Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 192(2): 1321-1337, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36879396

RESUMEN

Acidic tea (Camellia sinensis) plantation soil usually suffers from magnesium (Mg) deficiency, and as such, application of fertilizer containing Mg can substantially increase tea quality by enhancing the accumulation of nitrogen (N)-containing chemicals such as amino acids in young tea shoots. However, the molecular mechanisms underlying the promoting effects of Mg on N assimilation in tea plants remain unclear. Here, both hydroponic and field experiments were conducted to analyze N, Mg, metabolite contents, and gene expression patterns in tea plants. We found that N and amino acids accumulated in tea plant roots under Mg deficiency, while metabolism of N was enhanced by Mg supplementation, especially under a low N fertilizer regime. 15N tracing experiments demonstrated that assimilation of N was induced in tea roots following Mg application. Furthermore, weighted gene correlation network analysis (WGCNA) analysis of RNA-seq data suggested that genes encoding glutamine synthetase isozymes (CsGSs), key enzymes regulating N assimilation, were markedly regulated by Mg treatment. Overexpression of CsGS1.1 in Arabidopsis (Arabidopsis thaliana) resulted in a more tolerant phenotype under Mg deficiency and increased N assimilation. These results validate our suggestion that Mg transcriptionally regulates CsGS1.1 during the enhanced assimilation of N in tea plant. Moreover, results of a field experiment demonstrated that high Mg and low N had positive effects on tea quality. This study deepens our understanding of the molecular mechanisms underlying the interactive effects of Mg and N in tea plants while also providing both genetic and agronomic tools for future improvement of tea production.


Asunto(s)
Camellia sinensis , Camellia sinensis/genética , Camellia sinensis/metabolismo , Magnesio/metabolismo , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Nitrógeno/metabolismo , Fertilizantes , Aminoácidos/metabolismo , Té/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo
2.
Environ Res ; 237(Pt 1): 116925, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37598641

RESUMEN

Understanding soil organic carbon (SOC), the largest carbon (C) pool of a terrestrial ecosystem, is essential for mitigating climate change. Currently, the spatial patterns and drivers of SOC in the plantations of tea, a perennial leaf crop, remain unclear. Therefore, the present study surveyed SOC across the main tea-producing areas of China, which is the largest tea producer in the world. We analyzed the soil samples from tea plantations under different scenarios, such as provinces, regions [southwest China (SW), south China (SC), south Yangtze (SY), and north Yangtze (NY)], climatic zones (temperate, subtropical, and tropical), and cultivars [large-leaf (LL) and middle or small-leaf (ML) cultivars]. Preliminary analysis revealed that most tea-producing areas (45%) had SOC content ranging from 10 to 20 g kg-1. The highest SOC was recorded for Yunnan among the various provinces, the SW tea-producing area among the four regions, the tropical region among the different climatic zones, and the areas with LL cultivars compared to those with ML cultivars. Further Pearson correlation analysis demonstrated significant associations between SOC and soil variables and random forest modeling (RF) identified that total nitrogen (TN) and available aluminum [Ava(Al)] of soil explained the maximum differences in SOC. Besides, a large indirect effect of geography (latitude and altitude) on SOC was detected through partial least squares path modeling (PLS-PM) analysis. Thus, the study revealed a high spatial heterogeneity in SOC across the major tea-producing areas of China. The findings also serve as a basis for planning fertilization strategies and C sequestration policies for tea plantations.

3.
Environ Res ; 216(Pt 3): 114679, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36326541

RESUMEN

The response of soil denitrification to nitrogen (N) addition in the acidic and perennial agriculture systems and its underlying mechanisms remain poorly understood. Therefore, a long-term (12 years) field trial was conducted to explore the effects of different N application rates on the soil denitrification potential (DP), functional genes, and denitrifying microbial communities of a tea plantation. The study found that N application to the soil significantly increased the DP and the absolute abundance of denitrifying genes, such as narG, nirK, norB, and nosZ. The diversity of denitrifying communities (genus level) significantly decreased with increasing N rates. Moreover, the denitrifying communities composition significantly differed among the soils with different rates of N fertilization. Further variance partitioning analysis (VPA) revealed that the soil (39.04%) and pruned litter (32.53%) properties largely contributed to the variation in the denitrifying communities. Dissolved organic carbon (DOC) and soil pH, pruned litter's total crude fiber (TCF) content and total polyphenols to total N ratio (TP/TN), and narG and nirK abundance significantly (VIP >1.0) influenced the DP. Finally, partial least squares path modeling (PLS-PM) revealed that N addition indirectly affected the DP by changing specific soil and pruned litter properties and functional gene abundance. Thus, the findings suggest that tea plantation is a major source of N2O emissions that significantly enhance under N application and provide theoretical support for N fertilizer management in an acidic tea plantation system.


Asunto(s)
Microbiología del Suelo , Suelo , Suelo/química , Nitrógeno , Desnitrificación ,
4.
J Environ Manage ; 342: 118207, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37263035

RESUMEN

Nitrogen (N) and phosphorus (P) are two important nutrient elements that limit the growth of plants and microorganisms. The effect of the N supply on soil P cycling and its mechanism remain poorly known. Here, we characterized the effects of different N application rates on soil P availability, the abundances of P-cycling functional genes, and microbial communities involved in P-cycling following the application of N for 13 years in a tea plantation. Soil available P (AP) decreased significantly under N application. The opposite pattern was observed for the activity of soil phosphatases including alkaline (ALP) and acid phosphatase (ACP). Furthermore, N addition increased the abundance of ppa but decreased the abundance of phoD in soil. Both ppa- and phoD-harboring communities varied with N application levels. Redundancy analysis (RDA) showed that soil pH was a key variable modulating ppa-harboring and phoD-harboring microbial communities. Partial least squares path modeling (PLS-PM) revealed that long-term N application indirectly reduced soil P availability by altering the abundances of phoD-harboring biomarker taxa. Overall, our findings indicated that N-induced reductions in AP increased microbial competition for P by selecting microbes with P uptake and starvation response genes or those with phosphatases in tea plantation system. This suggests that tea plantations should be periodically supplemented with P under N application, especially under high N application levels.


Asunto(s)
Camellia sinensis , Microbiota , Suelo/química , Fósforo/análisis , Nitrógeno/análisis , Microbiología del Suelo , Monoéster Fosfórico Hidrolasas/farmacología ,
5.
J Environ Manage ; 308: 114595, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35124311

RESUMEN

Agricultural management is essential to enhance soil ecosystem service function through optimizing soil physical conditions and improving nutrient supply, which is predominantly regulated by soil microorganisms. Several studies have focused on soil biodiversity and function in tea plantation systems. However, the effects of different agriculture managements on soil fertility and microbes remain poorly characterized, especially for what concerns perennial agroecosystems. In this study, 40 soil samples were collected from 10 tea plantation sites in China to explore the effects of ecological and conventional managements on soil fertility, as well as on microbial diversity, community composition, and co-occurrence network. Compared with conventional management, ecological management was found to significantly enhance soil fertility, microbial diversity, and microbial network complexity. Additionally, a significant difference in community composition was clearly observed under the two agriculture managements, especially for rare microbial taxa, whose relative abundance significantly increased under ecological management. Random forest modeling revealed that rare taxa (e.g., Rokubacteria and Mortierellomycota), rather than dominant microbial taxa (e.g., Proteobacteria and Ascomycota), were key variables for predicting soil fertility. This indicates that rare taxa might play a fundamental role in biological processes. Overall, our results suggest that ecological management is more efficient than conventional management in regulating rare microbial taxa and maintaining a good soil fertility in tea plantation systems.


Asunto(s)
Camellia sinensis , Suelo , Agricultura , Ecosistema , Microbiología del Suelo ,
6.
J Sci Food Agric ; 100(4): 1505-1514, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31756273

RESUMEN

BACKGROUND: Greater proportions of purple tea buds and leaves usually appear in the summer, which seriously affects the color and taste quality of green tea products, yet the metabolism of purple tea shoots in summer remains unclear. Here, the metabolomic profiles and gene expression of related flavonoid metabolic pathways in the purple and normal green shoots of 'Longjing 43', and the quality of green tea made with these two phenotypes, were analyzed and compared. RESULTS: Differential metabolites identified using high-performance liquid chromatography-Orbitrap/mass spectrometry indicated that anthocyanin biosynthesis in purple leaves was enriched, with higher levels of anthocyanidins (delphinidin-hexose-coumaroyl showed the greatest increase), proanthocyanidins (oligomers of catechins) and kaempferol glycoside. Expression patterns of the genes ANR, ANS, FLS, LAR, C4H, PAL, CHI, CHS and DFR revealed that the metabolism of anthocyanin is positively regulated by high temperature and/or light levels in summer. Gas chromatography-mass spectrometry results showed that, in purple tea shoots, the metabolism of carbohydrates was enriched whereas that of amino acids was diminished, while their mannose, fructose, d-galactose, sorbose and d-glucose contents were more than double those found in green leaves. A sensory evaluation confirmed that a greater quantity of purple shoots had a greater negative impact on green tea quality because of a bitter taste and dark color (leaves and infusions were tested). CONCLUSIONS: These results highlight the need for and possibility of improving commercial tea quality via cultivation that controls the temperature or light of tea gardens during the summer. © 2019 Society of Chemical Industry.


Asunto(s)
Antocianinas/biosíntesis , Camellia sinensis/metabolismo , Brotes de la Planta/metabolismo , Camellia sinensis/química , Camellia sinensis/genética , Camellia sinensis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/química , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/química , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Estaciones del Año
7.
BMC Plant Biol ; 19(1): 425, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31615403

RESUMEN

BACKGROUND: Nitrogen (N) nutrition significantly affected metabolism and accumulation of quality-related compounds in tea plant (Camellia sinensis L.). Little is known about the physiological and molecular mechanisms underlying the effects of short-term repression of N metabolism on tea roots and leaves for a short time. RESULTS: In this study, we subjected tea plants to a specific inhibitor of glutamine synthetase (GS), methionine sulfoximine (MSX), for a short time (30 min) and investigated the effect of the inhibition of N metabolism on the transcriptome and metabolome of quality-related compounds. Our results showed that GS activities in tea roots and leaves were significantly inhibited upon MSX treatment, and both tissue types showed a sensitive metabolic response to GS inhibition. In tea leaves, the hydrolysis of theanine decreased with the increase in theanine and free ammonium content. The biosynthesis of all other amino acids was repressed, and the content of N-containing lipids declined, suggesting that short-term inhibition of GS reduces the level of N reutilization in tea leaves. Metabolites related to glycolysis and the tricarboxylic acid (TCA) cycle accumulated after GS repression, whereas the content of amino acids such as glycine, serine, isoleucine, threonine, leucine, and valine declined in the MXS treated group. We speculate that the biosynthesis of amino acids is affected by glycolysis and the TCA cycle in a feedback loop. CONCLUSIONS: Overall, our data suggest that GS repression in tea plant leads to the reprogramming of amino acid and lipid metabolic pathways.


Asunto(s)
Aminoácidos/metabolismo , Camellia sinensis/metabolismo , Glutamato-Amoníaco Ligasa/antagonistas & inhibidores , Metabolismo de los Lípidos , Metionina Sulfoximina/farmacología , Proteínas de Plantas/antagonistas & inhibidores , Camellia sinensis/efectos de los fármacos , Camellia sinensis/enzimología , Metabolismo de los Lípidos/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo
8.
Rapid Commun Mass Spectrom ; 33(8): 778-788, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-30716180

RESUMEN

RATIONALE: Deliberate and fraudulent origin mislabeling of Chinese green tea motivated by large price differences often brings significant food safety risks and damages consumer trust. Currently, there is no reliable method to verify the origin of green tea produced in China. Stable isotope and multi-element analyses combined with statistical models are widely acknowledged as useful traceability techniques for many agro-products, and could be developed to confirm the geographical origin of Chinese green tea and, more importantly, combat illegal green tea mislabeling and fraud. METHODS: An analytical strategy combining elemental analyzer/isotope ratio mass spectrometry (EA/IRMS) and inductively plasma coupled mass spectrometry (ICP-MS) with chemometrics tools was used to confirm the origin of green tea grown in the main tea production provinces around China. Stable C, N, H, O isotope ratios and twenty elements were measured to build mathematical discriminant models using unsupervised principal component analysis (PCA) and supervised linear discriminant analysis (LDA). Two main problems: (i) tracing the origin of Chinese green tea from different tea growing provinces (Zhejiang, Shandong, and other provinces); (ii) authentication of high-value Westlake Longjing tea from the Westlake region and surrounding areas in Zhejiang province, were investigated and assessed. RESULTS: The results demonstrated that PCA and follow-up LDA based on stable isotope and multi-element signatures can verify the geographical origin of Chinese green tea from different provinces, and even localized zones in the same province could be distinguishable, with discrimination accuracies higher than 92.3% and 87.8%, respectively. CONCLUSIONS: Geochemical fingerprinting techniques coupled with chemometric tools offer an accurate and effective verification method for the geographical origin of Chinese green tea, providing a promising tool to combat fraudulent mislabeling of high-value green tea.


Asunto(s)
Camellia sinensis/química , Isótopos/química , Espectrometría de Masas/métodos , Té/química , Oligoelementos/química , China , Análisis Discriminante , Geografía
9.
Plant Cell Rep ; 38(6): 715-729, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30911819

RESUMEN

KEY MESSAGE: Transcriptome profiling of roots indicated that genes involved in cell wall modification, cytoskeleton, H+ exchange and K+ influx played important roles in tea root growth under Al addition. Tea (Camellia sinensis) is considered as an Al accumulator species. It can accumulate a high concentration of Al in mature leaves without any symptom of toxicity, even improve roots' growth and nutrient uptake. However, the molecular mechanisms underlying this tolerance remain unclear. Here, we investigated the accumulation of elements and transcriptional profiles in tea roots treated with various Al doses. The results showed that the growth of tea plants was improved by a low dose of Al (0.2, 0.4, 0.6, 1 mM); however, this beneficial effect disappeared when higher concentrations of Al were supplied (2, 4, 10 mM). Ionomic analysis suggested that accumulation of P and K increased under a low Al supply (< 1 mM), while Ca and Mg contents were negatively correlated with external Al doses. The RNA seq obtained 523,391 unigenes, among which 20,448 were annotated in all databases. In total, 1876 unigenes were expressed significantly different in any Al treatment. A large number of DEGs involved in cell growth and division, such as those linked to cell wall-modifying enzymes, actin cytoskeleton, cyclin and H+-ATPase were identified, suggesting that these pathways were involved in root growth under different Al supply. Furthermore, expression of transporters significantly changed in roots supplied with Al. Among them, HAK5, which is involved in K uptake by plants, had a significant positive correlation with the K content.


Asunto(s)
Aluminio/farmacología , Camellia sinensis/efectos de los fármacos , Camellia sinensis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética
10.
Angew Chem Int Ed Engl ; 58(8): 2236-2240, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30548959

RESUMEN

Circulating tumor cell (CTC)-enrichment by using aptamers has a number of advantages, but the issue of compromised binding affinities and stabilities in real samples hinders its wide applications. Inspired by the high efficiency of the prey mechanism of the octopus, we engineered a deterministic lateral displacement (DLD)-patterned microfluidic chip modified with multivalent aptamer-functionalized nanospheres (AP-Octopus-Chip) to enhance capture efficiency. The multivalent aptamer-antigen binding efficiency improves 100-fold and the capture efficiency is enhanced more than 300 % compared with a monovalent aptamer-modified chip. Moreover, the captured cancer cells can be released through a thiol exchange reaction with up to 80 % efficiency and 96 % viability, which is fully compatible with downstream mutation detection and CTC culture. Using the chip, we were able to find CTCs in all cancer samples analyzed.


Asunto(s)
Aptámeros de Nucleótidos/química , Ingeniería Celular , Nanopartículas/química , Células Neoplásicas Circulantes/patología , Humanos , Células K562 , Células Tumorales Cultivadas
11.
Analyst ; 143(6): 1294-1304, 2018 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-29497717

RESUMEN

Gas generation-based measurement is an attractive alternative approach for POC (Point-of-care) testing, which relies on the amount of generated gas to detect the corresponding target concentrations. In gas generation-based POC testing, the integration of a target recognition component and a catalyzed gas-generating reaction initiated by the target introduction can lead to greatly amplified signals, which can be highly sensitive measured via distance readout or simple hand-held devices. More importantly, numerous gas-generating reactions are environment-friendly since their products such as oxygen and nitrogen are nontoxic and odourless, which makes gas generation-based POC testing safe and secure for inexperienced staff. Researchers have demonstrated that gas generation-based measurements enable the rapid and highly sensitive POC detection of a variety of analytes. In this review, we focus on the recent developments in gas generation-based POC testing systems. The common types of gas-generating reactions are first listed and the translation of gas signals to different signal readouts for POC testing are then summarized, including distance readouts and hand-held devices. Moreover, we introduce gas bubbles as actuators to power microfluidic devices. We finally provide the applications and future perspective of gas generation-based POC testing systems.


Asunto(s)
Técnicas Biosensibles , Gases/química , Pruebas en el Punto de Atención , Amoníaco/química , Humanos , Concentración de Iones de Hidrógeno , Dispositivos Laboratorio en un Chip , Nitrógeno/química , Oxígeno/química
12.
Int J Mol Sci ; 19(11)2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30469347

RESUMEN

The qualities of tea (Camellia sinensis) are not clearly understood in terms of integrated leading molecular regulatory network mechanisms behind inorganic phosphate (Pi) limitation. Thus, the present work aims to elucidate transcription factor-dependent responses of quality-related metabolites and the expression of genes to phosphate (P) starvation. The tea plant organs were subjected to metabolomics analysis by GC×GC-TOF/MS and UPLC-Q-TOF/MS along with transcription factors and 13 metabolic genes by qRT-PCR. We found P starvation upregulated SPX2 and the change response of Pi is highly dependent on young shoots. This led to increased change in abundance of carbohydrates (fructose and glucose), amino acids in leaves (threonine and methionine), and root (phenylalanine, alanine, tryptophan, and tyrosine). Flavonoids and their glycosides accumulated in leaves and root exposed to P limitation was consistent with the upregulated expression of anthocyanidin reductase (EC 1.3.1.77), leucoanthocyanidin dioxygenase (EC 1.4.11.19) and glycosyltransferases (UGT78D1, UGT78D2 and UGT57L12). Despite the similar kinetics and high correlation response of Pi and SPX2 in young shoots, predominating theanine and other amino acids (serine, threonine, glutamate, valine, methionine, phenylalanine) and catechin (EGC, EGCG and CG) content displayed opposite changes in response to Pi limitation between Fengqing and Longjing-43 tea cultivars.


Asunto(s)
Aminoácidos/metabolismo , Camellia sinensis/metabolismo , Flavonoides/metabolismo , Fosfatos/deficiencia , Camellia sinensis/genética , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico
13.
Int J Mol Sci ; 19(12)2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30544636

RESUMEN

To uncover mechanism of highly weakened carbon metabolism in chlorotic tea (Camellia sinensis) plants, iTRAQ (isobaric tags for relative and absolute quantification)-based proteomic analyses were employed to study the differences in protein expression profiles in chlorophyll-deficient and normal green leaves in the tea plant cultivar "Huangjinya". A total of 2110 proteins were identified in "Huangjinya", and 173 proteins showed differential accumulations between the chlorotic and normal green leaves. Of these, 19 proteins were correlated with RNA expression levels, based on integrated analyses of the transcriptome and proteome. Moreover, the results of our analysis of differentially expressed proteins suggested that primary carbon metabolism (i.e., carbohydrate synthesis and transport) was inhibited in chlorotic tea leaves. The differentially expressed genes and proteins combined with photosynthetic phenotypic data indicated that 4-coumarate-CoA ligase (4CL) showed a major effect on repressing flavonoid metabolism, and abnormal developmental chloroplast inhibited the accumulation of chlorophyll and flavonoids because few carbon skeletons were provided as a result of a weakened primary carbon metabolism. Additionally, a positive feedback mechanism was verified at the protein level (Mg chelatase and chlorophyll b reductase) in the chlorophyll biosynthetic pathway, which might effectively promote the accumulation of chlorophyll b in response to the demand for this pigment in the cells of chlorotic tea leaves in weakened carbon metabolism.


Asunto(s)
Camellia sinensis/metabolismo , Carbono/metabolismo , Hojas de la Planta/metabolismo , Proteómica/métodos , Regulación de la Expresión Génica de las Plantas
14.
Anal Chem ; 88(16): 8294-301, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27454185

RESUMEN

Binding affinity characterization is of great importance for aptamer screening because the dissociation constant (Kd) value is a key parameter for evaluating molecular interaction. However, conventional methods often require sophisticated equipment and time-consuming processing. Here, we present a portable device, Afi-Chip, as an equipment-free, rapid, low-cost, and universal platform for evaluation of the aptamer affinity. The Afi-Chip displays a distance readout based on the reaction of an enzyme catalyzing the decomposition of H2O2 for gas generation to push the movement of ink bar. Taking advantage of translating the recognition signal to distance signal and realizing the regents mixing and quantitative readout on the chip, we successfully monitored the aptamer evolution process and characterized binding affinity of aptamers against multiple types of targets, including small molecule glucose, cancer biomarker protein EpCAM, and tumor cell SW620. We also applied the Afi-Chip for rapid characterization of the affinity between anti-HCG and HCG to demonstrate the generality for the molecular interaction study. All of the Kd values obtained are comparable to those reported in the literature or obtained by sophisticated instruments such as a flow cytometer. The Afi-Chip offers a new approach for equipment-free investigation of molecular interactions, such as aptamer identification, ligand selection monitoring, and drug screening.

15.
J Integr Plant Biol ; 57(10): 830-7, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25404058

RESUMEN

Glucose (Glu) is involved in not only plant physiological and developmental events but also plant responses to abiotic stresses. Here, we found that the exogenous Glu improved root and shoot growth, reduced shoot cadmium (Cd) concentration, and rescued Cd-induced chlorosis in Arabidopsis thaliana (Columbia ecotype, Col-0) under Cd stressed conditions. Glucose increased Cd retained in the roots, thus reducing its translocation from root to shoot significantly. The most Cd retained in the roots was found in the hemicellulose 1. Glucose combined with Cd (Glu + Cd) treatment did not affect the content of pectin and its binding capacity of Cd while it increased the content of hemicelluloses 1 and the amount of Cd retained in it significantly. Furthermore, Leadmium Green staining indicated that more Cd was compartmented into vacuoles in Glu + Cd treatment compared with Cd treatment alone, which was in accordance with the significant upregulation of the expression of tonoplast-localized metal transporter genes, suggesting that compartmentation of Cd into vacuoles also contributes to the Glu-alleviated Cd toxicity. Taken together, we demonstrated that Glu-alleviated Cd toxicity is mediated through increasing Cd fixation in the root cell wall and sequestration into the vacuoles.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Cadmio/metabolismo , Cadmio/toxicidad , Pared Celular/efectos de los fármacos , Glucosa/farmacología , Vacuolas/metabolismo , Pared Celular/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Vacuolas/efectos de los fármacos
16.
J Inflamm Res ; 17: 4683-4700, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39051049

RESUMEN

ALI(acute lung injury) is a severe respiratory dysfunction caused by various intrapulmonary and extrapulmonary factors. It is primarily characterized by oxidative stress and affects the integrity of the pulmonary barrier. In severe cases, ALI can progress to ARDS(acute respiratory distress syndrome), a condition that poses a serious threat to the lives of affected patients. To date, the etiological mechanisms underlying ALI remain elusive, and available therapeutic options are quite limited. AMPK(AMP-activated protein kinase), an essential serine/threonine protein kinase, performs a pivotal function in the regulation of cellular energy levels and cellular regulatory mechanisms, including the detection of redox signals and mitigating oxidative stress. Meanwhile, Nrf2(nuclear factor erythroid 2-related factor 2), a critical transcription factor, alleviates inflammation and oxidative responses by interacting with multiple signaling pathways and contributing to the modulation of oxidative enzymes associated with inflammation and programmed cell death. Indeed, AMPK induces the dissociation of Nrf2 from Keap1(kelch-like ECH-associated protein-1) and facilitates its translocation into the nucleus to trigger the transcription of downstream antioxidant genes, ultimately suppressing the expression of inflammatory cells in the lungs. Given their roles, AMPK and Nrf2 hold promise as novel treatment targets for ALI. This study aimed to summarise the current status of research on the AMPK/Nrf2 signaling pathway in ALI, encompassing recently reported natural compounds and drugs that can activate the AMPK/Nrf2 signaling pathway to alleviate lung injury, and provide a theoretical reference for early intervention in lung injury and future research on lung protection.

17.
Plants (Basel) ; 13(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38256755

RESUMEN

Shading is an effective agronomic technique to protect tea plants from intense sunlight. However, there are currently very few studies on more effective shading methods to improve the quality of summer tea. In this study, 'Longjing43' plants were grown under four different shading treatments for 14 days, with no shading as the control. Among the four shading treatments, double-layer-net shadings had the most positive impact on the tea quality, resulting in higher levels of amino acids but lower levels of tea polyphenols. Additionally, double-layer-net shadings provided more suitable microenvironments for tea plants. The tea leaves in T4 (double nets 50 cm above the plant canopy) contained 16.13 mg∙g-1 of umami and sweet amino acids, which was significantly higher than in other treatments. T4 had the lowest air temperature and the most suitable and stable soil water content. Interestingly, the ratio of red light to far-red light in T4 was only 1.65, much lower than other treatments, which warrants further study. In conclusion, the microenvironment induced by shading can greatly affect the tea quality, and double-layer-net shading is better for improving the quality of summer tea.

18.
Huan Jing Ke Xue ; 44(3): 1572-1582, 2023 Mar 08.
Artículo en Zh | MEDLINE | ID: mdl-36922218

RESUMEN

Paddy fields are complex ecosystems that both emit CH4 and absorb CO2, which plays an important role in the global water-carbon cycle and carbon budget. In this study, the CH4 fluxes and CO2 fluxes of double-cropping direct-seeded rice fields in 2020 in the Poyang Lake Plain were obtained using the eddy covariance method, and the variation characteristics, accumulation in the whole growth period, and comprehensive greenhouse effects of two greenhouse gases were quantitatively revealed. The results showed that, the double-cropping direct-seeded rice field in Poyang Lake Plain was the source of CH4 emission, and the emission during the whole growth period was 52.6 g·m-2, with an average daily emission of 0.208 g·(m2·d)-1. CH4 emission and daily average emission in the early rice season were 20.7 g·m-2 and 0.188 g·(m2·d)-1, respectively, which were lower than the emissions of 31.9 g·m-2 and 0.255 g·(m2·d)-1 in the late rice season. CH4 flux had significant seasonal variation characteristics. The strong emission period (emission peak) of CH4 was concentrated in the middle growth stage of early rice and the early growth stage of late rice. A total of 85.5% of CH4 in the early rice season and 92.1% of CH4 in the late rice season were released during the strong emission periods, and seasonal peak values were 0.638 g·(m2·d)-1 and 1.282 g·(m2·d)-1, respectively. The diurnal variation characteristics of CH4 flux showed three types:obvious unimodal type, non-obvious unimodal type, and irregular type. The strong emission period was mainly the unimodal type, and the peak values of 0.453 µmol·(m2·s)-1 in the early rice season and 0.977 µmol·(m2·s)-1 in the late rice season appeared at 14:00-15:00 and maintained a high emission rate at 12:30-16:00. The CO2 accumulation in the whole growth period of early rice and late rice was -990.4 g·m-2 and -1156.6 g·m-2, respectively, and the total was -2147.0 g·m-2. The comprehensive greenhouse effect of CH4 emission and CO2 exchange in the double-cropping paddy field was -673.6 g·m-2 (calculated using the CO2 equivalent), which showed a cooling effect. Excluding CH4 emissions when evaluating the greenhouse effect of the paddy field, the CO2 equivalent emission of 1473.4 g·m-2 would be underestimated, accounting for 68.6% of the net CO2 absorption. Considering CH4 emissions, CO2 exchanges, and carbon emissions caused by rice harvest, the two-season direct seeding paddy field in Poyang Lake Plain was the source of greenhouse gas emissions.

19.
Sci Total Environ ; 856(Pt 2): 159231, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36216053

RESUMEN

Soil organic carbon (SOC) is an important C pool of the global ecosystem and is affected by various agricultural practices including fertilization. Excessive nitrogen (N) application is an important field management measure in tea plantation systems. However, the mechanism underlying the impact of N fertilization on SOC, especially the microscopic mechanism remain unclear. The present study explored the effects of N fertilization on C-cycling genes, SOC-degrading enzymes and microbes expressing these enzymes by using a metagenomic approach in a tea plantation under long-term fertilization with different N rates. Results showed that N application significantly changed the abundance of C-cycling genes, SOC-degrading enzymes, especially those associated with labile and recalcitrant C degradation. In addition, the beta-glucosidase and chitinase-expressing microbial communities showed a significant difference under different N rates. At the phylum level, microbial taxa involved in C degradation were highly similar and abundant, while at the genus level, only specific taxa performed labile and recalcitrant C degradation; these SOC-degrading microbes were significantly enriched under N application. Redundancy analysis (RDA) revealed that the soil and pruned litter properties greatly influenced the SOC-degrading communities; pH and DOC of the soil and biomass and total polyphenol (TP) of the pruned litter exerted significant effects. Additionally, the random forest (RF) algorithm revealed that soil pH and dominant taxa efficiently predicted the beta-glucosidase abundance, while soil pH and DOC, pruned litter TP, and the highly abundant microbial taxa efficiently predicted chitinase abundance. Our study indicated that long-term N fertilization exerted a significant positive effect on SOC-degrading enzymes and microbes expressing these enzymes, resulting in potential impact on soil C storage in a perennial tea plantation ecosystem.


Asunto(s)
Camellia sinensis , Celulasas , Quitinasas , Microbiota , Suelo/química , Carbono/análisis , Camellia sinensis/metabolismo , Microbiología del Suelo , Metagenómica , Nitrógeno/análisis , , Fertilización
20.
Huan Jing Ke Xue ; 43(10): 4613-4621, 2022 Oct 08.
Artículo en Zh | MEDLINE | ID: mdl-36224146

RESUMEN

To provide guidance for the safe use of organic fertilizers and improve soil quality and tea safety, it is necessary to conduct systematic analyses of the heavy metal content of organic fertilizers applied in the main tea producing areas of China. In this study, we analyzed the heavy metal contents in organic fertilizer samples collected from 2017 to 2019. The risks of collected organic fertilizers from different areas and sources were calculated. The results showed that the average concentrations of ω(As), ω(Hg), ω(Pb), ω(Cd), ω(Cr), ω(Cu), ω(Zn), and ω(Ni) in the collected organic fertilizers were 4.60, 0.22, 27.1, 0.78, 27.9, 58.3, 250.1, and 16.3 mg·kg-1, respectively. According to the assessment standard in NY/T 525- 2021, the over-limit rates of As, Hg, Pb, Cd, and Cr were 6.19%, 1.33%, 4.42%, 4.42%, and 1.33%, respectively. With respect to the area, the qualified rates were 100% in Shaanxi, Jiangsu, Anhui, Fujian, and Guangxi; 80%-90% in Shandong, Zhejiang, Hubei, Sichuan, Yunnan, and Guangdong; and only 54.5% in Jiangxi. The qualified rates of sources were 100% in rapeseed cake, soybean cake, and pig manure; 95.8% in sheep manure; 91.7% in cow manure; 90.7% in chicken manure; 87.2% in manure of other animals; 82.4% in the mixture of plant and animal sources; 65.2% in other plant sources; and 63.6% in other sources. According to the recommended application rate, the accumulation rate of heavy metals in soil with pig manure, cow manure, chicken manure, and sheep manure would be much higher than that with rapeseed cake and soybean cake. The average accumulation rate of organic fertilizer from animal sources was 7-30 times higher than that from plant sources. Therefore, it is recommended to use rapeseed cake or soybean cake fertilizer in tea plantation and to increase the supervision of heavy metal accumulation in soil and tea in those high-risk areas.


Asunto(s)
Brassica napus , Brassica rapa , Fabaceae , Mercurio , Metales Pesados , Contaminantes del Suelo , Animales , Cadmio/análisis , Pollos , China , Monitoreo del Ambiente/métodos , Fertilizantes/análisis , Plomo/análisis , Estiércol/análisis , Mercurio/análisis , Metales Pesados/análisis , Ovinos , Suelo , Contaminantes del Suelo/análisis , Glycine max , Porcinos ,
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA