Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Pharmacol Rev ; 70(3): 412-445, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29669750

RESUMEN

Glioblastoma multiforme (GBM), the most common and aggressive primary brain tumor, has a high mortality rate despite extensive efforts to develop new treatments. GBM exhibits both intra- and intertumor heterogeneity, lending to resistance and eventual tumor recurrence. Large-scale genomic and proteomic analysis of GBM tumors has uncovered potential drug targets. Effective and "druggable" targets must be validated to embark on a robust medicinal chemistry campaign culminating in the discovery of clinical candidates. Here, we review recent developments in GBM drug discovery and delivery. To identify GBM drug targets, we performed extensive bioinformatics analysis using data from The Cancer Genome Atlas project. We discovered 20 genes, BOC, CLEC4GP1, ELOVL6, EREG, ESR2, FDCSP, FURIN, FUT8-AS1, GZMB, IRX3, LITAF, NDEL1, NKX3-1, PODNL1, PTPRN, QSOX1, SEMA4F, TH, VEGFC, and C20orf166AS1 that are overexpressed in a subpopulation of GBM patients and correlate with poor survival outcomes. Importantly, nine of these genes exhibit higher expression in GBM versus low-grade glioma and may be involved in disease progression. In this review, we discuss these proteins in the context of GBM disease progression. We also conducted computational multi-parameter optimization to assess the blood-brain barrier (BBB) permeability of small molecules in clinical trials for GBM treatment. Drug delivery in the context of GBM is particularly challenging because the BBB hinders small molecule transport. Therefore, we discuss novel drug delivery methods, including nanoparticles and prodrugs. Given the aggressive nature of GBM and the complexity of targeting the central nervous system, effective treatment options are a major unmet medical need. Identification and validation of biomarkers and drug targets associated with GBM disease progression present an exciting opportunity to improve treatment of this devastating disease.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Animales , Antineoplásicos/administración & dosificación , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Sistemas de Liberación de Medicamentos , Descubrimiento de Drogas , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Proteómica
2.
ACS Chem Biol ; 19(7): 1604-1615, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38980123

RESUMEN

Targeted protein degradation (TPD) is a therapeutic approach that leverages the cell's natural machinery to degrade targets instead of inhibiting them. This is accomplished by using mono- or bifunctional small molecules designed to induce the proximity of target proteins and E3 ubiquitin ligases, leading to ubiquitination and subsequent proteasome-dependent degradation of the target. One of the most significant attributes of the TPD approach is its proposed catalytic mechanism of action, which permits substoichiometric exposure to achieve the desired pharmacological effects. However, apart from one in vitro study, studies supporting the catalytic mechanism of degraders are largely inferred based on potency. A more comprehensive understanding of the degrader catalytic mechanism of action can help aspects of compound development. To address this knowledge gap, we developed a workflow for the quantitative measurement of the catalytic rate of degraders in cells. Comparing a selective and promiscuous BTK degrader, we demonstrate that both compounds function as efficient catalysts of BTK degradation, with the promiscuous degrader exhibiting faster rates due to its ability to induce more favorable ternary complexes. By leveraging computational modeling, we show that the catalytic rate is highly dynamic as the target is depleted from cells. Further investigation of the promiscuous kinase degrader revealed that the catalytic rate is a better predictor of optimal degrader activity toward a specific target compared to degradation magnitude alone. In summary, we present a versatile method for mapping the catalytic activity of any degrader for TPD in cells.


Asunto(s)
Proteolisis , Humanos , Agammaglobulinemia Tirosina Quinasa/metabolismo , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Complejo de la Endopetidasa Proteasomal/metabolismo
3.
ACS Chem Biol ; 18(2): 331-339, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36656921

RESUMEN

Molecular glues (MGs) are monovalent small molecules that induce an interaction between proteins (native or non-native partners) by altering the protein-protein interaction (PPI) interface toward a higher-affinity state. Enhancing the PPI between a protein and E3 ubiquitin ligase can lead to degradation of the partnering protein. Over the past decade, retrospective studies of clinical drugs identified that immunomodulatory drugs (e.g., thalidomide and analogues) and indisulam exhibit a molecular glue effect by driving the interaction between non-native substrates to CRBN and DCAF15 ligases, respectively. Ensuing reports of phenotypic screens focused on MG discovery have suggested that these molecules may be more common than initially anticipated. However, prospective discovery of MGs remains challenging. Thus, expanding the repertoire of MGs will enhance our understanding of principles for prospective design. Herein, we report the results of a CRISPR/Cas9 knockout screen of over 1000 ligases and ubiquitin proteasome system components in a BRD4 degradation assay with a JQ1-based monovalent degrader, compound 1a. We identified DCAF16, a substrate recognition component of the Cul4 ligase complex, as essential for compound activity, and we demonstrate that compound 1a drives the interaction between DCAF16 and BRD2/4 to promote target degradation. Taken together, our data suggest that compound 1a functions as an MG degrader between BRD2/4 and DCAF16 and provides a foundation for further mechanistic dissection to advance prospective MG discovery.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Proteolisis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estudios Retrospectivos , Factores de Transcripción/metabolismo , Unión Proteica , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
4.
Pharmacol Ther ; 210: 107525, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32201313

RESUMEN

Protein folding in the endoplasmic reticulum is an oxidative process that relies on protein disulfide isomerase (PDI) and endoplasmic reticulum oxidase 1 (ERO1). Over 30% of proteins require the chaperone PDI to promote disulfide bond formation. PDI oxidizes cysteines in nascent polypeptides to form disulfide bonds and can also reduce and isomerize disulfide bonds. ERO1 recycles reduced PDI family member PDIA1 using a FAD cofactor to transfer electrons to oxygen. ERO1 dysfunction critically affects several diseases states. Both ERO1 and PDIA1 are overexpressed in cancers and implicated in diabetes and neurodegenerative diseases. Cancer-associated ERO1 promotes cell migration and invasion. Furthermore, the ERO1-PDIA1 interaction is critical for epithelial-to-mesenchymal transition. Co-expression analysis of ERO1A gene expression in cancer patients demonstrated that ERO1A is significantly upregulated in lung adenocarcinoma (LUAD), glioblastoma and low-grade glioma (GBMLGG), pancreatic ductal adenocarcinoma (PAAD), and kidney renal papillary cell carcinoma (KIRP) cancers. ERO1Α knockdown gene signature correlates with knockdown of cancer signaling proteins including IGF1R, supporting the search for novel, selective ERO1 inhibitors for the treatment of cancer. In this review, we explore the functions of ERO1 and PDI to support inhibition of this interaction in cancer and other diseases.


Asunto(s)
Retículo Endoplásmico/enzimología , Glicoproteínas de Membrana/metabolismo , Neoplasias/enzimología , Oxidorreductasas/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Antineoplásicos/uso terapéutico , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/genética , Retículo Endoplásmico/patología , Inhibidores Enzimáticos/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Oxidación-Reducción , Estrés Oxidativo , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/genética , Procolágeno-Prolina Dioxigenasa/antagonistas & inhibidores , Procolágeno-Prolina Dioxigenasa/genética , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Proteína Disulfuro Isomerasas/genética , Pliegue de Proteína , Mapas de Interacción de Proteínas , Transducción de Señal , Transcriptoma
5.
J Med Chem ; 63(18): 10263-10286, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32830969

RESUMEN

Disulfide bond formation is a critical post-translational modification of newly synthesized polypeptides in the oxidizing environment of the endoplasmic reticulum and is mediated by protein disulfide isomerase (PDIA1). In this study, we report a series of α-aminobenzylphenol analogues as potent PDI inhibitors. The lead compound, AS15, is a covalent nanomolar inhibitor of PDI, and the combination of AS15 analogues with glutathione synthesis inhibitor buthionine sulfoximine (BSO) leads to synergistic cell growth inhibition. Using nascent RNA sequencing, we show that an AS15 analogue triggers the unfolded protein response in glioblastoma cells. A BODIPY-labeled analogue binds proteins including PDIA1, suggesting that the compounds are cell-permeable and reach the intended target. Taken together, these findings demonstrate an extensive biochemical characterization of a novel series of highly potent reactive small molecules that covalently bind to PDI.


Asunto(s)
Bencilaminas/farmacología , Inhibidores Enzimáticos/farmacología , Fenoles/farmacología , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Bencilaminas/síntesis química , Bencilaminas/metabolismo , Línea Celular Tumoral , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Glutatión/metabolismo , Humanos , Estructura Molecular , Fenoles/síntesis química , Fenoles/metabolismo , Relación Estructura-Actividad , Respuesta de Proteína Desplegada/efectos de los fármacos
6.
J Med Chem ; 62(7): 3447-3474, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30759340

RESUMEN

Protein disulfide isomerase (PDI) is responsible for nascent protein folding in the endoplasmic reticulum (ER) and is critical for glioblastoma survival. To improve the potency of lead PDI inhibitor BAP2 (( E)-3-(3-(4-hydroxyphenyl)-3-oxoprop-1-en-1-yl)benzonitrile), we designed and synthesized 67 analogues. We determined that PDI inhibition relied on the A ring hydroxyl group of the chalcone scaffold and cLogP increase in the sulfonamide chain improved potency. Docking studies revealed that BAP2 and analogues bind to His256 in the b' domain of PDI, and mutation of His256 to Ala abolishes BAP2 analogue activity. BAP2 and optimized analogue 59 have modest thiol reactivity; however, we propose that PDI inhibition by BAP2 analogues depends on the b' domain. Importantly, analogues inhibit glioblastoma cell growth, induce ER stress, increase expression of G2M checkpoint proteins, and reduce expression of DNA repair proteins. Cumulatively, our results support inhibition of PDI as a novel strategy to treat glioblastoma.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Regulación Alostérica , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Inhibidores Enzimáticos/síntesis química , Glioblastoma/patología , Humanos , Simulación del Acoplamiento Molecular , Mutación , Nitrilos/síntesis química , Nitrilos/química , Nitrilos/farmacología , Proteína Disulfuro Isomerasas/genética , Relación Estructura-Actividad
7.
Org Lett ; 21(7): 2365-2368, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30907598

RESUMEN

A practically useful approach for the cross-dehydrogenative coupling of quinazolin-4-one with simple nonactivated alkanes is reported. The products were smoothly formed under mild reaction conditions, within short reaction time at ambient temperature. The formation of new Csp3-Csp2 bonds occurred at the electron-poor C-2 position of quinazolin-4-one. The approach has the potential to be an important tool for the late-stage functionalization of advanced synthetic intermediates and may find many applications in medicinal chemistry.

8.
Cancer Res ; 79(11): 2923-2932, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30996048

RESUMEN

Patients with glioblastoma multiforme (GBM) survive on average 12 to 14 months after diagnosis despite surgical resection followed by radiotheraphy and temozolomide therapy. Intrinsic or acquired resistance to chemo- and radiotherapy is common and contributes to a high rate of recurrence. To investigate the therapeutic potential of protein disulfide isomerase (PDI) as a target to overcome resistance to chemoradiation, we developed a GBM tumor model wherein conditional genetic ablation of prolyl 4-hydroxylase subunit beta (P4HB), the gene that encodes PDI, can be accomplished. Loss of PDI expression induced the unfolded protein response (UPR) and decreased cell survival in two independent GBM models. Nascent RNA Bru-seq analysis of PDI-depleted cells revealed a decrease in transcription of genes involved in DNA repair and cell-cycle regulation. Activation of the UPR also led to a robust decrease in RAD51 protein expression as a result of its ubiquitination-mediated proteosomal degradation. Clonogenic survival assays demonstrated enhanced killing of GBM cells in response to a combination of PDI knockdown and ionizing radiation (IR) compared with either modality alone, which correlated with a decreased capacity to repair IR-induced DNA damage. Synergistic tumor control was also observed with the combination of PDI inhibition and IR in a mouse xenograft model compared with either single agent alone. These findings provide a strong rationale for the development of PDI inhibitors and their use in combination with DNA damage-inducing, standard-of-care therapies such as IR. SIGNIFICANCE: These findings identify PDIA1 as a therapeutic target in GBM by demonstrating efficacy of its inhibition in combination with radiotherapy through a novel mechanism involving downregulation of DNA repair genes.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/11/2923/F1.large.jpg.


Asunto(s)
Reparación del ADN , Glioblastoma/radioterapia , Proteína Disulfuro Isomerasas/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , Animales , Línea Celular Tumoral , Doxiciclina/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Ratones , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Proteína Disulfuro Isomerasas/genética , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Radiación Ionizante , Fármacos Sensibilizantes a Radiaciones/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Theranostics ; 9(8): 2282-2298, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31149044

RESUMEN

Aberrant overexpression of endoplasmic reticulum (ER)-resident oxidoreductase protein disulfide isomerase (PDI) plays an important role in cancer progression. In this study, we demonstrate that PDI promotes glioblastoma (GBM) cell growth and describe a class of allosteric PDI inhibitors that are selective for PDI over other PDI family members. Methods: We performed a phenotypic screening triage campaign of over 20,000 diverse compounds to identify PDI inhibitors cytotoxic to cancer cells. From this screen, BAP2 emerged as a lead compound, and we assessed BAP2-PDI interactions with gel filtration, thiol-competition assays, and site-directed mutagenesis studies. To assess selectivity, we compared BAP2 activity across several PDI family members in the PDI reductase assay. Finally, we performed in vivo studies with a mouse xenograft model of GBM combining BAP2 and the standard of care (temozolomide and radiation), and identified affected gene pathways with nascent RNA sequencing (Bru-seq). Results: BAP2 and related analogs are novel PDI inhibitors that selectively inhibit PDIA1 and PDIp. Though BAP2 contains a weak Michael acceptor, interaction with PDI relies on Histidine 256 in the b' domain of PDI, suggesting allosteric binding. Furthermore, both in vitro and in vivo, BAP2 reduces cell and tumor growth. BAP2 alters the transcription of genes involved in the unfolded protein response, ER stress, apoptosis and DNA repair response. Conclusion: These results indicate that BAP2 has anti-tumor activity and the suppressive effect on DNA repair gene expression warrants combination with DNA damaging agents to treat GBM.


Asunto(s)
Antineoplásicos/farmacología , Reparación del ADN/efectos de los fármacos , Regulación hacia Abajo , Inhibidores Enzimáticos/farmacología , Glioblastoma/tratamiento farmacológico , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/aislamiento & purificación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/aislamiento & purificación , Humanos , Ratones , Mutagénesis Sitio-Dirigida , Trasplante de Neoplasias , Unión Proteica , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Trasplante Heterólogo , Resultado del Tratamiento
10.
ChemMedChem ; 13(2): 164-177, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29235250

RESUMEN

Protein disulfide isomerase (PDI) is overexpressed in glioblastoma, the most aggressive form of brain cancer, and folds nascent proteins responsible for the progression and spread of the disease. Herein we describe a novel nanomolar PDI inhibitor, pyrimidotriazinedione 35G8, that is toxic in a panel of human glioblastoma cell lines. We performed a medium-throughput 20 000-compound screen of a diverse subset of 1 000 000 compounds to identify cytotoxic small molecules. Cytotoxic compounds were screened for PDI inhibition, and, from the screen, 35G8 emerged as the most cytotoxic inhibitor of PDI. Bromouridine labeling and sequencing (Bru-seq) of nascent RNA revealed that 35G8 induces nuclear factor-like 2 (Nrf2) antioxidant response, endoplasmic reticulum (ER) stress response, and autophagy. Specifically, 35G8 upregulated heme oxygenase 1 and solute carrier family 7 member 11 (SLC7A11) transcription and protein expression and repressed PDI target genes such as thioredoxin-interacting protein 1 (TXNIP) and early growth response 1 (EGR1). Interestingly, 35G8-induced cell death did not proceed via apoptosis or necrosis, but by a mixture of autophagy and ferroptosis. Cumulatively, our data demonstrate a mechanism for a novel PDI inhibitor as a chemical probe to validate PDI as a target for brain cancer.


Asunto(s)
Antineoplásicos/síntesis química , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos y+/metabolismo , Antineoplásicos/farmacología , Proteínas Portadoras/metabolismo , Dominio Catalítico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Hemo-Oxigenasa 1/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Relación Estructura-Actividad , Respuesta de Proteína Desplegada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA