Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
PLoS Biol ; 22(3): e3002515, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38512963

RESUMEN

The signaling environment, or niche, often governs the initial difference in behavior of an adult stem cell and a derivative that initiates a path towards differentiation. The transition between an instructive stem cell niche and differentiation niche must generally have single-cell resolution, suggesting that multiple mechanisms might be necessary to sharpen the transition. Here, we examined the Drosophila ovary and found that Cap cells, which are key constituents of the germline stem cell (GSC) niche, express a conserved microRNA (miR-124). Surprisingly, loss of miR-124 activity in Cap cells leads to a defect in differentiation of GSC derivatives. We present evidence that the direct functional target of miR-124 in Cap cells is the epidermal growth factor receptor (EGFR) and that failure to limit EGFR expression leads to the ectopic expression of a key anti-differentiation BMP signal in neighboring somatic escort cells (ECs), which constitute a differentiation niche. We further found that Notch signaling connects EFGR activity in Cap cells to BMP expression in ECs. We deduce that the stem cell niche communicates with the differentiation niche through a mechanism that begins with the selective expression of a specific microRNA and culminates in the suppression of the major anti-differentiation signal in neighboring cells, with the functionally important overall role of sharpening the spatial distinction between self-renewal and differentiation environments.


Asunto(s)
Proteínas de Drosophila , MicroARNs , Animales , Femenino , Drosophila/genética , Drosophila/metabolismo , Ovario/metabolismo , Proteínas de Drosophila/metabolismo , Nicho de Células Madre/genética , Diferenciación Celular/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células Madre/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Comunicación , Drosophila melanogaster/metabolismo , Células Germinativas/metabolismo
2.
Langmuir ; 40(9): 4751-4761, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38385682

RESUMEN

Waterborne polyurethane (WPU) latex nanoparticles with proven interfacial activity were utilized to stabilize air-water interfaces of Pickering foams through interfacial interaction with hydrophobic fumed silica particles (SPs). The rheological properties of the Pickering foam were tailored through adjustment of their SP content, which influenced their formability and stability. A Pickering foam stabilized with WPU and SPs was used as a template to prepare a WPU-SP composite porous film. The as-prepared film had intact open-cell porous structures, which increased its water absorption and water-vapor permeability. The porous film was used as a middle layer in the preparation of synthetic leather via a four-step "drying method". Compared with commercial synthetic leather, the lab-made synthetic leather with a middle layer made of the WPU-SP composite porous film exhibited a richer porous structure, acceptable wetting on a fabric substrate, a thicker porous layer, and higher water-vapor permeability. This work provides a novel and facile approach for preparing WPU-SP Pickering foams. Furthermore, the foams have the potential to function as a sustainable material for creating a porous-structured synthetic leather made from WPU, which may be utilized as an alternative to solvent-based synthetic leather.

3.
BMC Biol ; 21(1): 143, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37340484

RESUMEN

BACKGROUND: How stem cell populations are organized and regulated within adult tissues is important for understanding cancer origins and for developing cell replacement strategies. Paradigms such as mammalian gut stem cells and Drosophila ovarian follicle stem cells (FSC) are characterized by population asymmetry, in which stem cell division and differentiation are separately regulated processes. These stem cells behave stochastically regarding their contributions to derivative cells and also exhibit dynamic spatial heterogeneity. Drosophila FSCs provide an excellent model for understanding how a community of active stem cells maintained by population asymmetry is regulated. Here, we use single-cell RNA sequencing to profile the gene expression patterns of FSCs and their immediate derivatives to investigate heterogeneity within the stem cell population and changes associated with differentiation. RESULTS: We describe single-cell RNA sequencing studies of a pre-sorted population of cells that include FSCs and the neighboring cell types, escort cells (ECs) and follicle cells (FCs), which they support. Cell-type assignment relies on anterior-posterior (AP) location within the germarium. We clarify the previously determined location of FSCs and use spatially targeted lineage studies as further confirmation. The scRNA profiles among four clusters are consistent with an AP progression from anterior ECs through posterior ECs and then FSCs, to early FCs. The relative proportion of EC and FSC clusters are in good agreement with the prevalence of those cell types in a germarium. Several genes with graded profiles from ECs to FCs are highlighted as candidate effectors of the inverse gradients of the two principal signaling pathways, Wnt and JAK-STAT, that guide FSC differentiation and division. CONCLUSIONS: Our data establishes an important resource of scRNA-seq profiles for FSCs and their immediate derivatives that is based on precise spatial location and functionally established stem cell identity, and facilitates future genetic investigation of regulatory interactions guiding FSC behavior.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Femenino , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Diferenciación Celular/genética , Folículo Ovárico , Células Madre/metabolismo , Mamíferos
4.
Curr Opin Colloid Interface Sci ; 49: 1-15, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32390759

RESUMEN

The versatility of colloidal particles endows the particle stabilized or Pickering emulsions with unique features and can potentially enable the fabrication of a wide variety of derived materials. We review the evolution and breakthroughs in the research on the use of colloidal particles for the stabilization of Pickering emulsions in recent years for the particle categories of inorganic particles, polymer-based particles, and food-grade particles. Moreover, based on the latest works, several emulsions stabilized by the featured particles and their derived functional materials, including enzyme immobilized emulsifiers for interfacial catalysis, 2D colloidal materials stabilized emulsions as templates for porous materials, and Pickering emulsions as adjuvant formulations, are also summarized. Finally, we point out the gaps in the current research on the applications of Pickering emulsions and suggest future directions for the design of particulate stabilizers and preparation methods for Pickering emulsions and their derived materials.

5.
Langmuir ; 34(36): 10684-10693, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30125116

RESUMEN

Magnesium (Mg)-based biometals are increasingly becoming a promising candidate of the next-generation implantable materials due to their unique properties, such as high biocompatibility, favorable mechanical strength, and good biodegradability in physiological conditions. However, the swift corrosion of Mg, resulting in early loss of structural support, has posed an enormous challenge in clinical application of Mg-based implants. To overcome these limitations, herein we developed a novel method, which combines the traditional dip-coating with nonsolvent induced phase separation (NIPS), to fabricate biodegradable PLLA coatings with controlled membrane morphology on pure Mg rods. Unlike the conventional dip-coating, where the polymer solution on the Mg substrates is left to evaporate directly under proper atmosphere, in NIPS, the polymer solution on the substrates is not left to dry but immersed in a nonsolvent of the PLLA, leading to the precipitation of polymer networks. Our results demonstrated that various polymer coatings with different morphologies and inner structures could be easily fabricated by a careful selection of nonsolvents. In comparison to dense PLLA coatings obtained from conventional solvent evaporation, PLLA coatings with a dense surface and porous inner structure were obtained when hexane and petroleum ether were used as the nonsolvents, while PLLA coatings with a completely porous structure were obtained when polar acetone and ethanol were chosen. The electrochemical corrosion tests and immersion tests further showed that all polymer coatings could significantly improve the corrosion resistance and suppress the corrosion rates of the substrates. However, PLLA films obtained via NIPS had much lower pH changes and slower Mg2+ release, implying better protective effects of the fabricated coatings. Based on results of all experiments, a new process for the corrosion mechanism of Mg implants during immersion has also been proposed in this work.


Asunto(s)
Plásticos Biodegradables/química , Materiales Biocompatibles Revestidos/química , Magnesio/química , Poliésteres/química , Corrosión , Soluciones Isotónicas/química , Ensayo de Materiales , Porosidad , Propiedades de Superficie
6.
Langmuir ; 32(13): 3122-9, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26963571

RESUMEN

Coating a liquid with a particle shell not only renders a droplet superhydrophobic but also isolates a well-confined microenvironment for miniaturized chemical processes. Previously, we have demonstrated that particles at the liquid marble interface provide an ideal platform for the site-selective modification of superhydrophobic particles. However, the need for a special chemical reaction limits their potential use for the fabrication of Janus particles with various properties. Herein, we combine the employment of liquid marbles as microreactors with the remarkable adhesive ability of polydopamine to develop a general route for the synthesis of Janus particles from micrometer-sized superhydrophobic particles. We demonstrate that dopamine polymerization and deposition inside liquid marbles could be used for the selective surface modification of microsized silica particles, resulting in the formation of Janus particles. Moreover, it is possible to manipulate the Janus balance of the particles via the addition of surfactants and/or organic solvents to tune the interfacial energy. More importantly, owing to the many functional groups in polydopamine, we show that versatile strategies could be introduced to use these partially polydopamine-coated silica particles as platforms for further modification, including nanoparticle immobilization, metal ion chelation and reduction, as well as for chemical reactions. Given the flexibility in the choice of cores and the modification strategies, this developed method is distinctive in its high universality, good controllability, and great practicability.


Asunto(s)
Indoles/síntesis química , Polímeros/síntesis química , Adsorción , Quelantes/química , Dopamina/química , Emulsiones , Fluoresceína-5-Isotiocianato/química , Indoles/química , Nanopartículas , Polimerizacion , Polímeros/química , Poliestirenos/química , Dióxido de Silicio/química , Plata/química
7.
Soft Matter ; 12(2): 542-5, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26489449

RESUMEN

Nanoparticles at the air/liquid interface can serve as solid separating barriers to form stable foams or liquid marbles depending on the wettability of the nanoparticles. This paper presents an effect that enables the insertion and confinement of air bubbles inside a liquid marble, based on encapsulating an air bubble surrounded by surfactant molecules or hydrophilic particles. We have demonstrated that more than one bubble can be inserted and trapped inside one liquid marble so that liquid marbles can be divided into several separate compartments. The findings presented here may stimulate fundamental studies of this novel bubble-marble phenomenon, as well as developments of various practical applications.

8.
Angew Chem Int Ed Engl ; 54(24): 7012-7, 2015 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-25924973

RESUMEN

Little attention has been paid to the participation of the shell of silica-particle-based liquid marbles and their influence on chemical reactions. The fabrication of liquid marbles with the encapsulating particle shells not only act as protecting layers to provide a confined environment, but also provide the reactive substrate surfaces to regulate the classical silver mirror reaction. Fabrication of silver mirrors with different morphologies was achieved by modifying particle surface properties, which could further lead to Janus liquid marbles. The different evaporation behavior of microreactors was demonstrated. Micrometer-sized silica particles were used for the preparation of monolayer-stabilized liquid marbles, which show great potential in fabricating Janus particles from superhydrophobic particles that are not attainable from Pickering emulsions.


Asunto(s)
Dióxido de Silicio/química , Plata/química , Glucosa/química , Microscopía Electrónica de Rastreo , Nanopartículas/química , Propiedades de Superficie
9.
Langmuir ; 30(42): 12503-8, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25280669

RESUMEN

The coating of solid particles on the surface of liquid in air makes liquid marbles a promising approach in the transportation of a small amount of liquid. The stabilization of liquid marbles by polymeric latex particles imparts extra triggers such as pH and temperature, leading to the remote manipulation of droplets for many potential applications. Because the functionalized polymeric latexes can exist either as colloidally stable latex or as flocculated latex in a dispersion, the drying of latex dispersions under different conditions may play a significant role in the stabilization of subsequent liquid marbles. This article presents the investigation of liquid marbles stabilized by poly(styrene-co-methacrylic acid) (PS-co-MAA) particles drying under varied conditions. Protonation of the particles before freeze drying makes the particles excellent liquid marble stabilizers, but it is hard to stabilize liquid marbles for particles dried in their deprotonated states. The static properties of liquid marbles with increasing concentrations of protonating reagent revealed that the liquid marbles are gradually undermined by protonating the stabilizers. Furthermore, the liquid marbles stabilized by different particles showed distinct behaviors in separation and merging manipulated by tweezers. This study shows that the initial state of the particles should be carefully taken into account in formulating liquid marbles.


Asunto(s)
Desecación , Látex/química , Ácidos Polimetacrílicos/química , Poliestirenos/química
10.
Adv Sci (Weinh) ; : e2405021, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073727

RESUMEN

Untethered magnetic soft robots capable of performing adaptive locomotion and shape reconfiguration open up possibilities for various applications owing to their flexibility. However, magnetic soft robots are typically composed of soft materials with fixed modulus, making them unable to exert or withstand substantial forces, which limits the exploration of their new functionalities. Here, water-induced, shape-locking magnetic robots with magnetically controlled shape change and water-induced shape-locking are introduced. The water-induced phase separation enables these robots to undergo a modulus transition from 1.78 MPa in the dry state to 410 MPa after hydration. Moreover, the body material's inherent self-healing property enables the direct assembly of morphing structures and magnetic soft robots with complicated structures and magnetization profiles. These robots can be delivered through magnetic actuation and perform programmed tasks including supporting, blocking, and grasping by on-demand deformation and subsequent water-induced stiffening. Moreover, a water-stiffening magnetic stent is developed, and its precise delivery and water-induced shape-locking are demonstrated in a vascular phantom. The combination of untethered delivery, on-demand shape change, and water-induced stiffening properties makes the proposed magnetic robots promising for biomedical applications.

11.
Insects ; 15(5)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38786908

RESUMEN

Parasitoids commonly manipulate their host's metabolism and immunity to facilitate their offspring survival, but the mechanisms remain poorly understood. Here, we deconstructed the manipulation strategy of a newly discovered parasitoid wasp, L. myrica, which parasitizes D. melanogaster. Using RNA-seq, we analyzed transcriptomes of L. myrica-parasitized and non-parasitized Drosophila host larvae. A total of 22.29 Gb and 23.85 Gb of clean reads were obtained from the two samples, respectively, and differential expression analysis identified 445 DEGs. Of them, 304 genes were upregulated and 141 genes were downregulated in parasitized hosts compared with non-parasitized larvae. Based on the functional annotations in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, we found that the genes involved in host nutrition metabolism were significantly upregulated, particularly in carbohydrate, amino acid, and lipid metabolism. We also identified 30 other metabolism-related DEGs, including hexokinase, fatty acid synthase, and UDP-glycosyltransferase (Ugt) genes. We observed that five Bomanin genes (Boms) and six antimicrobial peptides (AMPs) were upregulated. Moreover, a qRT-PCR analysis of 12 randomly selected DEGs confirmed the reproducibility and accuracy of the RNA-seq data. Our results provide a comprehensive transcriptomic analysis of how L. myrica manipulates its host, laying a solid foundation for studies on the regulatory mechanisms employed by parasitoid wasps in their hosts.

12.
Elife ; 132024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904661

RESUMEN

The success of an organism depends on the molecular and ecological adaptations that promote its beneficial fitness. Parasitoids are valuable biocontrol agents for successfully managing agricultural pests, and they have evolved diversified strategies to adapt to both the physiological condition of hosts and the competition of other parasitoids. Here, we deconstructed the parasitic strategies in a highly successful parasitoid, Trichopria drosophilae, which parasitizes a broad range of Drosophila hosts, including the globally invasive species D. suzukii. We found that T. drosophilae had developed specialized venom proteins that arrest host development to obtain more nutrients via secreting tissue inhibitors of metalloproteinases (TIMPs), as well as a unique type of cell-teratocytes-that digest host tissues for feeding by releasing trypsin proteins. In addition to the molecular adaptations that optimize nutritional uptake, this pupal parasitoid has evolved ecologically adaptive strategies including the conditional tolerance of intraspecific competition to enhance parasitic success in older hosts and the obligate avoidance of interspecific competition with larval parasitoids. Our study not only demystifies how parasitoids weaponize themselves to colonize formidable hosts but also provided empirical evidence of the intricate coordination between the molecular and ecological adaptations that drive evolutionary success.


Asunto(s)
Adaptación Fisiológica , Drosophila , Interacciones Huésped-Parásitos , Avispas , Animales , Avispas/fisiología , Drosophila/parasitología , Pupa/parasitología , Larva/parasitología , Larva/metabolismo
13.
J Colloid Interface Sci ; 640: 199-210, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36863177

RESUMEN

HYPOTHESIS: Cement augmentation has been widely applied to promote osteoporotic fracture healing, whereas the existing calcium-based products suffer from the excessively slow degradation, which may impede bone regeneration. Magnesium oxychloride cement (MOC) shows promising biodegradation tendency and bioactivity, which is expected to be a potential alternative to the classic calcium-based cement for hard-tissue-engineering applications. EXPERIMENTS: Here, a hierarchical porous MOC foam (MOCF)-derived scaffold with favorable bio-resorption kinetic and superior bioactivity is fabricated through Pickering foaming technique. Then, a systematic characterization in terms of material properties and in vitro biological performance have been conducted to evaluate the feasibility of the as-prepared MOCF scaffold to be a bone-augmenting material for treating osteoporotic defects. FINDINGS: The developed MOCF shows excellent handling performance in the paste state, while exhibiting sufficient load-bearing capacity after solidification. In comparison with the traditional bone cement, calcium deficient hydroxyapatite (CDHA), our porous MOCF scaffold demonstrates a much higher biodegradation tendency and better cell recruitment ability. Additionally, the eluted bioactive ions by MOCF commits to a biologically inductive microenvironment, where the in vitro osteogenesis is significantly enhanced. It is anticipated that this advanced MOCF scaffold will be competitive for clinical therapies to augment osteoporotic bone regeneration.


Asunto(s)
Cementos para Huesos , Magnesio , Cementos para Huesos/farmacología , Cementos para Huesos/uso terapéutico , Magnesio/farmacología , Calcio , Durapatita/farmacología , Osteogénesis , Regeneración Ósea , Andamios del Tejido
14.
Metabolites ; 13(3)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36984776

RESUMEN

Asobara japonica (Hymenoptera: Braconidae) is an endoparasitoid wasp that can successfully parasitize a wide range of host species across the Drosophila genus, including the invasive crop pest Drosophila suzukii. Parasitoids are capable of regulating the host metabolism to produce the nutritional metabolites for the survival of their offspring. Here, we intend to investigate the metabolic changes in D. melanogaster hosts after parasitization by A. japonica, using the non-targeted LC-MS (liquid chromatography-mass spectrometry) metabolomics analysis. In total, 3043 metabolites were identified, most of which were not affected by A. japonica parasitization. About 205 metabolites were significantly affected in parasitized hosts in comparison to non-parasitized hosts. The changed metabolites were divided into 10 distinct biochemical groups. Among them, most of the lipid metabolic substances were significantly decreased in parasitized hosts. On the contrary, most of metabolites associated with the metabolism of amino acids and sugars showed a higher abundance of parasitized hosts, and were enriched for a wide range of pathways. In addition, eight neuromodulatory-related substances were upregulated in hosts post A. japonica parasitization. Our results reveal that the metabolites are greatly changed in parasitized hosts, which might help uncover the underlying mechanisms of host manipulation that will advance our understanding of host-parasitoid coevolution.

15.
iScience ; 26(4): 106298, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36950109

RESUMEN

Vitellogenin receptor (VgR) is essential to vitellogenin uptaking and dominates ovary maturation in insects. However, the function of VgR in parasitoid wasps is largely unknown. Here, we applied the Drosophila parasitoid Leptopilina boulardi as a study model to investigate the function of VgR in parasitoids. Despite the conserved sequence characteristics with other insect VgRs, we found L. boulardi VgR (LbVgR) gene was highly expressed in head but lower in ovary. In addition, we found that LbVgR had no effects on ovary development, but participated in host-searching behavior of female L. boulardi and mating behavior of male L. boulardi. Comparative transcriptome analysis further revealed LbVgR might play crucial roles in regulating the expression of some important chemoreception genes to adjust the parasitoid behaviors. These results will broaden our knowledge of the function of VgR in insects, and contribute to develop advanced pest management strategies using parasitoids as biocontrol agents.

16.
J Colloid Interface Sci ; 623: 476-486, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35597017

RESUMEN

HYPOTHESIS: Alcohols can strongly reduce the interfacial tension between immiscible liquids, thus facilitating the formation of emulsions. By combining non-surface-active hydrophobic particles with medium-chain alcohols, stable water-in-oil (w/o) high internal phase Pickering emulsions (HIPPEs) can be easily prepared without high-energy emulsification methods. EXPERIMENTS: The emulsions containing acrylate monomer as the oil phase were prepared at different pH values in the presence of hydrophobic silica particles. Further, by replacing monomer oil with organic solvents (e.g., toluene) and a certain concentration of alcohol, the promoted particle adsorption at the oil-water interface has been systematically investigated. The morphology and interfacial structure of HIPPEs were visualized by confocal laser scanning microscopy (CLSM). FINDING: At high pH, stable water-in-acrylate monomer HIPPEs can be formed using commercial fumed silica nanoparticles alone with simple stirring or vortexing. The hydrolysis of the acrylate group at high pH can generate alcohols in situ which adsorb at the oil-water interface to reduce the interfacial tension and promote particle adsorption to hinder droplet coalescence. The novel strategy for forming stable and processable HIPPEs can be universally applied to different hydrophobic silica particles with the help of various alcohols as the co-stabilizer, which provides a flexible approach for the fabrication of lightweight, closed-cell solid foams for a range of applications.


Asunto(s)
Dióxido de Silicio , Agua , Acrilatos , Alcoholes , Emulsiones/química , Hidrólisis , Tamaño de la Partícula , Dióxido de Silicio/química , Agua/química
17.
Nat Commun ; 13(1): 4476, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918358

RESUMEN

Making the appropriate responses to predation risk is essential for the survival of an organism; however, the underlying mechanisms are still largely unknown. Here, we find that Drosophila has evolved an adaptive strategy to manage the threat from its parasitoid wasp by manipulating the oviposition behavior. Through perception of the differences in host search performance of wasps, Drosophila is able to recognize younger wasps as a higher level of threat and consequently depress the oviposition. We further show that this antiparasitoid behavior is mediated by the regulation of the expression of Tdc2 and Tßh in the ventral nerve cord via LC4 visual projection neurons, which in turn leads to the dramatic reduction in octopamine and the resulting dysfunction of mature follicle trimming and rupture. Our study uncovers a detailed mechanism underlying the defensive behavior in insects that may advance our understanding of predator avoidance in animals.


Asunto(s)
Drosophila , Avispas , Animales , Femenino , Interacciones Huésped-Parásitos , Neuronas , Octopamina , Oviposición/fisiología , Avispas/fisiología
18.
Front Immunol ; 13: 877027, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663984

RESUMEN

Parasitoids are widespread in natural ecosystems and normally equipped with diverse viral factors to defeat host immune responses. On the other hand, parasitoids can enhance the antibacterial abilities and improve the hypoimmunity traits of parasitized hosts that may encounter pathogenic infections. These adaptive strategies guarantee the survival of parasitoid offspring, yet their underlying mechanisms are poorly understood. Here, we focused on Cotesia vestalis, an endoparasitoid of the diamondback moth Plutella xylostella, and found that C. vestalis parasitization decreases the number of host hemocytes, leading to disruption of the encapsulation reaction. We further found that one bracovirus C-type lectin gene, CvBV_28-1, is highly expressed in the hemocytes of parasitized hosts and participates in suppressing the proliferation rate of host hemocytes, which in turn reduces their population and represses the process of encapsulation. Moreover, CvBV_28-1 presents a classical bacterial clearance ability via the agglutination response in a Ca2+-dependent manner in response to gram-positive bacteria. Our study provides insights into the innovative strategy of a parasitoid-derived viral gene that has dual functions to manipulate host immunity for a successful parasitism.


Asunto(s)
Mariposas Nocturnas , Polydnaviridae , Avispas , Animales , Ecosistema , Inmunidad , Lectinas Tipo C , Polydnaviridae/genética , Proteínas Virales/genética
19.
Artículo en Inglés | MEDLINE | ID: mdl-34120097

RESUMEN

Parasitoids have been extensively found to manipulate nutrient amounts of their hosts to benefit their own development and survival, but the underlying mechanisms are largely unknown. Leptopilina boulardi (Hymenoptera: Figitidae) is a larval-pupal endoparasitoid wasp of Drosophila melanogaster whose survival relies on the nutrients provided by its Drosophila host. Here, we used RNA-seq to compare the gene expression levels of the host midgut at 24 h and 48 h post L. boulardi parasitization. We obtained 95 and 191 differentially expressed genes (DEGs) in the parasitized host midgut at 24 h and 48 h post L. boulardi parasitization, respectively. A KEGG analysis revealed that several metabolic pathways were significantly enriched in the upregulated DEGs, and these pathways included "starch and sucrose metabolism" and "galactose metabolism". A functional annotation analysis showed that four classes of genes involved in carbohydrate digestion process had increased expression levels in the midgut post L.boulardi parasitization than nonparasitized groups: glucosidase, mannosidase, chitinase and amylase. Genes involved in protein digestion process were also found among the DEGs, and most of these genes, which belonged to the metallopeptidase and serine-type endopeptidase families, were found at higher expression levels in the parasitized host midgut comparing with nonparasitized hosts. Moreover, some immune genes, particularly those involved in the Toll and Imd pathways, also exhibited high expression levels after L.boulardi parasitization. Our study provides large-scale transcriptome data and identifies sets of DEGs between parasitized and nonparasitized host midgut tissues at 24 h and 48 h post L. boulardi parasitization. These resources help improve our understanding of how parasitoid infection affects the nutrient components in the hosts.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Drosophila melanogaster/genética , Interacciones Huésped-Parásitos , Transcriptoma , Avispas/patogenicidad , Animales , Drosophila melanogaster/parasitología , Femenino
20.
Nat Commun ; 12(1): 5489, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34531391

RESUMEN

Intraspecific competition is a major force in mediating population dynamics, fuelling adaptation, and potentially leading to evolutionary diversification. Among the evolutionary arms races between parasites, one of the most fundamental and intriguing behavioural adaptations and counter-adaptations are superparasitism and superparasitism avoidance. However, the underlying mechanisms and ecological contexts of these phenomena remain underexplored. Here, we apply the Drosophila parasite Leptopilina boulardi as a study system and find that this solitary endoparasitic wasp provokes a host escape response for superparasitism avoidance. We combine multi-omics and in vivo functional studies to characterize a small set of RhoGAP domain-containing genes that mediate the parasite's manipulation of host escape behaviour by inducing reactive oxygen species in the host central nervous system. We further uncover an evolutionary scenario in which neofunctionalization and specialization gave rise to the novel role of RhoGAP domain in avoiding superparasitism, with an ancestral origin prior to the divergence between Leptopilina specialist and generalist species. Our study suggests that superparasitism avoidance is adaptive for a parasite and adds to our understanding of how the molecular manipulation of host behaviour has evolved in this system.


Asunto(s)
Drosophila melanogaster/parasitología , Proteínas Activadoras de GTPasa/genética , Interacciones Huésped-Parásitos/genética , Proteínas de Insectos/genética , Avispas/genética , Avispas/patogenicidad , Animales , Reacción de Prevención , Conducta Animal , Coevolución Biológica , Sistema Nervioso Central/parasitología , Ingestión de Alimentos , Femenino , Proteínas Activadoras de GTPasa/clasificación , Proteínas Activadoras de GTPasa/metabolismo , Expresión Génica , Proteínas de Insectos/clasificación , Proteínas de Insectos/metabolismo , Larva/parasitología , Masculino , Familia de Multigenes , Especies Reactivas de Oxígeno/metabolismo , Avispas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA