Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Electrophoresis ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430203

RESUMEN

To explore the optoelectronic wetting droplet transport mechanism, a transient numerical model of optoelectrowetting (OEW) under the coupling of flow and electric fields is established. The study investigates the impact of externally applied voltage, dielectric constant of the dielectric layer, and interfacial tension between the two phases on the dynamic behavior of droplets during transport. The proposed model employs an improved Young's equation to calculate the instantaneous voltage and contact angle of the droplet on the dielectric layer. Results indicate that, under the influence of OEW, significant variations in the interface contact angle of droplets occur in bright and dark regions, inducing droplet movement. Moreover, the dynamic behavior of droplet transport is closely associated with various parameters, including externally applied voltage, dielectric layer material, and interfacial tension between the two phases, all of which impact the contact angle and, consequently, the transport process. By summarizing the influence patterns of the three key parameters studied, the optimization of droplet transport performance is achieved. The study employs two-dimensional simulation models to emulate the droplet motion under the influence of the electric field, investigating the OEW droplet transport mechanism. The continuous movement of droplets involves three stages: initial wetting, continuous transport, and reaching a steady position. The findings contribute theoretical support for the efficient design of digital microfluidic devices for OEW droplet movement and the selection of key parameters for droplet manipulation.

2.
Anal Chem ; 95(34): 12875-12883, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37581609

RESUMEN

Single-cell analysis has important implications for understanding the specificity of cells. To analyze the specificity of rare cells in complex blood and biopsy samples, selective lysis of target single cells is pivotal but difficult. Microfluidics, particularly droplet microfluidics, has emerged as a promising tool for single-cell analysis. In this paper, we present a smart droplet microfluidic system that allows for single-cell selective lysis and real-time sorting, aided by the techniques of microinjection and image recognition. A custom program evolved from Python is proposed for recognizing target droplets and single cells, which also coordinates the operation of various parts in a whole microfluidic system. We have systematically investigated the effects of voltage and injection pressure applied to the oil-water interface on droplet microinjection. An efficient and selective droplet injection scheme with image feedback has been demonstrated, with an efficiency increased dramatically from 2.5% to about 100%. Furthermore, we have proven that the cell lysis solution can be selectively injected into target single-cell droplets. Then these droplets are shifted into the sorting area, with an efficiency for single K562 cells reaching up to 73%. The system function is finally explored by introducing complex cell samples, namely, K562 cells and HUVECs, with a success rate of 75.2% in treating K562 cells as targets. This system enables automated single-cell selective lysis without the need for manual handling and sheds new light on the cooperation with other detection techniques for a broad range of single-cell analysis.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Humanos , Microfluídica/métodos , Microinyecciones , Hidrolasas , Análisis de la Célula Individual/métodos , Células K562 , Técnicas Analíticas Microfluídicas/métodos
3.
Electrophoresis ; 44(23): 1847-1858, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37401641

RESUMEN

In recent years, researchers have made significant strides in understanding the ion transport characteristics of nanochannels, resulting in the development of various materials, modifications, and shapes of nano ion channel membranes. The aim is to create a nanochannel membrane with optimal ion transport properties and high stability by adjusting factors, such as channel size, surface charge, and wettability. However, during the nanochannel film fabrication process, controlling the geometric structures of nanochannels can be challenging. Therefore, exploring the stability of nanochannel performance under different geometric structures has become an essential aspect of nanochannel design. This article focuses on the study of cylindrical nanochannel structures, which are categorized based on the different methods for generating bipolar surface charges on the channel's inner surface, either through pH gradient effects or different material types. Through these two approaches, the study designed and analyzed the stability of ion transport characteristics in two nanochannel models under varying geometric structures. Our findings indicate that nanochannels with bipolar properties generated through pH gradients demonstrate more stable ion selection, whereas nanochannels with bipolar properties generated through different materials show stronger stability in ion rectification. This conclusion provides a theoretical foundation for future nanochannel designs.


Asunto(s)
Canales Iónicos , Transporte Iónico , Concentración de Iones de Hidrógeno
4.
Electrophoresis ; 43(20): 1984-1992, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35581166

RESUMEN

Inspired by nature, the research of functionalized nanoparticles and nanodevices has been in-depth developed in recent years. In this paper, we theoretically studied the interaction between functional polyelectrolyte brush layer-modified nanoparticles and a silica flat substrate. Based on the Poisson-Nernst-Planck equations, the mathematical model is established. The changes of the volume charge density and electric field energy density when the nanoparticle interacts with the silica flat substrate under multi-ions regulation were investigated. The results show that when there is a strong interaction between the silica flat substrate and nanoparticles, such as the distances between the nanoparticle and silica flat substrate, which are 2 or 5 nm, the isoelectric point shift under the influence of silica flat substrate and the total charge density in the brush layer is jointly controlled by the cations in the solution and the volume charge density of the brush layer. With the increase of the distances between the nanoparticle and silica flat substrate, the regulation of the volume charge density of the brush layer dominates. These results will provide guidance for the movement mechanism of functionalized nanoparticles in silica nanochannels.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Cationes , Polielectrolitos , Propiedades de Superficie
5.
Electrophoresis ; 43(21-22): 2175-2183, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36209396

RESUMEN

Due to its characteristics of noncontact, non-damage, high flux, and easy-to-achieve flexible manipulation, optically induced dielectrophoresis (ODEP) technology has been employed to manipulate microspherical biological particles, including separation, enrichment, capture, arrangement, and fusion. However, in nature, biomolecules are morphologically diverse, and some of them are rodlike. In order to illustrate the electrodynamics of rodlike particles under the action of ODEP, a transient multi-physical field coupling model of ODEP chip under the hypothesis of electrical double layer thin layer was established in this paper. The arbitrary Lagrangian-Eulerian method is used to track single-rod particle in the strong coupled flow field and electric field simultaneously. The influence of several key factors, including the applied alternating current (AC) electric voltage, the width of optical bright area, and the initial position of particle, on the trajectory of particle center was analyzed in positive dielectrophoresis (DEP) action and negative DEP action, respectively. Especially, the planar motion process of rodlike particles was discussed together. The research results reveal the electrodynamics behavior of rodlike particles based on the action of ODEP, which may provide theoretical support for the further design of rodlike biological cells manipulation chip based on AC ODEP technology in the future.


Asunto(s)
Electroforesis , Electroforesis/métodos
6.
Electrophoresis ; 42(21-22): 2197-2205, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34409625

RESUMEN

Nanopores have become a popular single-molecule manipulation and detection technology. In this paper, we have constructed a continuum model of the nanopore; the arbitrary Lagrangian-Eulerian (ALE) method is used to describe the motion of particles and fluid. The mathematical model couples the stress-strain equation for the dynamics of a deformable particle, the Poisson equation for the electric field, the Navier-Stokes equations for the flow field, and the Nernst-Planck equations for ionic transport. Based on the model, the mechanism of field-effect regulation of particles passing through a nanopore is investigated. The results show that the transport of particles which is controlled by the field effect depends on the electroosmotic flow (EOF) generated by the gate electrode in the nanopore and the electrostatic interaction between the nanopore and particles. That also explains the asymmetry of particle transport velocity in the nanopore with a gate electrode. When the gate potential is negative, or the gate electrode length is small, the maximum deformation of the particles is increased. The field-effect regulation in the nanopore provides an active and compatible method for nanopore detection, and provides a convenient method for the active control of the particle deformation in the nanopore.


Asunto(s)
Nanopartículas , Nanoporos , Electroósmosis , Modelos Teóricos , Electricidad Estática
7.
Electrophoresis ; 42(21-22): 2189-2196, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117650

RESUMEN

When the dielectrophoresis technology is used to manipulate micron-sized particles, the interaction between particles should not be ignored because of the particle-particle interaction. Especially, when multiple particles (number of particles is above 2) are simultaneously manipulated, the interaction between neighboring particles will affect the results of the manipulation. This research investigates the interaction of particles caused dielectrophoresis effect by the Arbitrary Lagrangian-Eulerian (ALE) method based on the hypothesis of the thin layer of the electric double layer at the microscale. The mathematics model can be solved simultaneously by the finite element method for the AC electric field, the flow field around the suspended particles and the particle mechanics at the micrometer scale. In this study, the particle conductivity and the direction of the electric field are investigated, we find that particle conductivity and electric field direction pose an impact on particle movement, and the research reveal the law of microparticle dielectrophoresis movement, which could offer theoretical and technology support to profoundly understand the precise manipulation of particles in microfluidic chips by the dielectrophoresis effect.


Asunto(s)
Electricidad , Conductividad Eléctrica , Electroforesis , Microfluídica , Modelos Teóricos
8.
Electrophoresis ; 41(10-11): 758-760, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31177552

RESUMEN

A completely new droplet breakup phenomenon is reported for droplets passing through a constriction in an electrokinetic flow. The breakup occurs during the droplet shape recovery process past the constriction throat by the interplay of the dielectrophoretic stress release and the interface energy for droplets with smaller permittivity than that of the ambient fluid. There are conditions for constriction ratios and droplet size that the droplet breakup occurs. The numerical predictions provided here require experimental verification, and then can give rise to a novel microfluidic device design with novel droplet manipulations.


Asunto(s)
Electroforesis , Microfluídica , Modelos Químicos , Aceites/química , Tamaño de la Partícula
9.
Electrophoresis ; 41(10-11): 952-958, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31529708

RESUMEN

This paper develops a numerical simulation model to research the deformable particle-particle interactions caused by dielectrophoresis (DEP) under AC electric fields. The DEP force is calculated by using Maxwell stress tensor method, and the hydrodynamic force is obtained by calculating the hydrodynamic stress tensor. Simulation results show that the DEP interactive motion will facilitate the particles forming particle chains that are parallel to the electric field, and the particles with low shear modulus present a lower x-component velocity. Also, the electric field intensity and particles radius have some effects on the DEP motions, and for different particles, smaller particles with larger electric field intensity easily reach a larger velocity. The numerical research may provide universal guidance for biological cells manipulation and assembly.


Asunto(s)
Simulación por Computador , Electroforesis , Microfluídica , Movimiento (Física) , Tamaño de la Partícula
10.
Langmuir ; 36(50): 15220-15229, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33305573

RESUMEN

Nanoparticle surface charge regulation technology plays an important role in ion rectification, drug delivery, and cell biology. The biomimetic polyelectrolyte can be combined with nanoparticles by nanomodification technology to form a layer of coating, which is called the brush layer of nanoparticles. In this study, based on the Poisson-Nernst-Planck (PNP) equation system, a theoretical model considering a bionic electrolyte brush layer with charge density regulated by a chemical reaction is constructed. The charge properties of brushed nanoparticles are studied by changing the sizes of nanoparticles, the pH value of the solution, background salt solution concentration, and brush layer thickness. The result shows that the charge density of brushed nanoparticles increases with the increase of particle size. The isoelectric point (IEP) of the equilibrium reaction against the brush layer is pH = 5.5. When the pH < 5.5, the charge density of the particle brush layers decreases with the increase of pH, and when the pH > 5.5, the charge density of the particle brush layer increases with the increase of pH. By comparing the charge density of different brush thicknesses, it is found that the larger the brush thickness, the smaller the charge density of the brush layer. This research provides theoretical support for the change of the through pore velocity when macromolecular organic compounds pass through nanopores.

11.
Electrophoresis ; 40(6): 993-999, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30371959

RESUMEN

The dielectrophoretic (DEP) choking phenomenon is revisited for Janus particles that are transported electrokinetically through a microchannel constriction by a direct-current (DC) electric field. The negative DEP force that would block a particle with a diameter significantly smaller than that of the constriction at its inlet is seen to be relaxed by the rotation of the Janus particle in a direction that minimizes the magnitude of the DEP force. This allows the particle to pass through the constriction completely. An arbitrary Lagrangian-Eulerian (ALE) numerical method is used to solve the nonlinearly coupled electric field, flow field, and moving particle, and the DEP force is calculated by the Maxwell stress tensor (MST) method. The results show how Janus particles with non-uniform surface potentials overcome the DEP force and present new conditions for the DEP choking by a parametric study. Particle transportation through microchannel constrictions is ubiquitous, and particle surface properties are more likely to be non-uniform than not in practical applications. This study provides new insights of importance for non-uniform particles transported electrokinetically in a microdevice.


Asunto(s)
Electroforesis/instrumentación , Microfluídica/instrumentación , Tamaño de la Partícula , Simulación por Computador , Electricidad , Diseño de Equipo
12.
Electrophoresis ; 39(4): 590-596, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29193170

RESUMEN

The translational motion of small particles in an electrokinetic fluid flow through a constriction can be enhanced by an increase of the applied electric potential. Beyond a critical potential, however, the negative dielectrophoresis (DEP) can overpower other forces to prevent particles that are even smaller than the constriction from passing through the constriction. This DEP choking phenomenon was studied previously for rigid particles. Here, the DEP choking phenomenon is revisited for deformable particles, which are ubiquitous in many biomedical applications. Particle deformability is measured by the particle shear modulus, and the choking conditions are reported through a parametric study that includes the channel geometry, external electric potential, and particle zeta potential. The study was carried out using a numerical model based on an arbitrary Lagrangian-Eulerican (ALE) finite-element method.


Asunto(s)
Electroforesis/métodos , Microfluídica/métodos , Análisis de Elementos Finitos , Modelos Teóricos
13.
Lab Chip ; 24(10): 2762-2773, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38682283

RESUMEN

The composition of species and the physiological status of microalgal cells serve as significant indicators for monitoring marine environments. Symbiotic with corals, Symbiodiniaceae are more sensitive to the environmental response. However, current methods for evaluating microalgae tend to be population-based indicators that cannot be focused on single-cell level, ignoring potentially heterogeneous cells as well as cell state transitions. In this study, we proposed a microalgal cell detection method based on computer vision and microfluidics, which combined microscopic image processing, microfluidic chip and convolutional neural network to achieve label-free, sheathless, automated and high-throughput microalgae identification and cell state assessment. By optimizing the data import, training process and model architecture, we solved the problem of identifying tiny objects at the micron scale, and the optimized model was able to perform the tasks of cell multi-classification and physiological state assessment with more than 95% mean average precision. We discovered a novel transition state and explored the thermal sensitivity of three clades of Symbiodiniaceae, and discovered the phenomenon of cellular heat shock at high temperatures. The evolution of the physiological state of Symbiodiniaceae cells is very important for directional cell evolution and early warning of coral ecosystem health.


Asunto(s)
Algoritmos , Microalgas , Microalgas/citología , Microalgas/fisiología , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador
14.
Biosens Bioelectron ; 239: 115586, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37603988

RESUMEN

Abusive use of ß-agonists as feed additives for animals and medication is detrimental to human health and food safety. Conventional assays are restricted to a single type of ß-agonists detection and cannot match the multiplexing features to perform automated, high throughput, and rapid quantitative analysis in real samples. In this research, we develop a portable automated chip system (PACS) with highly integrated automated devices in conjunction with portable microfluidic chips to provide simultaneous point-of-care testing of multiple ß-agonists in the field, simplifying complex manual methods, shortening assay times, and improving sensitivity. Specifically, silicon film is used as reaction substrates for immobilizing the conjugates of ß-agonists to increase the sensitivity of the assay result. Then, the PACS with a chemiluminescence imaging detector is established for automatic high-throughput and sensitive detection of Clenbuterol, Ractopamine, and Salbutamol based on the indirect immunoassay. Newly developed chip with high mixing performance can improve the sensitivity of target determination. Multiplex assays were carried out using the developed system for Clenbuterol, Ractopamine, and Salbutamol with a limit of detection of 54 pg mL-1,59 pg mL-1, and 93 pg mL-1, respectively. Except for sample preparation and coating, the detection in the PACS takes less than 47 min. A satisfactory sample recovery (86.33%-108.12%) was obtained, validating the reliability and practical applicability of this PACS. Meanwhile, the PACS enables sensitive and rapid detection of multiple ß-agonists in farms or markets where lacking advanced laboratory facilities.


Asunto(s)
Técnicas Biosensibles , Clenbuterol , Animales , Humanos , Reproducibilidad de los Resultados , Albuterol , Pruebas en el Punto de Atención
15.
J Mater Chem B ; 11(9): 1978-1986, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36752153

RESUMEN

Since procalcitonin (PCT) is a specific inflammation indicator of severe bacterial inflammation and fungal infection, it is of great significance to construct a sensitive and rapid microfluidic chip to detect PCT in clinical application. The design of micromixers using a lab-on-a-chip (LOC) device is the premise to realizing the adequate mixing of analytical samples and reagents and is an important measure to improve the accuracy and efficiency of determination. In this research study, we investigate the mixing characteristics of hyperbolic micromixers and explore the effects of different hyperbolic curvatures, different Reynolds numbers (Re) and different channel widths on the mixing performance of the micromixers. Then, an optimal micromixer was integrated into a microfluidic chip to fabricate a desirable hyperbolic microfluidic chip (DHMC) for the sensitive determination of inflammation marker PCT with a limit of detection (LOD) as low as 0.17 ng mL-1via a chemiluminescence signal, which can be used as a promising real-time platform for early clinical diagnosis.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Humanos , Polipéptido alfa Relacionado con Calcitonina , Luminiscencia , Inflamación
16.
ACS Appl Mater Interfaces ; 14(50): 56298-56309, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36475575

RESUMEN

Nanoparticle-functionalized transition-metal carbides and nitrides (MXenes) have attracted extensive attention in electrochemical detection owing to their excellent catalytic performance. However, the mainstream synthetic routes rely on the batch method requiring strict experimental conditions, generally leading to low yield and poor size tunability of particles. Herein, we report a high-throughput and continuous microfluidic platform for preparing a functional MXene (Ti3C2Tx) with bimetallic nanoparticles (Pt-Pd NPs) at room temperature. Two 3D micromixers with helical elements were integrated into the microfluidic platform to enhance the secondary flow for promoting transport and reaction in the synthesis process. The rapid mixing and strong vortices in these 3D micromixers prevent aggregation of NPs in the synthesis process, enabling a homogeneous distribution of Pt-Pd NPs. In this study, Pt-Pd NPs loaded on the MXene nanosheets were synthesized under various hydrodynamic conditions of 1-15 mL min-1 with controlled sizes, densities, and compositions. The mean size of Pt-Pd NPs could be readily controlled within the range 2.4-9.3 nm with high production rates up to 13 mg min-1. In addition, synthetic and electrochemical parameters were separately optimized to improve the electrochemical performance of Ti3C2Tx/Pt-Pd. Finally, the optimized Ti3C2Tx/Pt-Pd was used for hydrogen peroxide (H2O2) detection and shows excellent electrocatalytic activity. The electrode modified with Ti3C2Tx/Pt-Pd here presents a wide detection range for H2O2 from 1 to 12 000 µM with a limit of detection down to 0.3 µM and a sensitivity up to 300 µA mM-1 cm-2, superior to those prepared in the traditional batch method. The proposed microfluidic approach could greatly enhance the electrochemical performance of Ti3C2Tx/Pt-Pd, and sheds new light on the large-scale production and catalytic application of the functional nanocomposites.

17.
Micromachines (Basel) ; 12(7)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202893

RESUMEN

In this paper, we present a novel microfluidic mixer with staggered virtual electrode based on light-actuated AC electroosmosis (LACE). We solve the coupled system of the flow field described by Navier-Stokes equations, the described electric field by a Laplace equation, and the concentration field described by a convection-diffusion equation via a finite-element method (FEM). Moreover, we study the distribution of the flow, electric, and concentration fields in the microchannel, and reveal the generating mechanism of the rotating vortex on the cross-section of the microchannel and the mixing mechanism of the fluid sample. We also explore the influence of several key geometric parameters such as the length, width, and spacing of the virtual electrode, and the height of the microchannel on mixing performance; the relatively optimal mixer structure is thus obtained. The current micromixer provides a favorable fluid-mixing method based on an optical virtual electrode, and could promote the comprehensive integration of functions in modern microfluidic-analysis systems.

18.
Micromachines (Basel) ; 11(8)2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32722448

RESUMEN

The electric transport of nanoparticles passing through nanopores leads to a change in the ion current, which is essential for the detection technology of DNA sequencing and protein determination. In order to further illustrate the electrokinetic transport mechanism of particles passing through nanopores, a fully coupled continuum model is constructed by using the arbitrary Lagrangian-Eulerian (ALE) method. The model consists of the electric field described by the Poisson equation, the concentration field described by Nernst-Planck equation, and the flow field described by the Navier-Stokes equation. Based on this model, the influence of imposed electric field and particle length on the electrokinetic transport of cylindrical particles is investigated. It is found firstly the translation velocities for the longer particles remain constant when they locate inside the nanopore. Both the ion current blockade effect and the ion current enhancement effect occur when cylindrical particles enter and exit the nanopore, respectively, for the experimental parameters employed in this research. Moreover, the particle translation velocity and current fluctuation amplitude are dominated by the electric field intensity, which can be used to adjust the particle transmission efficiency and the ion current detectability. In addition, the increase in particle length changes the particle position corresponding to the peak value of the ion current, which contributes to distinguishing particles with different lengths as well.

19.
Micromachines (Basel) ; 11(12)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256021

RESUMEN

Functionalized nanofluidics devices have recently emerged as a powerful platform for applications of energy conversion. Inspired by biological cells, we theoretically studied the effect of the interaction between the nanoparticle and the plate which formed the brush layer modified by functional zwitterionic polyelectrolyte (PE) on the bulk charge density of the nanoparticle brush layer, and the charge/discharge effect when the distance between the particle and the plate was changed. In this paper, The Poisson-Nernst-Planck equation system is used to build the theoretical model to study the interaction between the nanoparticle and the plate modified by the PE brush layer, considering brush layer charge regulation in the presence of multiple ionic species. The results show that the bulk charge density of the brush layer decreases with the decrease of the distance between the nanoparticle and the flat substrate when the interaction occurs between the nanoparticle and the plate. When the distance between the particle and the plate is about 2 nm, the charge density of the brush layer at the bottom of the particle is about 69% of that at the top, and the electric field energy density reaches the maximum value when the concentration of the background salt solution is 10 mm.

20.
ACS Appl Bio Mater ; 3(8): 5160-5168, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35021692

RESUMEN

The nanopore-based biosensing technology is built up on the fluctuation of the ionic current induced by the electrokinetic translation of a particle penetrating the nanopore. It is expected that the current change of a deformable bioparticle is dissimilar from that of a rigid one. This study theoretically investigated the transient translocation process of a deformable particle through a nanopore for the first time. The mathematical model considers the Poisson equation for the electric potential, the Nernst-Planck equations for the ionic transport, the Navier-Stokes equations for the flow field, and the stress-strain equation for the dynamics of the deformable bioparticle. The arbitrary Lagrangian-Eulerian method is used for the fully coupled particle-fluid dynamic interaction. Results show that the deformation degree of the particle, the velocity deviation, and the current is different from the rigid particle. The deformation degree of the particle will reach the maximum when the particle passes a nanopore. Because of the deformation of particles, the total force applied on deformable particles is larger than that of rigid particles, resulting in larger velocity deviation and current deviation. The influences of the ratio of the nanoparticle radius to the Debye length and surface charge density of the nanopore are also studied. The research results illustrate the translocation mechanism of a deformable nanoparticle in the nanopore, which can provide theoretical guidance for the biosensing technology based on the nanopore.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA