RESUMEN
Heterosis refers to the better performance of cross progeny compared with inbred parents, and its utilization contributes greatly to agricultural production. Several hypotheses have been proposed to explain heterosis mainly including dominance, over-dominance (or pseudo-overdominance) and epistasis. However, systematic dissection and verification of these hypotheses are rarely documented. Here, comparison of heterosis level across different traits showed that the strong heterosis of composite traits (such as yield) could be attributed to the multiplicative effects of moderate heterosis of component traits, whether at the genome or locus level. Yield heterosis was regulated by a complex trait-QTL network that was characterized by obvious centre-periphery structure, hub QTL, complex up/downstream and positive/negative feedback relationships. More importantly, we showed that better-parent heterosis on yield could be produced in a cross of two near-isogenic lines by the pyramiding and complementation of two major heterotic QTL showing partial-dominance on yield components. The causal gene (BnaA9.CYP78A9) of QC14 was identified, and its heterotic effect results from the heterozygous status of a CACTA-like transposable element in its upstream regulatory region, which led to partial dominance at expression and auxin levels, thus resulting in non-additive expression of downstream responsive genes involved in cell cycle and proliferation, eventually leading to the heterosis of cell number. Taken together, the results at the phenotypic, genetic and molecular levels were highly consistent, which demonstrated that the pyramiding effect of heterotic QTL and the multiplicative effect of individual component traits could well explain substantial parts of yield heterosis in oilseed rape. These results provide in-depth insights into the genetic architecture and molecular mechanism of yield heterosis.
Asunto(s)
Vigor Híbrido , Sitios de Carácter Cuantitativo , Vigor Híbrido/genética , Mapeo Cromosómico , Sitios de Carácter Cuantitativo/genética , Fenotipo , HeterocigotoRESUMEN
In seed-bearing plants, the ovule ("small egg") is the organ within the gynoecium that develops into a seed after fertilization. The gynoecium located in the inner compartment of the flower turns into a fruit. The number of ovules in the ovary determines the upper limit or the potential of seed number per fruit in plants, greatly affecting the final seed yield. Ovule number is an important adaptive characteristic for plant evolution and an agronomic trait for crop improvement. Therefore, understanding the mechanism and pathways of ovule number regulation becomes a significant research aspect in plant science. This review summarizes the ovule number regulators and their regulatory mechanisms and pathways. Specially, an integrated molecular network for ovule number regulation is constructed, in which phytohormones played a central role, followed by transcription factors, enzymes, other protein and micro-RNA. Of them, AUX, BR and CK are positive regulator of ovule number, whereas GA acts negatively on it. Interestingly, many ovule number regulators have conserved functions across several plant taxa, which should be the targets of genetic improvement via breeding or gene editing. Many ovule number regulators identified to date are involved in the diverse biological process, such as ovule primordia formation, ovule initiation, patterning, and morphogenesis. The relations between ovule number and related characteristics/traits especially of gynoecium/fruit size, ovule fertility, and final seed number, as well as upcoming research questions, are also discussed. In summary, this review provides a general overview of the present finding in ovule number regulation, which represents a more comprehensive and in-depth cognition on it.
Asunto(s)
Arabidopsis/anatomía & histología , Óvulo Vegetal/anatomía & histología , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Óvulo Vegetal/genética , Reguladores del Crecimiento de las Plantas/genética , Semillas/citología , Factores de Transcripción/metabolismoRESUMEN
Silique number is the most important component of yield in rapeseed (Brassica napus L.). To dissect the mechanism underlying the natural variation of silique number in rapeseed germplasm, a series of studies were performed. A panel of 331 core lines was employed to genome-wide association study (GWAS), and 27 loci (including 20 novel loci) were identified. The silique number difference between the more- and fewer-silique lines can be attributed to the accumulative differences in flower number and silique setting rate. Each of them accounted for 75.2% and 24.8%, respectively. The silique number was highly associated with the total photosynthesis and biomass. Microscopic analysis showed that the difference between extremely more- and fewer-silique lines normally occurred at the amount of flower bud but not morphology. Transcriptome analysis of shoot apical meristem (SAM) suggested that most of enriched groups were associated with the auxin biosynthesis/metabolism, vegetative growth and nutrition/energy accumulation. By integrating GWAS and RNA-seq results, six promising candidate genes were identified, and some of them were related to biomass accumulation. In conclusion, the natural variation of silique number is largely affected by the biomass and nutrition accumulation, which essentially reflects the positive regulatory relationship between the source and sink. Our study provides a comprehensive and systematic explanation for natural variation of silique number in rapeseed, which provides a foundation for its improvement.
Asunto(s)
Brassica napus , Genes de Plantas , Estudio de Asociación del Genoma Completo , Brassica napus/genética , Brassica napus/metabolismo , Perfilación de la Expresión Génica , Genes de Plantas/genéticaRESUMEN
Fruit is seed-bearing structures specific to angiosperm that form from the gynoecium after flowering. Fruit size is an important fitness character for plant evolution and an agronomical trait for crop domestication/improvement. Despite the functional and economic importance of fruit size, the underlying genes and mechanisms are poorly understood, especially for dry fruit types. Improving our understanding of the genomic basis for fruit size opens the potential to apply gene-editing technology such as CRISPR/Cas to modulate fruit size in a range of species. This review examines the genes involved in the regulation of fruit size and identifies their genetic/signalling pathways, including the phytohormones, transcription and elongation factors, ubiquitin-proteasome and microRNA pathways, G-protein and receptor kinases signalling, arabinogalactan and RNA-binding proteins. Interestingly, different plant taxa have conserved functions for various fruit size regulators, suggesting that common genome edits across species may have similar outcomes. Many fruit size regulators identified to date are pleiotropic and affect other organs such as seeds, flowers and leaves, indicating a coordinated regulation. The relationships between fruit size and fruit number/seed number per fruit/seed size, as well as future research questions, are also discussed.
Asunto(s)
Frutas , Edición Génica , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Domesticación , Flores , Frutas/genéticaRESUMEN
Seed size/weight is one of the key traits related to plant domestication and crop improvement. In rapeseed (Brassica napus L.) germplasm, seed weight shows extensive variation, but its regulatory mechanism is poorly understood. To identify the key mechanism of seed weight regulation, a systematic comparative study was performed. Genetic, morphological and cytological evidence showed that seed weight was controlled by maternal genotype, through the regulation of seed size mainly via cell number. The physiological evidence indicated that differences in the pod length might result in differences in pod wall photosynthetic area, carbohydrates and the final seed weight. We also identified two pleiotropic major quantitative trait loci that acted indirectly on seed weight via their effects on pod length. RNA-seq results showed that genes related to pod development and hormones were significantly differentially expressed in the pod wall; genes related to development, cell division, nutrient reservoir and ribosomal proteins were all up-regulated in the seeds of the large-seed pool. Finally, we proposed a potential seed weight regulatory mechanism that is specific to rapeseed and novel in plants. The results demonstrate a causal link between the size of the pod (mother, source) and the seed (offspring, sink) in rapeseed, which provides novel insight into the maternal control of seed weight and will open a new research field in plants.
Asunto(s)
Brassica napus/genética , Sitios de Carácter Cuantitativo/genética , Brassica napus/crecimiento & desarrollo , Brassica napus/fisiología , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/fisiología , Genotipo , Fenotipo , Fotosíntesis , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/fisiologíaRESUMEN
Allotetraploid oilseed rape (Brassica napus L.) is an agriculturally important crop. Cultivation and breeding of B. napus by humans has resulted in numerous genetically diverse morphotypes with optimized agronomic traits and ecophysiological adaptation. To further understand the genetic basis of diversification and adaptation, we report a draft genome of an Asian semi-winter oilseed rape cultivar 'ZS11' and its comprehensive genomic comparison with the genomes of the winter-type cultivar 'Darmor-bzh' as well as two progenitors. The integrated BAC-to-BAC and whole-genome shotgun sequencing strategies were effective in the assembly of repetitive regions (especially young long terminal repeats) and resulted in a high-quality genome assembly of B. napus 'ZS11'. Within a short evolutionary period (~6700 years ago), semi-winter-type 'ZS11' and the winter-type 'Darmor-bzh' maintained highly genomic collinearity. Even so, certain genetic differences were also detected in two morphotypes. Relative to 'Darmor-bzh', both two subgenomes of 'ZS11' are closely related to its progenitors, and the 'ZS11' genome harbored several specific segmental homoeologous exchanges (HEs). Furthermore, the semi-winter-type 'ZS11' underwent potential genomic introgressions with B. rapa (Ar ). Some of these genetic differences were associated with key agronomic traits. A key gene of A03.FLC3 regulating vernalization-responsive flowering time in 'ZS11' was first experienced HE, and then underwent genomic introgression event with Ar , which potentially has led to genetic differences in controlling vernalization in the semi-winter types. Our observations improved our understanding of the genetic diversity of different B. napus morphotypes and the cultivation history of semi-winter oilseed rape in Asia.
Asunto(s)
Brassica napus/genética , Brassica/genética , Variación Genética , Genoma de Planta/genética , Genómica , Secuencia de Aminoácidos , Evolución Biológica , Cruzamiento , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo , Poliploidía , Alineación de Secuencia , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: As the most important yield component in rapeseed (Brassica napus L.), pod number is determined by a series of successive growth and development processes. Pod number shows extensive variation in rapeseed natural germplasm, which is valuable for genetic improvement. However, the genetic and especially the molecular mechanism for this kind of variation are poorly understood. In this study, we conducted QTL mapping and RNA sequencing, respectively, using the BnaZNRIL population and its two parental cultivars Zhongshuang11 and No.73290 which showed significant difference in pod number, primarily due to the difference in floral organ number. RESULT: A total of eight QTLs for pod number were identified using BnaZNRIL population with a high-density SNP linkage map, each was distributed on seven linkage groups and explained 5.8-11.9% of phenotypic variance. Then, they were integrated with those previously detected in BnaZNF2 population (deriving from same parents) and resulted in 15 consensus-QTLs. Of which, seven QTLs were identical to other studies, whereas the other eight should be novel. RNA sequencing of the shoot apical meristem (SAM) at the formation stage of floral bud primordia identified 9135 genes that were differentially expressed between the two parents. Gene ontology (GO) analysis showed that the top two enriched groups were S-assimilation, providing an essential nutrient for the synthesis of diverse metabolites, and polyamine metabolism, serving as second messengers that play an essential role in flowering genes initiation. KEGG analysis showed that the top three overrepresented pathways were carbohydrate (707 genes), amino acid (390 genes) and lipid metabolisms (322 genes). In silico mapping showed that 647 DEGs were located within the confidence intervals of 15 consensus QTLs. Based on annotations of Arabidopsis homologs corresponding to DEGs, nine genes related to meristem growth and development were considered as promising candidates for six QTLs. CONCLUSION: In this study, we discovered the first repeatable major QTL for pod number in rapeseed. In addition, RNA sequencing was performed for SAM in rapeseed, which provides new insights into the determination of floral organ number. Furthermore, the integration of DEGs and QTLs identified promising candidates for further gene cloning and mechanism study.
Asunto(s)
Brassica napus/crecimiento & desarrollo , Brassica napus/genética , Mapeo Cromosómico/métodos , Sitios de Carácter Cuantitativo/genética , Análisis de Secuencia de ARN , Perfilación de la Expresión Génica , Anotación de Secuencia Molecular , Transcripción GenéticaRESUMEN
BACKGROUND: Seed weight (SW) and silique length (SL) are important determinants of the yield potential in rapeseed (Brassica napus L.). However, the genetic basis of both traits is poorly understood. The main objectives of this study were to dissect the genetic basis of SW and SL in rapeseed through the preliminary mapping of quantitative trait locus (QTL) by linkage analysis and fine mapping of the target major QTL by regional association analysis. RESULTS: Preliminary linkage mapping identified thirteen and nine consensus QTLs for SW and SL, respectively. These QTLs explained 0.7-67.1% and 2.1-54.4% of the phenotypic variance for SW and SL, respectively. Of these QTLs, three pairs of SW and SL QTLs were co-localized and integrated into three unique QTLs. In addition, the significance level and genetic effect of the three co-localized QTLs for both SW and SL showed great variation before and after the conditional analysis. Moreover, the allelic effects of the three QTLs for SW were highly consistent with those for SL. Two of the three co-localized QTLs, uq.A09-1 (mean R(2) = 20.1% and 19.0% for SW and SL, respectively) and uq.A09-3 (mean R(2) = 13.5% and 13.2% for SW and SL, respectively), were detected in all four environments and showed the opposite additive-effect direction. These QTLs were validated and fine mapped (their confidence intervals were narrowed down from 5.3 cM to 1 cM for uq.A09-1 and 13.2 cM to 2.5 cM for uq.A09-3) by regional association analysis with a panel of 576 inbred lines, which has a relatively rapid linkage disequilibrium decay (0.3 Mb) in the target QTL region. CONCLUSIONS: A few QTLs with major effects and several QTLs with moderate effects might contribute to the natural variation of SW and SL in rapeseed. The meta-, conditional and allelic effect analyses suggested that pleiotropy, rather than tight linkage, was the genetic basis of the three pairs of co-localized of SW and SL QTLs. Regional association analysis was an effective and highly efficient strategy for the direct fine mapping of target major QTL identified by preliminary linkage mapping.
Asunto(s)
Brassica napus/genética , Ligamiento Genético , Pleiotropía Genética , Mapeo Físico de Cromosoma , Sitios de Carácter Cuantitativo/genética , Semillas/anatomía & histología , Semillas/genética , Alelos , Segregación Cromosómica/genética , Cruzamientos Genéticos , Genoma de Planta/genética , Desequilibrio de Ligamiento/genética , Repeticiones de Microsatélite/genética , Tamaño de los Órganos/genética , FenotipoRESUMEN
KEY MESSAGE: This report describes an integrative analysis of seed-oil-content quantitative trait loci (QTL) in Brassica napus , using a high-density genetic map to align QTL among different populations. Rapeseed (Brassica napus) is an important source of edible oil and sustainable energy. Given the challenge involved in using only a few genes to substantially increase the oil content of rapeseed without affecting the fatty acid composition, exploitation of a greater number of genetic loci that regulate the oil content variation among rapeseed germplasm is of fundamental importance. In this study, we investigated variation in the seed-oil content among two related genetic populations of Brassica napus, the TN double-haploid population and its derivative reconstructed-F2 population. Each population was grown in multiple experiments under different environmental conditions. Mapping of quantitative trait loci (QTL) identified 41 QTL in the TN populations. Furthermore, of the 20 pairs of epistatic interaction loci detected, approximately one-third were located within the QTL intervals. The use of common markers on different genetic maps and the TN genetic map as a reference enabled us to project QTL from an additional three genetic populations onto the TN genetic map. In summary, we used the TN genetic map of the B. napus genome to identify 46 distinct QTL regions that control seed-oil content on 16 of the 19 linkage groups of B. napus. Of these, 18 were each detected in multiple populations. The present results are of value for ongoing efforts to breed rapeseed with high oil content, and alignment of the QTL makes an important contribution to the development of an integrative system for genetic studies of rapeseed.
Asunto(s)
Brassica napus/genética , Aceites de Plantas/metabolismo , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico , Epistasis Genética , Sitios Genéticos , Variación Genética , Genética de Población , Genoma de Planta/genética , FenotipoRESUMEN
⢠Glucosinolates are a major class of secondary metabolites found in the Brassicaceae, whose degradation products are proving to be increasingly important for human health and in crop protection. ⢠The genetic and metabolic basis of glucosinolate accumulation was dissected through analysis of total glucosinolate concentration and its individual components in both leaves and seeds of a doubled-haploid (DH) mapping population of oilseed rape/canola (Brassica napus). ⢠The quantitative trait loci (QTL) that had an effect on glucosinolate concentration in either or both of the organs were integrated, resulting in 105 metabolite QTL (mQTL). Pairwise correlations between individual glucosinolates and prior knowledge of the metabolic pathways involved in the biosynthesis of different glucosinolates allowed us to predict the function of genes underlying the mQTL. Moreover, this information allowed us to construct an advanced metabolic network and associated epistatic interactions responsible for the glucosinolate composition in both leaves and seeds of B. napus. ⢠A number of previously unknown potential regulatory relationships involved in glucosinolate synthesis were identified and this study illustrates how genetic variation can affect a biochemical pathway.
Asunto(s)
Brassica napus/genética , Brassica napus/metabolismo , Glucosinolatos/metabolismo , Redes y Vías Metabólicas/genética , Hojas de la Planta/metabolismo , Sitios de Carácter Cuantitativo/genética , Semillas/metabolismo , Arabidopsis/genética , Biología Computacional , Epistasis Genética , Genes de Plantas/genética , Ligamiento Genético , Humanos , Fenotipo , Hojas de la Planta/genética , Semillas/genéticaRESUMEN
BACKGROUND: JAZ subfamily plays crucial roles in growth and development, stress, and hormone responses in various plant species. Despite its importance, the structural and functional analyses of the JAZ subfamily in Brassica napus are still limited. RESULTS: Comparing to the existence of 12 JAZ genes (AtJAZ1-AtJAZ12) in Arabidopsis, there are 28, 31, and 56 JAZ orthologues in the reference genome of B. rapa, B. oleracea, and B. napus, respectively, in accordance with the proven triplication events during the evolution of Brassicaceae. The phylogenetic analysis showed that 127 JAZ proteins from A. thaliana, B. rapa, B. oleracea, and B. napus could fall into five groups. The structure analysis of all 127 JAZs showed that these proteins have the common motifs of TIFY and Jas, indicating their conservation in Brassicaceae species. In addition, the cis-element analysis showed that the main motif types are related to phytohormones, biotic and abiotic stresses. The qRT-PCR of the representative 11 JAZ genes in B. napus demonstrated that different groups of BnJAZ individuals have distinct patterns of expression under normal conditions or treatments with distinctive abiotic stresses and phytohormones. Especially, the expression of BnJAZ52 (BnC08.JAZ1-1) was significantly repressed by abscisic acid (ABA), gibberellin (GA), indoleacetic acid (IAA), polyethylene glycol (PEG), and NaCl treatments, while induced by methyl jasmonate (MeJA), cold and waterlogging. Expression pattern analysis showed that BnC08.JAZ1-1 was mainly expressed in the vascular bundle and young flower including petal, pistil, stamen, and developing ovule, but not in the stem, leaf, and mature silique and seed. Subcellular localization showed that the protein was localized in the nucleus, in line with its orthologues in Arabidopsis. Overexpression of BnC08.JAZ1-1 in Arabidopsis resulted in enhanced seed weight, likely through regulating the expression of the downstream response genes involved in the ubiquitin-proteasome pathway and phospholipid metabolism pathway. CONCLUSIONS: The systematic identification, phylogenetic, syntenic, and expression analyses of BnJAZs subfamily improve our understanding of their roles in responses to stress and phytohormone in B. napus. In addition, the preliminary functional validation of BnC08.JAZ1-1 in Arabidopsis demonstrated that this subfamily might also play a role in regulating seed weight.
RESUMEN
Oilseed rape is one of the world's largest oil and industrial crops, providing humans with various products, such as vegetable oil and biofuel. Ovules are the direct precursors of seeds, and ovule number per ovary (ONPO) largely determines seed number per fruit that affects both yield and fitness of seed crops. The ONPO shows wide variation in oilseed rape, whereas the underlying genes and mechanisms are poorly known. The present study performed the genetic, physiological and transcriptomic analyses of ovule number per ovary using an association panel and the extreme lines. The ONPO of 327 accessions planted in four environments showed a large variation from 19.2 to 43.8, indicating a great potential for the further genetic improvement of ovule number. The genome-wide association study (GWAS) identified a total of 43 significant SNP markers. Further, these SNPs were integrated into 18 association loci, which were distributed on chromosomes A01, A03, A06, A07, A09, C01, C03, C06, C07, and C09, explaining 4.3-11.5% of the phenotypic variance. The ONPO decreased as their appearance order on the inflorescence and was associated with the level of several types of endogenous phytohormones but not related to leaf area and photosynthetic rate. Comparative transcriptomic analysis identified a total of 4,449 DEGs enriched in 30 classes, including DNA, RNA, protein, signaling, transport, development, cell wall, lipid metabolism, and secondary metabolism. Nearly half of DEGs were involved in the known pathways in regulating ovule number, of which 12 were homologous to know ovule number regulating genes, indicating a strong link between the identified DEGs and ovule number. A total of 73 DEGs were located within the genomic regions of association loci, of which six were identified as candidates based on functional annotation. These results provide useful information for the further genetic improvement of ovule and seed number in oilseed rape.
RESUMEN
Branch architecture is an important factor influencing rapeseed planting density, mechanized harvest, and yield. However, its related genes and regulatory mechanisms remain largely unknown. In this study, branch angle (BA) and branch dispersion degree (BD) were used to evaluate branch architecture. Branch angle exhibited a dynamic change from an increase in the early stage to a gradual decrease until reaching a stable state. Cytological analysis showed that BA variation was mainly due to xylem size differences in the vascular bundle of the branch junction. The phenotypic analysis of 327 natural accessions revealed that BA in six environments ranged from 24.3° to 67.9°, and that BD in three environments varied from 4.20 cm to 21.4 cm, respectively. A total of 115 significant loci were detected through association mapping in three models (MLM, mrMLM, and FarmCPU), which explained 0.53%-19.4% of the phenotypic variations. Of them, 10 loci were repeatedly detected in different environments and models, one of which qBAD.A03-2 was verified as a stable QTL using a secondary segregation population. Totally, 1066 differentially expressed genes (DEGs) were identified between branch adaxial- and abaxial- sides from four extremely large or small BA/BD accessions through RNA sequencing. These DEGs were significantly enriched in the pathways related to auxin biosynthesis and transport as well as cell extension such as indole alkaloid biosynthesis, other glycan degradation, and fatty acid elongation. Four known candidate genes BnaA02g16500D (PIN1), BnaA03g10430D (PIN2), BnaC03g06250D (LAZY1), and BnaC06g20640D (ARF17) were identified by both GWAS and RNA-seq, all of which were involved in regulating the asymmetric distribution of auxins. Our identified association loci and candidate genes provide a theoretical basis for further study of gene cloning and genetic improvement of branch architecture.
RESUMEN
BACKGROUND: Yield is the most important and complex trait that is influenced by numerous relevant traits with very complicated interrelations. While there are a large number of studies on the phenotypic relationship and genetic basis of yield traits, systematic studies with further dissection focusing on yield are limited. Therefore, there is still lack of a comprehensive and in-depth understanding of the determination of yield. RESULTS: In this study, yield was systematically dissected at the phenotypic, genetic to molecular levels in oilseed rape (Brassica napus L.). The analysis of correlation, network, and principal component for 21 traits in BnaZN-RIL population showed that yield was determined by a complex trait network with key contributors. The analysis of the constructed high-density single nucleotide polymorphism (SNP) linkage map revealed the concentrated distribution of distorted and heterozygous markers, likely due to selection on genes controlling the growth period and yield heterosis. A total of 134 consensus quantitative trait loci (QTL) were identified for 21 traits, of which all were incorporated into an interconnecting QTL network with dozens of hub-QTL. Four representative hub-QTL were further dissected to the target or candidate genes that governed the causal relationships between the relevant traits. CONCLUSIONS: The highly consistent results at the phenotypic, genetic, and molecular dissecting demonstrated that yield was determined by a multilayer composite network that involved numerous traits and genes showing complex up/down-stream and positive/negative regulation. This provides a systematic view, further insight, and exact roadmap for yield determination, which represents a significant advance toward the understanding and dissection of complex traits.
RESUMEN
Yield is the most important and complex trait for the genetic improvement of crops. Although much research into the genetic basis of yield and yield-associated traits has been reported, in each such experiment the genetic architecture and determinants of yield have remained ambiguous. One of the most intractable problems is the interaction between genes and the environment. We identified 85 quantitative trait loci (QTL) for seed yield along with 785 QTL for eight yield-associated traits, from 10 natural environments and two related populations of rapeseed. A trait-by-trait meta-analysis revealed 401 consensus QTL, of which 82.5% were clustered and integrated into 111 pleiotropic unique QTL by meta-analysis, 47 of which were relevant for seed yield. The complexity of the genetic architecture of yield was demonstrated, illustrating the pleiotropy, synthesis, variability, and plasticity of yield QTL. The idea of estimating indicator QTL for yield QTL and identifying potential candidate genes for yield provides an advance in methodology for complex traits.
Asunto(s)
Brassica napus/genética , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Sitios de Carácter Cuantitativo/genética , Biomasa , Brassica napus/crecimiento & desarrollo , Cruzamientos Genéticos , Flores/genética , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Marcadores Genéticos/genética , Genoma de Planta/genética , Genotipo , Fenotipo , Semillas/genética , Semillas/crecimiento & desarrollo , Factores de TiempoRESUMEN
Seed number is a key character/trait tightly related to the plant fitness/evolution and crop domestication/improvement. The seed number per silique (SNPS) shows a huge variation from several to more than 30, however the underlying regulatory mechanisms are poorly known, which has hindered its improvement. To answer this question, several representative lines with extreme SNPS were previously subjected to systematic genetic and cytological analyses. The results showed that the natural variation of seed number per silique is mainly controlled by maternal and embryonic genotype, which are co-determined by ovule number per ovary, fertile ovule ratio, ovule fertilization rate, and fertilized ovule development rate. More importantly, we also mapped two repeatable quantitative trait loci (QTLs) for SNPS using the F2:3 population derived from Zhongshuang11 and No. 73290, of which the major QTL qSN.A6 has been fine-mapped. In the current study, the near-isogenic lines (NILs) of qSN.A7 were successfully developed by the successive backcross of F1 with Zhongshuang11. First, the effect of qSN.A7 was validated by evaluating the SNPS of two types of homozygous NILs from BC3F2 population, which showed a significant difference of 2.23 on average. Then, qSN.A7 was successfully fine-mapped from the original 4.237 to 1.389 Mb, using a BC4F2 segregating population of 2,551 individuals. To further clarify the regulatory mechanism of qSN.A7, the two types of homologous NILs were subjected to genetic and cytological analyses. The results showed that the difference in SNPS between the two homologous NILs was determined by the embryonic genotypic effect. Highly accordant with this, no significant difference was observed in ovule number per ovary, ovule fertility, fertilization rate, and pollen fertility between the two homologous NILs. Therefore, the regulatory mechanism of qSN.A7 is completely different from the cloned qSS.C9 and qSN.A6. These results will advance the understanding of SNPS and facilitate gene cloning and molecular breeding in Brassica napus.
RESUMEN
To reveal the genetic basis of potassium use efficiency (KUE) in rapeseed, root morphology (RM), biomass and KUE-related traits were measured in a recombinant inbred line population with 175 F7 lines that were subjected to high-potassium (HK) and low-potassium (LK) treatments by hydroponics. A total of 109 significant QTLs were identified to be associated with the examined traits. Sixty-one of these QTLs were integrated into nine stable QTLs. The higher heritability for RM and biomass traits and lower heritability for KUE-related traits, as well as nine stable QTLs for RM traits and only two for KUE-related traits, suggested that regulating RM traits would be more effective than selecting KUE traits directly to improve KUE by marker-assisted selection. Furthermore, the integration of stable QTLs identified in the HK, LK, high-nitrogen (HN) and low-nitrogen (LN) conditions gave 10 QTL clusters. Seven of these clusters were classified into major QTLs that explained 7.4%-23.7% of the total phenotypic variation. Five of the major QTL clusters were detected under all of the treated conditions, and four clusters were specifically detected under the LK and LN conditions. These common and specific QTL clusters may be useful for the simultaneous improvement of multiple traits by marker-assisted selection.
Asunto(s)
Brassica napus/genética , Brassica napus/metabolismo , Raíces de Plantas/metabolismo , Potasio/metabolismo , Aceite de Brassica napus/metabolismo , Análisis de Varianza , Mapeo Cromosómico , Resistencia a la Enfermedad , Ligamiento Genético , Hidroponía , Nitrógeno/metabolismo , Fenotipo , Sitios de Carácter Cuantitativo/genéticaRESUMEN
As the major determinant for nutrient uptake, root system architecture (RSA) has a massive impact on nitrogen use efficiency (NUE). However, little is known the molecular control of RSA as related to NUE in rapeseed. Here, a rapeseed recombinant inbred line population (BnaZNRIL) was used to investigate root morphology (RM, an important component for RSA) and NUE-related traits under high-nitrogen (HN) and low-nitrogen (LN) conditions by hydroponics. Data analysis suggested that RM-related traits, particularly root size had significantly phenotypic correlations with plant dry biomass and N uptake irrespective of N levels, but no or little correlation with N utilization efficiency (NUtE), providing the potential to identify QTLs with pleiotropy or specificity for RM- and NUE-related traits. A total of 129 QTLs (including 23 stable QTLs, which were repeatedly detected at least two environments or different N levels) were identified and 83 of them were integrated into 22 pleiotropic QTL clusters. Five RM-NUE, ten RM-specific and three NUE-specific QTL clusters with same directions of additive-effect implied two NUE-improving approaches (RM-based and N utilization-based directly) and provided valuable genomic regions for NUE improvement in rapeseed. Importantly, all of four major QTLs and most of stable QTLs (20 out of 23) detected here were related to RM traits under HN and/or LN levels, suggested that regulating RM to improve NUE would be more feasible than regulating N efficiency directly. These results provided the promising genomic regions for marker-assisted selection on RM-based NUE improvement in rapeseed.
RESUMEN
Seed number is one of the key traits related to plant evolution/domestication and crop improvement/breeding. In rapeseed germplasm, the seed number per pod (SNPP) shows a very wide variation from several to nearly 30; however, the underlying causations/mechanisms for this variation are poorly known. In the current study, the genetic and cytological bases for the natural variation of SNPP in rapeseed was firstly and systematically investigated using the representative four high-SNPP and five low-SNPP lines. The results of self- or cross-pollination experiment between the high- and low-SNPP lines showed that the natural variation of SNPP was mainly controlled by maternal effect (mean = 0.79), followed by paternal effect (mean = 0.21). Analysis of the data using diploid seed embryo-cytoplasmic-maternal model further showed that the maternal genotype, embryo, and cytoplasm effects, respectively, explained 47.6, 35.2, and 7.5% of the genetic variance. In addition, the analysis of combining ability showed that for the SNPP of hybrid F1 was mainly determined by the general combining ability of parents (63.0%), followed by special combining ability of parental combination (37.0%). More importantly, the cytological observation showed that the SNPP difference between the high- and low-SNPP lines was attributable to the accumulative differences in its components. Of which, the number of ovules, the proportion of fertile ovules, the proportion of fertile ovules to be fertilized, and the proportion of fertilized ovules to develop into seeds accounted for 30.7, 18.2, 7.1, and 43.9%, respectively. The accordant results of both genetic and cytological analyses provide solid evidences and systematic insights to further understand the mechanisms underlying the natural variation of SNPP, which will facilitate the development of high-yield cultivars in rapeseed.
RESUMEN
Seed number per pod (SNPP) is one of the major yield components and breeding targets in rapeseed that shows great variation and is invaluable for genetic improvement. To elucidate the genetic architecture and uncover the mechanism of SNPP, we identified five quantitative trait loci (QTLs) using the BnaZNRIL population, which were integrated with those of previous studies by physical map to demonstrate a complex and relatively complete genetic architecture of SNPP. A major QTL, qSN.A6, was successfully fine-mapped from 1910 to 267 kb using near-isogenic line (NIL). In addition, qSN.A6 exhibited an antagonistic pleiotropy on seed weight (SW), which is caused by a physiological interaction in which SNPP acts "upstream" of SW. Because the negative effect of qSN.A6 on SW cannot fully counteract its positive effect on SNPP, it also enhanced the final yield (17.4%), indicating its great potential for utilization in breeding. The following genetic and cytological experiments further confirmed that the different rate of ovule abortion was responsible for the ~5 seed difference between Zhongshuang11 and NIL-qSN.A6. This systematic approach to dissecting the comprehensive genetic architecture of SNPP and characterizing the underlying mechanism has advanced the understanding of SNPP and will facilitate the development of high-yield cultivars.