Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 158(12): 124704, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37003749

RESUMEN

The kinetics of heterogeneous nucleation during chemical vapor deposition (CVD) is still unclear despite its importance. Nucleation delay is often observed in many CVD processes, which is known as the incubation period (τi). In this study, the effects of concentration (C) and sticking probability (η) of film-forming species on τi were formulated based on our kinetic model. To discuss the kinetics, τi -1 with the rate dimension was used and formulated using C and η. Because η onto heterogeneous surfaces (ηhetero) is difficult to evaluate, the study was initiated with η onto homogeneous surfaces (ηhomo), followed by a discussion on its reasonability. The formulation was validated using the experimental dataset for SiC-CVD from CH3SiCl3/H2 onto BN underlayers because CVD involves multiple film-forming species with different ηhomo ranging from 10-6 to 10-2 and thus is a suitable system for studying the effect of ηhomo. High-aspect-ratio (1000:1) parallel-plate microchannels consisting of τi-involving BN and a τi-free Si surface were utilized to separate these film-forming species along the microchannel depth. τi was exceptionally long, up to several hours, depending on the CVD conditions. τi -1 was found to be proportional to Cn, where n is the reaction order. n was quantified as ≈1.6, suggesting the initial nucleation was triggered by the impingement of two adspecies in the second order and lowered possibly by the discrepancy between C in the gas-phase and that actually producing adspecies on the surface. τi -1 was also found to be proportional to ηhomo. The exceptionally long τi was likely originated from the significantly lower ηhetero than ηhomo and the higher activation energy for ηhetero than that for ηhomo.

2.
Sci Rep ; 14(1): 169, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167439

RESUMEN

Cathodoluminescence (CL) spectroscopy is a suitable technique for studying the luminescent properties of optoelectronic materials because CL has no limitation on the excitable bandgap energy and eliminates ambiguous signals due to simple light scattering and resonant Raman scattering potentially involved in the photoluminescence spectra. However, direct CL measurements of atomically thin two-dimensional materials have been difficult due to the small excitation volume that interacts with high-energy electron beams. Herein, distinct CL signals from a monolayer hexagonal BN (hBN), namely mBN, epitaxial film grown on a graphite substrate are shown by using a CL system capable of large-area and surface-sensitive excitation. Spatially resolved CL spectra at 13 K exhibited a predominant 5.5-eV emission band, which has been ascribed to originate from multilayered aggregates of hBN, markedly at thicker areas formed on the step edges of the substrate. Conversely, a faint peak at 6.04 ± 0.01 eV was routinely observed from atomically flat areas, which is assigned as being due to the recombination of phonon-assisted direct excitons of mBN. The CL results support the transition from indirect bandgap in bulk hBN to direct bandgap in mBN. The results also encourage one to elucidate emission properties of other low-dimensional materials by using the present CL configuration.

3.
ACS Appl Mater Interfaces ; 13(44): 53009-53020, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34711052

RESUMEN

Conformal chemical vapor deposition (CVD) of silicon carbide (SiC) from methyltrichlorosilane (MTS) and hydrogen (H2) onto high-aspect-ratio (HAR; typically >100:1) three-dimensional features has been a challenge in the fabrication of ceramic matrix composites. In this study, the impact of heterogeneous underlayers on the initial nucleation of SiC-CVD was studied using HAR (1000:1) microchannels with a tailored wetting underlayer of Si(100) and dewetting underlayers of thermally formed amorphous silicon dioxide (a-SiO2) and turbostratic boron nitride (t-BN). Incubation periods were distributed in the microchannels on a-SiO2 and t-BN underlayers, with the longest period of 70 min found at the feature-bottom due to a decreased concentration (C) of film-forming species. The longer incubation periods with more dewetting underlayers arose due to demoted initial nucleation. Prolonged incubation at the feature bottom led to poor conformality because thick films had already formed at the inlet when film formation began at the feature bottom. The incubation periods were eliminated by increasing the supply of MTS/H2, in accordance with classical heterogeneous nucleation theory. In the meantime, carbon-rich SiC films formed in the vicinity of dewetting a-SiO2 and t-BN underlayers at the feature bottoms, with greater carbon segregation on more dewetting underlayers. This was probably due to the deposition of pyrocarbons (CH4, C2H2, and/or C2H4) generated from MTS/H2 in the gas phase. Decreasing the temperature (T) from 1000 to 900 °C prevented carbon-rich film formation, and the expected deposition rate of pyrocarbon decreased to 0.6% for the case of CH4. A higher C of MTS/H2 combined with a lower T enabled conformal and stoichiometric film formation on the heterogeneous HAR features.

4.
Sci Rep ; 11(1): 20660, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34667191

RESUMEN

A process for activating Mg and its relationship with vacancy-type defects in Mg-implanted GaN were studied by positron annihilation spectroscopy. Mg+ ions were implanted with an energy of 10 keV, and the Mg concentration in the subsurface region (≤ 50 nm) was on the order of 1019 cm-3. After the Mg-implantation, N+ ions were implanted to provide a 300-nm-deep box profile with a N concentration of 6 × 1018 cm-3. From capacitance-voltage measurements, the sequential implantation of N was found to enhance the activation of Mg. For N-implanted GaN before annealing, the major defect species were determined to Ga-vacancy related defects such as divacancy. After annealing below 1000 °C, the clustering of vacancies was observed. Above 1200 °C annealing, however, the size of the vacancies started to decrease, which was due to recombinations of vacancy clusters and excess N atoms in the damaged region. The suppression of vacancy clustering by sequential N-implantation in Mg-implanted GaN was attributed to the origin of the enhancement of the Mg activation.

5.
Sci Rep ; 10(1): 18570, 2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33122733

RESUMEN

Immiscible semiconductors are of premier importance since the source of lighting has been replaced by white light-emitting-diodes (LEDs) composed of thermodynamically immiscible InxGa1-xN blue LEDs and yellow phosphors. For realizing versatile deep-ultraviolet to near-infrared light-emitters, Al1-xInxN alloys are one of the desirable candidates. Here we exemplify the appearance and self-formation sequence of compositional superlattices in compressively strained m-plane Al1-xInxN films. On each terrace of atomically-flat m-plane GaN, In- and Al-species diffuse toward a monolayer (ML) step edge, and the first and second uppermost < [Formula: see text]> cation-rows are preferentially occupied by Al and In atoms, respectively, because the configuration of one In-N and two Al-N bonds is more stable than that of one Al-N and two In-N bonds. Subsequent coverage by next < [Formula: see text]> Al-row buries the < [Formula: see text]> In-row, producing nearly Al0.5In0.5N cation-stripe ordering along [0001]-axis on GaN. At the second Al0.72In0.28N layer, this ordinality suddenly lessens but In-rich and In-poor < [Formula: see text]>-rows are alternately formed, which grow into respective {0001}-planes. Simultaneously, approximately 5-nm-period Al0.70In0.30N/Al0.74In0.26N ordering is formed to mitigate the lattice mismatch along [0001], which grow into approximately 5-nm-period Al0.70In0.30N/Al0.74In0.26N {[Formula: see text]} superlattices as step-flow growth progresses. Spatially resolved cathodoluminescence spectra identify the emissions from particular structures.

6.
ACS Appl Mater Interfaces ; 12(45): 51016-51025, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33124421

RESUMEN

We propose a new, concise method for conformal chemical vapor deposition (CVD) using sacrificial layers (SLs) to fill three-dimensional features with microscopic pores. SLs are porous membranes (e.g., ceramic felts) that filter film-forming species having high sticking-probability (η). CVD processes with multiple film-forming species generally suffer from poor conformality due to preferential film deposition at the inlets of features by the high-η species, such as reactive intermediates. An SL traps such high-η species before they reach the target features and selectively supplies film-forming species with lower η (e.g., source precursors or stable intermediates) that enables conformal film deposition. Here the trapping efficiency of an SL was predicted and a procedure for designing an optimal SL was established. The procedure was demonstrated by CVD of silicon carbide (SiC) with multiple film-forming species of high-η species (η = 8.0 × 10-3) and lower-η species (η = 5.9 × 10-5 and 2.2 × 10-7). The trapping of 99.2% of incident high-η species was achieved with an optimized SL, wherein the deposition rate (m/s) contribution by high-η species declined from 0.546 at the SL inlet to 0.014 at its outlet. Finally, using these optimized SLs, SiC-CVD filling of micron-scale trenches was demonstrated with an aspect-ratio of 16:1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA