Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 13(35)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28639331

RESUMEN

The lack of stable and efficient techniques to synthesize high-quality large-area thin films is one of the major bottlenecks for the real-world application of the 2D transition metal dichalcogenides. In this work, the growth of molybdenum disulfide (MoS2 ) on sapphire substrates by sulfurizing the MoO3 film deposited by atomic layer deposition (ALD) is reported. The advantages of the ALD method can be well inherited, and the synthesized MoS2 films exhibit excellent layer controllability, wafer-scale uniformity, and homogeneity. MoS2 films with desired thickness can be obtained by varying MoO3 ALD cycles. The atomic force microscope and Raman measurements demonstrate that the ALD-based MoS2 has good uniformity. Clear Raman shift as a function of the film thickness is observed. Field-effect transistor devices are fabricated through a transfer-free and top-down process. High On/Off current ratio (≈104 ) and medium-level electron mobilities (≈0.76 cm2 V-1 s-1 for monolayer, and 5.9 cm2 V-1 s-1 for four-layer) are obtained. The work opens up an attractive approach to realize the application of wafer-scale 2D materials in integrated circuits and systems.

2.
Cancer Gene Ther ; 28(1-2): 126-140, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616906

RESUMEN

Sorafenib was originally identified as an inhibitor of multiple oncogenic kinases and remains the first-line systemic therapy for advanced hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) have been reported to play critical roles in the initiation, progression, and drug resistance of HCC. In this study, we aimed to identify sorafenib-induced miRNAs and demonstrate their regulatory roles. First, we identified that the expression of the tumor-suppressive miRNA miR-375 was significantly induced in hepatoma cells treated with sorafenib, and miR-375 could exert its antiangiogenic effect partially via platelet-derived growth factor C (PDGFC) inhibition. Then, we demonstrated that sorafenib inhibited PDGFC expression by inducing the expression of miR-375 and a transcription factor, achaete-scute homolog-1 (ASH1), mediated the induction of miR-375 by sorafeinb administration in hepatoma cells. Finally, we verified that the expression of miR-375 was reduced in sorafenib-resistant cells and that the restoration of miR-375 could resensitize sorafenib-resistant cells to sorafenib partially by the degradation of astrocyte elevated gene-1 (AEG-1). In conclusion, our data demonstrate that miR-375 is a critical determinant of HCC angiogenesis and sorafenib tolerance, revealing a novel miRNA-mediated mechanism underlying sorafenib treatment.


Asunto(s)
Carcinoma Hepatocelular/irrigación sanguínea , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/irrigación sanguínea , Neoplasias Hepáticas/tratamiento farmacológico , MicroARNs/metabolismo , Sorafenib/farmacología , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Resistencia a Antineoplásicos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA