Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.354
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(6): 1276-1291.e9, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33539787

RESUMEN

Aberrant cell proliferation is a hallmark of cancer, including glioblastoma (GBM). Here we report that protein arginine methyltransferase (PRMT) 6 activity is required for the proliferation, stem-like properties, and tumorigenicity of glioblastoma stem cells (GSCs), a subpopulation in GBM critical for malignancy. We identified a casein kinase 2 (CK2)-PRMT6-regulator of chromatin condensation 1 (RCC1) signaling axis whose activity is an important contributor to the stem-like properties and tumor biology of GSCs. CK2 phosphorylates and stabilizes PRMT6 through deubiquitylation, which promotes PRMT6 methylation of RCC1, which in turn is required for RCC1 association with chromatin and activation of RAN. Disruption of this pathway results in defects in mitosis. EPZ020411, a specific small-molecule inhibitor for PRMT6, suppresses RCC1 arginine methylation and improves the cytotoxic activity of radiotherapy against GSC brain tumor xenografts. This study identifies a CK2α-PRMT6-RCC1 signaling axis that can be therapeutically targeted in the treatment of GBM.


Asunto(s)
Neoplasias Encefálicas , Carcinogénesis , Proteínas de Ciclo Celular , Glioblastoma , Factores de Intercambio de Guanina Nucleótido , Mitosis/efectos de la radiación , Proteínas de Neoplasias , Proteínas Nucleares , Proteína-Arginina N-Metiltransferasas , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/efectos de la radiación , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Femenino , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Mitosis/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Dev Biol ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38878992

RESUMEN

Anorectal malformation (ARM) is the most common congenital digestive tract anomaly in newborns, and children with ARM often have varying degrees of underdevelopment of the pelvic floor muscles (PFMs). To explore the effects of RARα and Pitx2 on the development of rat PFMs, we constructed a rat ARM animal model using all-trans retinoic acid (ATRA), and verified the expression of RARα and Pitx2 in the PFMs of fetal rats. Additionally, we used rat myoblasts (L6 cells) to investigate the regulatory roles of RARα and Pitx2 in skeletal muscle myoblast differentiation and their interactions. The results indicated a significant decrease in the expression of RARα and Pitx2 in the PFMs of fetal rats with ARM. ATRA can also decrease the expression of RARα and Pitx2 in the L6 cells, while affecting the differentiation and fusion of L6 cells. Knocking down RARα in L6 cells reduced the expression of Pitx2, MYOD1, MYMK, and decreased myogenic activity in L6 cells. When RARα is activated, the decreased expression of Pitx2, MYOD1, and MYMK and myogenic differentiation can be restored to different extents. At the same time, increasing or inhibiting the expression of Pitx2 can counteract the effects of knocking down RARα and activating RARα respectively. These results indicate that Pitx2 may be downstream of the transcription factor RARα, mediating the effects of ATRA on the development of fetal rat PFMs.

3.
Brain ; 147(3): 1075-1086, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37816260

RESUMEN

Schizophrenia, a complex neuropsychiatric disorder, frequently experiences a high rate of misdiagnosis due to subjective symptom assessment. Consequently, there is an urgent need for innovative and objective diagnostic tools. In this study, we used cutting-edge extracellular vesicles' (EVs) proteome profiling and XGBoost-based machine learning to develop new markers and personalized discrimination scores for schizophrenia diagnosis and prediction of treatment response. We analysed plasma and plasma-derived EVs from 343 participants, including 100 individuals with chronic schizophrenia, 34 first-episode and drug-naïve patients, 35 individuals with bipolar disorder, 25 individuals with major depressive disorder and 149 age- and sex-matched healthy controls. Our innovative approach uncovered EVs-based complement changes in patients, specific to their disease-type and status. The EV-based biomarkers outperformed their plasma counterparts, accurately distinguishing schizophrenia individuals from healthy controls with an area under curve (AUC) of 0.895, 83.5% accuracy, 85.3% sensitivity and 82.0% specificity. Moreover, they effectively differentiated schizophrenia from bipolar disorder and major depressive disorder, with AUCs of 0.966 and 0.893, respectively. The personalized discrimination scores provided a personalized diagnostic index for schizophrenia and exhibited a significant association with patients' antipsychotic treatment response in the follow-up cohort. Overall, our study represents a significant advancement in the field of neuropsychiatric disorders, demonstrating the potential of EV-based biomarkers in guiding personalized diagnosis and treatment of schizophrenia.


Asunto(s)
Antipsicóticos , Trastorno Depresivo Mayor , Vesículas Extracelulares , Esquizofrenia , Humanos , Trastorno Depresivo Mayor/diagnóstico , Esquizofrenia/diagnóstico , Biomarcadores , Proteínas del Sistema Complemento
4.
Nano Lett ; 24(15): 4649-4657, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38572971

RESUMEN

Deep-seated bacterial infections (DBIs) are stubborn and deeply penetrate tissues. Eliminating deep-seated bacteria and promoting tissue regeneration remain great challenges. Here, a novel radical-containing hydrogel (SFT-B Gel) cross-linked by a chaotropic effect was designed for the sensing of DBIs and near-infrared photothermal therapy (NIR-II PTT). A silk fibroin solution stained with 4,4',4″-(1,3,5-triazine-2,4,6-triyl)tris(1-methylpyridin-1-ium) (TPT3+) was employed as the backbone, which could be cross-linked by a closo-dodecaborate cluster (B12H122-) through a chaotropic effect to form the SFT-B Gel. More interestingly, the SFT-B Gel exhibited the ability to sense DBIs, which could generate a TPT2+• radical with obvious color changes in the presence of bacteria. The radical-containing SFT-B Gel (SFT-B★ Gel) possessed strong NIR-II absorption and a remarkable photothermal effect, thus demonstrating excellent NIR-II PTT antibacterial activity for the treatment of DBIs. This work provides a new approach for the construction of intelligent hydrogels with unique properties using a chaotropic effect.


Asunto(s)
Fototerapia , Terapia Fototérmica , Hidrogeles/farmacología
5.
Stroke ; 55(8): 1991-2002, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38881452

RESUMEN

BACKGROUND: Surgical risk assessment is intriguing for clinical decision-making of brainstem cavernous malformation (BSCM) treatment. While the BSCM grading scale, encompassing size, developmental venous anomaly, crossing axial midpoint, age, and timing of intervention, is increasingly utilized, the clinical relevance of neurological fluctuation and recurrent hemorrhage has not been incorporated. This study aimed to propose a supplementary grading scale with enhanced predictive efficacy. METHODS: Using a retrospective nationwide registry of consecutive patients with BSCMs undergoing surgery in China from March 2011 to May 2023, a new supplementary BSCM grading scale was developed from a derivative cohort of 260 patients and validated in an independent concurrent cohort of 67 patients. The primary outcome was unfavorable neurological function (modified Rankin Scale score >2) at the latest follow-up. The performance of the supplementary grading system was evaluated for discrimination, calibration, and clinical utility and further compared with its original counterpart. RESULTS: Over a follow-up of at least 6 months after surgery, the unfavorable outcomes were 31% in the overall cohort (101/327 patients). A preoperative motor deficit (odds ratio, 3.13; P=0.001), recurrent hemorrhage (odds ratio, 3.05; P<0.001), timing of intervention (odds ratio, 7.08; P<0.001), and crossing the axial midpoint (odds ratio, 2.57; P=0.006) were associated with the unfavorable outcomes and composed the initial Huashan grading variables. A supplementary BSCM grading system was subsequently developed by incorporating the Huashan grading variables into the original BSCM grading scale. The predictive capability of the supplementary scale was consistently superior to the original counterpart in either the derivative cohort (area under the receiver operating characteristic curve, 0.74 [95% CI, 0.68-0.80] for the supplementary versus 0.68 [95% CI, 0.61-0.74] for the original) or the validation cohort (0.75 [95% CI, 0.62-0.87] versus 0.64 [95% CI, 0.48-0.81]). CONCLUSIONS: This study highlights the neurological relevance of BSCM hemorrhage in surgical risk assessment. Via compositing preoperative motor function and recurrent hemorrhages, a supplementary grading scale may improve a dynamic risk assessment for clinical decisions in the management of BSCMs.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Humanos , Masculino , Femenino , Adulto , Hemangioma Cavernoso del Sistema Nervioso Central/cirugía , Estudios Retrospectivos , Persona de Mediana Edad , Tronco Encefálico/cirugía , Sistema de Registros , Resultado del Tratamiento , Adolescente , Adulto Joven , Medición de Riesgo , China
6.
Mol Cancer ; 23(1): 77, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627681

RESUMEN

Emerging tumor immunotherapy methods encompass bispecific antibodies (BSABs), immune checkpoint inhibitors (ICIs), and adoptive cell immunotherapy. BSABs belong to the antibody family that can specifically recognize two different antigens or epitopes on the same antigen. These antibodies demonstrate superior clinical efficacy than monoclonal antibodies, indicating their role as a promising tumor immunotherapy option. Immune checkpoints are also important in tumor immunotherapy. Programmed cell death protein-1 (PD-1) is a widely acknowledged immune checkpoint target with effective anti-tumor activity. PD-1 inhibitors have demonstrated notable therapeutic efficacy in treating hematological and solid tumors; however, more than 50% of patients undergoing this treatment exhibit a poor response. However, ICI-based combination therapies (ICI combination therapies) have been demonstrated to synergistically increase anti-tumor effects and immune response rates. In this review, we compare the clinical efficacy and side effects of BSABs and ICI combination therapies in real-world tumor immunotherapy, aiming to provide evidence-based approaches for clinical research and personalized tumor diagnosis and treatment.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Humanos , Anticuerpos Biespecíficos/efectos adversos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Neoplasias/tratamiento farmacológico , Anticuerpos Monoclonales/uso terapéutico , Inmunoterapia/efectos adversos , Inmunoterapia/métodos
7.
Gastroenterology ; 164(3): 424-438, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36436593

RESUMEN

BACKGROUND & AIMS: In eukaryotes, the ubiquitin-proteasome system and the autophagy-lysosome pathway are essential for maintaining cellular proteostasis and associated with cancer progression. Our previous studies have demonstrated that phosphatase and tensin homolog (PTEN), one of the most frequently mutated genes in human cancers, limits proteasome abundance and determines chemosensitivity to proteasome inhibitors in cholangiocarcinoma (CCA). However, whether PTEN regulates the lysosome pathway remains unclear. METHODS: We tested the effects of PTEN on lysosome biogenesis and exosome secretion using loss- and gain-of-function strategies in CCA cell lines. Using in vitro dephosphorylation assays, we explored the regulatory mechanism between PTEN and the key regulator of lysosome biogenesis, transcription factor EB (TFEB). Using the migration assays, invasion assays, and trans-splenic liver metastasis mouse models, we evaluated the function of PTEN deficiency, TFEB-mediated lysosome biogenesis, and exosome secretion on tumor metastasis. Moreover, we investigated the clinical significance of PTEN expression and exosome secretion by retrospective analysis. RESULTS: PTEN facilitated lysosome biogenesis and acidification through its protein phosphatase activity to dephosphorylate TFEB at Ser211. Notably, PTEN deficiency increased exosome secretion by reducing lysosome-mediated degradation of multi-vesicular bodies, which further facilitated the proliferation and invasion of CCA. TFEB agonist curcumin analog C1 restrained the metastatic phenotype caused by PTEN deficiency in mouse models, and we highlighted the correlation between PTEN deficiency and exosome secretion in clinical cohorts. CONCLUSIONS: In CCA, PTEN deficiency impairs lysosome biogenesis to facilitate exosome secretion and cancer metastasis in a TFEB phosphorylation-dependent manner.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Colangiocarcinoma , Exosomas , Fosfohidrolasa PTEN , Animales , Humanos , Ratones , Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Colangiocarcinoma/metabolismo , Modelos Animales de Enfermedad , Exosomas/metabolismo , Lisosomas/fisiología , Complejo de la Endopetidasa Proteasomal , Fosfohidrolasa PTEN/metabolismo , Estudios Retrospectivos
8.
J Gene Med ; 26(2): e3675, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38388205

RESUMEN

BACKGROUND: Microvesicles (MVs) play a crucial role in bronchopulmonary dysplasia (BPD). There are many MVs in circulating plasma, and they are in direct contact with lung endothelial cells. However, the molecular mechanism and causative effect of circulating MVs on BPD remain unclear. METHODS: Clinical plasma samples were collected, circulating MVs were isolated, and microRNA (miRNA) sequencing was performed. The BPD model was established, and different MVs were administered. Alveoli and pulmonary vessels were examined by hematoxylin-eosin staining, and body weight and length were measured. In vitro, gene expression was disrupted by miRNA mimics, miRNA inhibitors or plasmid transfection. Cell proliferation and protein expression were detected by cell scratch assay, accurate 5-ethynyl-2-deoxyuridine test, western blotting, or immunofluorescence assay. RESULTS: BPD-derived MVs further aggravated pulmonary vascular simplification, while circulating MVs from control mice mitigated pulmonary vascular simplification. Micro-RNA sequencing and independent sample verification revealed that miR139-3p, but not miR6125 or miR193b-3p, was the most critical effector molecule in MVs. Mechanism studies showed that eukaryotic translation initiation factor 4E binding protein 1 was the target gene for miR139-3p. In addition, we found that supplementation of miR139-3p inhibitor partially alleviated pulmonary vascular simplification. CONCLUSIONS: These results indicate that circulating MVs are involved in forming BPD by carrying miR139-3p molecules and support miR139-3p inhibitors as a potential therapeutic strategy for alleviating pulmonary vascular simplification in BPD.


Asunto(s)
Displasia Broncopulmonar , MicroARNs , Animales , Ratones , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Proteínas Portadoras , Células Endoteliales/metabolismo , Pulmón/metabolismo , MicroARNs/metabolismo , Humanos , Recién Nacido
9.
Planta ; 260(1): 16, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833022

RESUMEN

MAIN CONCLUSION: A callus-specific CRISPR/Cas9 (CSC) system with Cas9 gene driven by the promoters of ZmCTA1 and ZmPLTP reduces somatic mutations and improves the production of heritable mutations in maize. The CRISPR/Cas9 system, due to its editing accuracy, provides an excellent tool for crop genetic breeding. Nevertheless, the traditional design utilizing CRISPR/Cas9 with ubiquitous expression leads to an abundance of somatic mutations, thereby complicating the detection of heritable mutations. We constructed a callus-specific CRISPR/Cas9 (CSC) system using callus-specific promoters of maize Chitinase A1 and Phospholipid transferase protein (pZmCTA1 and pZmPLTP) to drive Cas9 expression, and the target gene chosen for this study was the bZIP transcription factor Opaque2 (O2). The CRISPR/Cas9 system driven by the maize Ubiquitin promoter (pZmUbi) was employed as a comparative control. Editing efficiency analysis based on high-throughput tracking of mutations (Hi-TOM) showed that the CSC systems generated more target gene mutations than the ubiquitously expressed CRISPR/Cas9 (UC) system in calli. Transgenic plants were generated for the CSC and UC systems. We found that the CSC systems generated fewer target gene mutations than the UC system in the T0 seedlings but reduced the influence of somatic mutations. Nearly 100% of mutations in the T1 generation generated by the CSC systems were derived from the T0 plants. Only 6.3-16.7% of T1 mutations generated by the UC system were from the T0 generation. Our results demonstrated that the CSC system consistently produced more stable, heritable mutants in the subsequent generation, suggesting its potential application across various crops to facilitate the genetic breeding of desired mutations.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Mutación , Plantas Modificadas Genéticamente , Zea mays , Zea mays/genética , Plantas Modificadas Genéticamente/genética , Edición Génica/métodos , Regiones Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Unión al ADN
10.
J Transl Med ; 22(1): 177, 2024 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-38369503

RESUMEN

BACKGROUND: Human health is seriously threatened by antibiotic-induced intestinal disorders. Herein, we aimed to determine the effects of Autoinducer-2 (AI-2) combined with Lactobacillus rhamnosus GG (LGG) on the intestinal barrier function of antibiotic-induced intestinal dysbiosis neonatal mice. METHODS: An antibiotic-induced intestinal dysbiosis neonatal mouse model was created using antibiotic cocktails, and the model mice were randomized into the control, AI-2, LGG, and LGG + AI-2 groups. Intestinal short-chain fatty acids and AI-2 concentrations were detected by mass spectrometry and chemiluminescence, respectively. The community composition of the gut microbiota was analyzed using 16S rDNA sequencing, and biofilm thickness and bacterial adhesion in the colon were assessed using scanning electron microscopy. Transcriptome RNA sequencing of intestinal tissues was performed, and the mRNA and protein levels of HCAR2 (hydroxycarboxylic acid receptor 2), claudin3, and claudin4 in intestinal tissues were determined using quantitative real-time reverse transcription PCR and western blotting. The levels of inflammatory factors in intestinal tissues were evaluated using enzyme-linked immunosorbent assays (ELISAs). D-ribose, an inhibitor of AI-2, was used to treat Caco-2 cells in vitro. RESULTS: Compared with the control, AI-2, and LGG groups, the LGG + AI-2 group showed increased levels of intestinal AI-2 and proportions of Firmicutes and Lacticaseibacillus, but a reduced fraction of Proteobacteria. Specifically, the LGG + AI-2 group had considerably more biofilms and LGG on the colon surface than those of other three groups. Meanwhile, the combination of AI-2 and LGG markedly increased the concentration of butyric acid and promoted Hcar2, claudin3 and claudin4 expression levels compared with supplementation with LGG or AI-2 alone. The ELISAs revealed a significantly higher tumor necrosis factor alpha (TNF-α) level in the control group than in the LGG and LGG + AI-2 groups, whereas the interleukin 10 (IL-10) level was significantly higher in the LGG + AI-2 group than in the other three groups. In vitro, D-ribose treatment dramatically suppressed the increased levels of Hcar2, claudin3, and claudin4 in Caco-2 cells induced by AI-2 + LGG. CONCLUSIONS: AI-2 promotes the colonization of LGG and biofilm formation to improve intestinal barrier function in an antibiotic-induced intestinal dysbiosis neonatal mouse model.


Asunto(s)
Lacticaseibacillus rhamnosus , Probióticos , Ratones , Humanos , Animales , Animales Recién Nacidos , Células CACO-2 , Funcion de la Barrera Intestinal , Disbiosis , Antibacterianos/farmacología , Claudina-4/metabolismo , Ribosa
11.
New Phytol ; 241(6): 2540-2557, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38263687

RESUMEN

Some essential components of fleshy fruits are dependent on photosynthetic activity and carbohydrate metabolism. Nevertheless, the regulatory mechanisms linking chlorophyll and carbohydrate metabolism remain partially understood. Here, we uncovered the role of SlGRAS9 and SlZHD17 transcription factors in controlling chlorophyll and carbohydrate accumulation in tomato fruit. Knockout or knockdown of SlGRAS9 or SlZHD17 resulted in marked increase in chlorophyll content, reprogrammed chloroplast biogenesis and enhanced accumulation of starch and soluble sugars. Combined genome-wide transcriptomic profiling and promoter-binding experiments unveiled a complex mechanism in which the SlGRAS9/SlZHD17 regulatory module modulates the expression of chloroplast and sugar metabolism either via a sequential transcriptional cascade or through binding of both TFs to the same gene promoters, or, alternatively, via parallel pathways where each of the TFs act on different target genes. For instance, the regulation of SlAGPaseS1 and SlSUS1 is mediated by SlZHD17 whereas that of SlVI and SlGLK1 occurs only through SlGRAS9 without the intervention of SlZHD17. Both SlGRAS9 and SlZHD17 can also directly bind the promoter of SlPOR-B to regulate its expression. Taken together, our findings uncover two important regulators acting synergistically to manipulate chlorophyll and carbohydrate accumulation and provide new potential breeding targets for improving fruit quality in fleshy fruits.


Asunto(s)
Clorofila , Solanum lycopersicum , Clorofila/metabolismo , Solanum lycopersicum/genética , Frutas/fisiología , Fitomejoramiento , Metabolismo de los Hidratos de Carbono/genética , Carbohidratos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
12.
J Med Virol ; 96(5): e29647, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38708790

RESUMEN

Invasive pulmonary aspergillosis (IPA) is a life-threatening complication in patients with severe fever with thrombocytopenia syndrome (SFTS), yet SFTS-associated IPA (SAPA)'s risk factors remain undefined. A multicenter retrospective cohort study across Hubei and Anhui provinces (May 2013-September 2022) utilized least absolute shrinkage and selection operator (LASSO) regression for variable selection. Multivariable logistic regression identified independent predictors of SAPA, Cox regression highlighted mortality-related risk factors. Of the 1775 screened SFTS patients, 1650 were included, with 169 developing IPA, leading to a 42-day mortality rate of 26.6% among SAPA patients. Multivariable logistic regression revealed SAPA risk factors including advanced age, petechia, hemoptysis, tremor, low albumin levels, elongated activated partial thromboplastin time (APTT), intensive care unit (ICU) admission, glucocorticoid usage, intravenous immunoglobulin (IVIG) and prolonged hospital stays. Cox regression identified predictors of 42-day mortality, including ecchymosis at venipuncture sites, absence of ICU admission, elongated prothrombin time (PT), vasopressor and glucocorticoid use, non-antifungals. Nomograms constructed on these predictors registered concordance indexes of 0.855 (95% CI: 0.826-0.884) and 0.778 (95% CI: 0.702-0.854) for SAPA onset and 42-day mortality, respectively. Lower survival rates for SAPA patients treated with glucocorticoids (p < 0.001) and improved 14-day survival with antifungal therapy (p = 0.036). Improving IPA management in SFTS-endemic areas is crucial, with effective predictive tool.


Asunto(s)
Aspergilosis Pulmonar Invasiva , Síndrome de Trombocitopenia Febril Grave , Humanos , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Factores de Riesgo , Aspergilosis Pulmonar Invasiva/mortalidad , Aspergilosis Pulmonar Invasiva/complicaciones , Aspergilosis Pulmonar Invasiva/tratamiento farmacológico , Síndrome de Trombocitopenia Febril Grave/complicaciones , Anciano , China/epidemiología , Adulto
13.
J Nutr ; 154(6): 1861-1868, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677479

RESUMEN

BACKGROUND: Cumulative preclinical evidence reported quercetin, a major flavonoid, can attenuate the disease activity of inflammatory bowel diseases (IBD). However, there is limited evidence that supports the benefits of quercetin for patients with IBD. OBJECTIVES: To investigate whether dietary quercetin intake is associated with adverse outcomes among individuals with IBD in a prospective cohort study. METHODS: We included 2293 participants with IBD (764 Crohn's disease [CD] and 1529 ulcerative colitis [UC]) from the UK Biobank. Dietary information was collected using validated 24-h dietary assessments, and quercetin intake was estimated based on national nutrient databases. Two outcomes, enterotomy and all-cause mortality, were obtained based on the national data. Cox proportional hazard models were used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS: After a mean (standard deviation) follow-up of 9.6 (1.8) y, we documented 193 enterotomy events and 176 deaths. Compared with participants with the lowest quartile intake of quercetin, those in the highest quartiles were associated with lower risk of enterotomy (HR: 0.46; 95% CI: 0.28, 0.76) and all-cause mortality (HR: 0.53; 95% CI: 0.33, 0.83) in IBD. The inverse associations between quercetin and enterotomy were consistent in CD (HR: 0.30; 95% CI: 0.12, 0.78) but not UC (HR: 0.58; 95% CI: 0.32, 1.07), while the inverse associations between quercetin and mortality were consistent both in CD (HR: 0.37; 95% CI: 0.15, 0.92) and UC (HR: 0.55; 95% CI: 0.31, 0.95). CONCLUSIONS: Higher dietary intake of quercetin was associated with lower risk of enterotomy and all-cause mortality in IBD. Our study provides novel evidence that further suggests the benefits of quercetin for patients with IBD, while also calling for further validation in other cohorts and clinical trials.


Asunto(s)
Dieta , Enfermedades Inflamatorias del Intestino , Quercetina , Humanos , Quercetina/administración & dosificación , Quercetina/farmacología , Estudios Prospectivos , Femenino , Masculino , Persona de Mediana Edad , Adulto , Estudios de Cohortes , Modelos de Riesgos Proporcionales , Enfermedad de Crohn , Factores de Riesgo
14.
Anesthesiology ; 141(1): 100-115, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537025

RESUMEN

BACKGROUND: Although it has been established that elevated blood pressure and its variability worsen outcomes in spontaneous intracerebral hemorrhage, antihypertensives use during the acute phase still lacks robust evidence. A blood pressure-lowering regimen using remifentanil and dexmedetomidine might be a reasonable therapeutic option given their analgesic and antisympathetic effects. The objective of this superiority trial was to validate the efficacy and safety of this blood pressure-lowering strategy that uses remifentanil and dexmedetomidine in patients with acute intracerebral hemorrhage. METHODS: In this multicenter, prospective, single-blinded, superiority randomized controlled trial, patients with intracerebral hemorrhage and systolic blood pressure (SBP) 150 mmHg or greater were randomly allocated to the intervention group (a preset protocol with a standard guideline management using remifentanil and dexmedetomidine) or the control group (standard guideline-based management) to receive blood pressure-lowering treatment. The primary outcome was the SBP control rate (less than 140 mmHg) at 1 h posttreatment initiation. Secondary outcomes included blood pressure variability, neurologic function, and clinical outcomes. RESULTS: A total of 338 patients were allocated to the intervention (n = 167) or control group (n = 171). The SBP control rate at 1 h posttreatment initiation in the intervention group was higher than that in controls (101 of 161, 62.7% vs. 66 of 166, 39.8%; difference, 23.2%; 95% CI, 12.4 to 34.1%; P < 0.001). Analysis of secondary outcomes indicated that patients in the intervention group could effectively reduce agitation while achieving lighter sedation, but no improvement in clinical outcomes was observed. Regarding safety, the incidence of bradycardia and respiratory depression was higher in the intervention group. CONCLUSIONS: Among intracerebral hemorrhage patients with a SBP 150 mmHg or greater, a preset protocol using a remifentanil and dexmedetomidine-based standard guideline management significantly increased the SBP control rate at 1 h posttreatment compared with the standard guideline-based management.


Asunto(s)
Antihipertensivos , Presión Sanguínea , Hemorragia Cerebral , Dexmedetomidina , Remifentanilo , Humanos , Dexmedetomidina/uso terapéutico , Dexmedetomidina/administración & dosificación , Remifentanilo/administración & dosificación , Remifentanilo/uso terapéutico , Masculino , Femenino , Estudios Prospectivos , Hemorragia Cerebral/tratamiento farmacológico , Anciano , Persona de Mediana Edad , Método Simple Ciego , Presión Sanguínea/efectos de los fármacos , Antihipertensivos/uso terapéutico , Antihipertensivos/administración & dosificación , Resultado del Tratamiento , Hipnóticos y Sedantes/uso terapéutico
15.
Pharmacol Res ; 203: 107172, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583685

RESUMEN

Although anti-TNF antibodies are extensively used to treat Crohn's disease (CD), a significant proportion of patients, up to 40%, exhibit an inadequate response to this therapy. Our objective was to identify potential targets that could improve the effectiveness of anti-TNF therapy in CD. Through the integration and analysis of transcriptomic data from various CD databases, we found that the expression of AQP9 was significantly increased in anti-TNF therapy-resistant specimens. The response to anti-TNF therapy in the CD mouse model was significantly enhanced by specifically inhibiting AQP9. Further experiments found that the blockade of AQP9, which is dominantly expressed in macrophages, decreased inflamed macrophage functions and cytokine expression. Mechanistic studies revealed that AQP9 transported glycerol into macrophages, where it was metabolized to LPA, which was further metabolized to LPA, resulting in the activation of the LPAR2 receptor and downstream hippo pathway, finally promoting the expression of cytokines, especially IL23 and IL1ß⊡ Taken together, the expansion of AQP9+ macrophages is associated with resistance to anti-TNF therapy in Crohn's disease. These findings indicated that AQP9 could be a potential target for enhancing anti-TNF therapy in Crohn's disease.


Asunto(s)
Acuaporinas , Enfermedad de Crohn , Vía de Señalización Hippo , Lisofosfolípidos , Macrófagos , Animales , Humanos , Masculino , Ratones , Acuaporinas/metabolismo , Acuaporinas/genética , Acuaporinas/antagonistas & inhibidores , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/metabolismo , Citocinas/metabolismo , Vía de Señalización Hippo/efectos de los fármacos , Lisofosfolípidos/metabolismo , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Receptores del Ácido Lisofosfatídico/metabolismo , Transducción de Señal/efectos de los fármacos , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Inhibidores del Factor de Necrosis Tumoral/farmacología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo
16.
Fish Shellfish Immunol ; 149: 109535, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582231

RESUMEN

Mucosal immunity in mucosa-associated lymphoid tissues (MALTs) plays crucial roles in resisting infection by pathogens, including parasites, bacteria and viruses. However, the mucosal immune response in the MALTs of large yellow croaker (Larimichthys crocea) upon parasitic infection remains largely unknown. In this study, we investigated the role of B cells and T cells in the MALTs of large yellow croaker following Cryptocaryon irritans infection. Upon C. irritans infection, the total IgM and IgT antibody levels were significantly increased in the skin mucus and gill mucus. Notably, parasite-specific IgM antibody level was increased in the serum, skin and gill mucus following parasitic infection, while the level of parasite-specific IgT antibody was exclusively increased in MALTs. Moreover, parasitic infection induced both local and systemic aggregation and proliferation of IgM+ B cells, suggesting that the increased levels of IgM in mucus may be derived from both systemic and mucosal immune tissues. In addition, we observed significant aggregation and proliferation of T cells in the gill, head kidney and spleen, suggesting that T cells may also be involved in the systemic and mucosal immune responses upon parasitic infection. Overall, our findings provided further insights into the role of immunoglobulins against pathogenic infection, and the simultaneous aggregation and proliferation of both B cells and T cells at mucosal surfaces suggested potential interactions between these two major lymphocyte populations during parasitic infection.


Asunto(s)
Linfocitos B , Infecciones por Cilióforos , Cilióforos , Enfermedades de los Peces , Perciformes , Linfocitos T , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/parasitología , Perciformes/inmunología , Infecciones por Cilióforos/veterinaria , Infecciones por Cilióforos/inmunología , Linfocitos B/inmunología , Cilióforos/fisiología , Linfocitos T/inmunología , Inmunidad Mucosa , Tejido Linfoide/inmunología , Inmunoglobulina M/inmunología , Inmunoglobulina M/sangre , Proliferación Celular
17.
BMC Infect Dis ; 24(1): 116, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254025

RESUMEN

OBJECTIVE: This study aimed to explore the characteristics of carbapenem-resistant Enterobacterales (CRE) patients in the intensive care unit (ICU) in different regions of Henan Province to provide evidence for the targeted prevention and treatment of CRE. METHODS: This was a cross-sectional study. CRE screening was conducted in the ICUs of 78 hospitals in Henan Province, China, on March 10, 2021. The patients were divided into provincial capital hospitals and nonprovincial capital hospitals for comparative analysis. RESULTS: This study involved 1009 patients in total, of whom 241 were CRE-positive patients, 92 were in the provincial capital hospital and 149 were in the nonprovincial capital hospital. Provincial capital hospitals had a higher rate of CRE positivity, and there was a significant difference in the rate of CRE positivity between the two groups. The body temperature; immunosuppressed state; transfer from the ICU to other hospitals; and use of enemas, arterial catheters, carbapenems, or tigecycline at the provincial capital hospital were greater than those at the nonprovincial capital hospital (P < 0.05). However, there was no significant difference in the distribution of carbapenemase strains or enzymes between the two groups. CONCLUSIONS: The detection rate of CRE was significantly greater in provincial capital hospitals than in nonprovincial capital hospitals. The source of the patients, invasive procedures, and use of advanced antibiotics may account for the differences. Carbapenem-resistant Klebsiella pneumoniae (CR-KPN) was the most prevalent strain. Klebsiella pneumoniae carbapenemase (KPC) was the predominant carbapenemase enzyme. The distributions of carbapenemase strains and enzymes were similar in different regions.


Asunto(s)
Antibacterianos , Temperatura Corporal , Humanos , Estudios Transversales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Cánula , Carbapenémicos/farmacología , Klebsiella pneumoniae
18.
Mol Ther ; 31(7): 2169-2187, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37211762

RESUMEN

Hypertrophic lysosomes are critical for tumor progression and drug resistance; however, effective and specific lysosome-targeting compounds for cancer therapy are lacking. Here we conducted a lysosomotropic pharmacophore-based in silico screen in a natural product library (2,212 compounds), and identified polyphyllin D (PD) as a novel lysosome-targeted compound. PD treatment was found to cause lysosomal damage, as evidenced by the blockade of autophagic flux, loss of lysophagy, and the release of lysosomal contents, thus exhibiting anticancer effects on hepatocellular carcinoma (HCC) cell both in vitro and in vivo. Closer mechanistic examination revealed that PD suppressed the activity of acid sphingomyelinase (SMPD1), a lysosomal phosphodieserase that catalyzes the hydrolysis of sphingomyelin to produce ceramide and phosphocholine, by directly occupying its surface groove, with Trp148 in SMPD1 acting as a major binding residue; this suppression of SMPD1 activity irreversibly triggers lysosomal injury and initiates lysosome-dependent cell death. Furthermore, PD-enhanced lysosomal membrane permeabilization to release sorafenib, augmenting the anticancer effect of sorafenib both in vivo and in vitro. Overall, our study suggests that PD can potentially be further developed as a novel autophagy inhibitor, and a combination of PD with classical chemotherapeutic anticancer drugs could represent a novel therapeutic strategy for HCC intervention.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Sorafenib/farmacología , Esfingomielina Fosfodiesterasa/farmacología , Neoplasias Hepáticas/metabolismo , Lisosomas/metabolismo , Autofagia , Resistencia a Medicamentos , Punciones
19.
J Nanobiotechnology ; 22(1): 59, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347563

RESUMEN

BACKGROUND: Coordination between osteo-/angiogenesis and the osteoimmune microenvironment is essential for effective bone repair with biomaterials. As a highly personalized and precise biomaterial suitable for repairing complex bone defects in clinical practice, it is essential to endow 3D-printed scaffold the above key capabilities. RESULTS: Herein, by introducing xonotlite nanofiber (Ca6(Si6O17) (OH)2, CS) into the 3D-printed silk fibroin/gelatin basal scaffold, a novel bone repair system named SGC was fabricated. It was noted that the incorporation of CS could greatly enhance the chemical and mechanical properties of the scaffold to match the needs of bone regeneration. Besides, benefiting from the addition of CS, SGC scaffolds could accelerate osteo-/angiogenic differentiation of bone mesenchymal stem cells (BMSCs) and meanwhile reprogram macrophages to establish a favorable osteoimmune microenvironment. In vivo experiments further demonstrated that SGC scaffolds could efficiently stimulate bone repair and create a regeneration-friendly osteoimmune microenvironment. Mechanistically, we discovered that SGC scaffolds may achieve immune reprogramming in macrophages through a decrease in the expression of Smad6 and Smad7, both of which participate in the transforming growth factor-ß (TGF-ß) signaling pathway. CONCLUSION: Overall, this study demonstrated the clinical potential of the SGC scaffold due to its favorable pro-osteo-/angiogenic and osteoimmunomodulatory properties. In addition, it is a promising strategy to develop novel bone repair biomaterials by taking osteoinduction and osteoimmune microenvironment remodeling functions into account.


Asunto(s)
Compuestos de Calcio , Nanofibras , Silicatos , Andamios del Tejido , Andamios del Tejido/química , Hidrogeles/farmacología , Hidrogeles/química , Angiogénesis , Regeneración Ósea , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Impresión Tridimensional , Osteogénesis , Ingeniería de Tejidos
20.
J Nanobiotechnology ; 22(1): 94, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38449005

RESUMEN

BACKGROUND: Impaired osteo-/angiogenesis, excessive inflammation, and imbalance of the osteoimmune homeostasis are involved in the pathogenesis of the alveolar bone defect caused by periodontitis. Unfortunately, there is still a lack of ideal therapeutic strategies for periodontitis that can regenerate the alveolar bone while remodeling the osteoimmune microenvironment. Quercetin, as a monomeric flavonoid, has multiple pharmacological activities, such as pro-regenerative, anti-inflammatory, and immunomodulatory effects. Despite its vast spectrum of pharmacological activities, quercetin's clinical application is limited due to its poor water solubility and low bioavailability. RESULTS: In this study, we fabricated a quercetin-loaded mesoporous bioactive glass (Quercetin/MBG) nano-delivery system with the function of continuously releasing quercetin, which could better promote the bone regeneration and regulate the immune microenvironment in the alveolar bone defect with periodontitis compared to pure MBG treatment. In particular, this nano-delivery system effectively decreased injection frequency of quercetin while yielding favorable therapeutic results. In view of the above excellent therapeutic effects achieved by the sustained release of quercetin, we further investigated its therapeutic mechanisms. Our findings indicated that under the periodontitis microenvironment, the intervention of quercetin could restore the osteo-/angiogenic capacity of periodontal ligament stem cells (PDLSCs), induce immune regulation of macrophages and exert an osteoimmunomodulatory effect. Furthermore, we also found that the above osteoimmunomodulatory effects of quercetin via macrophages could be partially blocked by the overexpression of a key microRNA--miR-21a-5p, which worked through inhibiting the expression of PDCD4 and activating the NF-κB signaling pathway. CONCLUSION: In summary, our study shows that quercetin-loaded mesoporous nano-delivery system has the potential to be a therapeutic approach for reconstructing alveolar bone defects in periodontitis. Furthermore, it also offers a new perspective for treating alveolar bone defects in periodontitis by inhibiting the expression of miR-21a-5p in macrophages and thereby creating a favorable osteoimmune microenvironment.


Asunto(s)
FN-kappa B , Periodontitis , Humanos , Quercetina/farmacología , Periodontitis/tratamiento farmacológico , Flavonoides , Inflamación , Proteínas de Unión al ARN , Proteínas Reguladoras de la Apoptosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA