natural antimicrobial peptides (AMPs) have been extensively studied as an alternative to fight microorganisms. Polypeptoids, or polypeptide-biomimetics, offer similar properties to polypeptides and a highly tunable structure that has been synthesized by various methods such as ring opening polymerization (ROP) using N-carboxyanhydride monomers. Simultaneous high antibacterial activity and biocompatibility of a structure by efficient synthesis is desired in the application of those materials. Herein, a series of cationic polypeptoids (PNBs) with variable side chain lengths was obtained by introducing positive charges to the main chain in one step and preserving the backbone structure, namely polypeptoids (PNBM, PNBE, PNBB) with different end groups (methyl (M), ethyl (E), butyl (B)). To address the issue of infection in interventional biomedical implants, we report cost-effective modified polyurethane (PU) films (PU-PNBM, PU-PNBE, PU-PNBB) as physical-biological synergistic antibacterial surfaces that overcome problems such as steric hindrance and the solubility of the materials. Antibacterial selectivity was achieved by regulating the different side chain lengths. When methyl and ethyl were used as hydrophobic side chains, they can only selectively kill Gram-positive Staphylococcus aureus. PNBB, the most hydrophobic and with a butyl side chain can kill both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus and inhibit the growth of bacterial biofilms. Effective in both solution and modified substrate, its biocompatibility is not compromised while the antibacterial properties are substantially improved. Furthermore, PU-PNBB films demonstrated their potential in vivo antimicrobial efficiency in a model of S. aureus infection established on mouse skin. The synthesis route and the surface modification strategies are convenient, providing a solution to the problem of poor biocompatibility in antimicrobial surface applications and a strategy for the use of peptide polymers for targeted therapy after specific infections in the biomedical field.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus , Ratones , Animales , Antibacterianos/química , Péptidos/química , Biopelículas
6.
Polymers (Basel) ; 13(15)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34371992

RESUMEN

Sequentially defined membrane-like nanomaterials have potential applications in biomedical and chemical fields due to their unique physical and chemical properties. However, these natural and synthetic nanomaterials have not been widely developed due to their complicated molecular sequence and structure, difficulties in synthesis etc. Here, we report a stable membrane-like nanomaterial composed of a monolayer or bilayer that was self-assembled from sequence-defined amphiphilic peptoid triblock (poly(N-aminoethyl glycine)-b-poly(N-octyl glycine)-b-poly(N-carboxyethyl glycine)) and diblock (poly(N-carboxyethyl glycine)-b-poly(N-octyl glycine) and poly(N-aminoethyl glycine)-b-poly(N-octyl glycine)) copolymers separately. A series of peptoid block copolymers were synthesized, and it was observed that long alkyl side chains and abundant hydrophobic blocks were necessary to form the membranes. The prepared membrane-like nanomaterials were fairly stable. They did not change obviously in shape and size with time, and they can survive after sonication. This study is expected to enrich the nanomaterial family, as well as polypeptoid science, and expand their applications in biomedicine and other fields.

7.
J Colloid Interface Sci ; 492: 1-7, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28068539

RESUMEN

Photoluminescent carbon dots (C-dots), as new members of the quantum sized carbon analogues have attracted significant attention due to their unique size, less toxicity, good compatibility and relatively easy surface modification. In this work, we report a simple, low-cost and one-step hydrothermal carbonization approach to synthesize the positively charged C-dots using PEI and FA. From the photoluminescence (PL) measurements, the as-prepared C-dots exhibit good stability and intense PL with the high quantum yield (QY) at Ca. 42%. Significantly, The as-prepared C-dots integrate the advantages of C-dots and PEI: the presence of C-dots can effectively decrease the cytotoxicity of PEI, the C-dots can be applied in biological system for selective imaging of folate receptor (FR)-positive cancerous cells from normal cells, while the cationic PEI with positive charges can make them link to plasmid DNA and efficiently transfect the therapeutic plasmid into cells. Therefore, the as-prepared with the facile synthesis method can be a promising photoluminescent probe for cancer diagnosis and gene therapy.


Asunto(s)
Carbono/química , Imagen Óptica/métodos , Puntos Cuánticos/química , Transfección , Supervivencia Celular , Colorantes Fluorescentes/química , Receptores de Folato Anclados a GPI/análisis , Receptores de Folato Anclados a GPI/metabolismo , Ácido Fólico/metabolismo , Terapia Genética/métodos , Células HEK293 , Células HeLa , Humanos , Neoplasias/diagnóstico por imagen , Tamaño de la Partícula , Polietileneimina , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA