Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2311390121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38593075

RESUMEN

Many organisms that utilize the Calvin-Benson-Bassham (CBB) cycle for autotrophic growth harbor metabolic pathways to remove and/or salvage 2-phosphoglycolate, the product of the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). It has been presumed that the occurrence of 2-phosphoglycolate salvage is linked to the CBB cycle, and in particular, the C2 pathway to the CBB cycle and oxygenic photosynthesis. Here, we examined 2-phosphoglycolate salvage in the hyperthermophilic archaeon Thermococcus kodakarensis, an obligate anaerobe that harbors a Rubisco that functions in the pentose bisphosphate pathway. T. kodakarensis harbors enzymes that have the potential to convert 2-phosphoglycolate to glycine and serine, and their genes were identified by biochemical and/or genetic analyses. 2-phosphoglycolate phosphatase activity increased 1.6-fold when cells were grown under microaerobic conditions compared to anaerobic conditions. Among two candidates, TK1734 encoded a phosphatase specific for 2-phosphoglycolate, and the enzyme was responsible for 80% of the 2-phosphoglycolate phosphatase activity in T. kodakarensis cells. The TK1734 disruption strain displayed growth impairment under microaerobic conditions, which was relieved upon addition of sodium sulfide. In addition, glycolate was detected in the medium when T. kodakarensis was grown under microaerobic conditions. The results suggest that T. kodakarensis removes 2-phosphoglycolate via a phosphatase reaction followed by secretion of glycolate to the medium. As the Rubisco in T. kodakarensis functions in the pentose bisphosphate pathway and not in the CBB cycle, mechanisms to remove 2-phosphoglycolate in this archaeon emerged independent of the CBB cycle.


Asunto(s)
Archaea , Ribulosa-Bifosfato Carboxilasa , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Archaea/metabolismo , Fotosíntesis , Glicolatos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Oxigenasas/metabolismo , Pentosas
2.
J Bacteriol ; : e0020524, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39194224

RESUMEN

Members of the kingdom Nanobdellati, previously known as DPANN archaea, are characterized by ultrasmall cell sizes and reduced genomes. They primarily thrive through ectosymbiotic interactions with specific hosts in diverse environments. Recent successful cultivations have emphasized the importance of adhesion to host cells for understanding the ecophysiology of Nanobdellati. Cell adhesion is often mediated by cell surface carbohydrates, and in archaea, this may be facilitated by the glycosylated S-layer protein that typically coats their cell surface. In this study, we conducted glycoproteomic analyses on two co-cultures of Nanobdellati with their host archaea, as well as on pure cultures of both host and non-host archaea. Nanobdellati exhibited various glycoproteins, including archaellins and hypothetical proteins, with glycans that were structurally distinct from those of their hosts. This indicated that Nanobdellati autonomously synthesize their glycans for protein modifications probably using host-derived substrates, despite the high energy cost. Glycan modifications on Nanobdellati proteins consistently occurred on asparagine residues within the N-X-S/T sequon, consistent with patterns observed across archaea, bacteria, and eukaryotes. In both host and non-host archaea, S-layer proteins were commonly modified with hexose, N-acetylhexosamine, and sulfonated deoxyhexose. However, the N-glycan structures of host archaea, characterized by distinct sugars such as deoxyhexose, nonulosonate sugar, and pentose at the nonreducing ends, were implicated in enabling Nanobdellati to differentiate between host and non-host cells. Interestingly, the specific sugar, xylose, was eliminated from the N-glycan in a host archaeon when co-cultured with Nanobdella. These findings enhance our understanding of the role of protein glycosylation in archaeal interactions.IMPORTANCENanobdellati archaea, formerly known as DPANN, are phylogenetically diverse, widely distributed, and obligately ectosymbiotic. The molecular mechanisms by which Nanobdellati recognize and adhere to their specific hosts remain largely unexplored. Protein glycosylation, a fundamental biological mechanism observed across all domains of life, is often crucial for various cell-cell interactions. This study provides the first insights into the glycoproteome of Nanobdellati and their host and non-host archaea. We discovered that Nanobdellati autonomously synthesize glycans for protein modifications, probably utilizing substrates derived from their hosts. Additionally, we identified distinctive glycosylation patterns that suggest mechanisms through which Nanobdellati differentiate between host and non-host cells. This research significantly advances our understanding of the molecular basis of microbial interactions in extreme environments.

3.
Plant Cell Physiol ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39030709

RESUMEN

Anoxygenic photosynthesis is diversified into two classes: chlorophototrophy based on a bacterial type-I or type-II reaction center (RC). Whereas the type-I RC contains both bacteriochlorophyll and chlorophyll, type-II RC-based phototrophy relies only on bacteriochlorophyll. However, type-II phototrophic bacteria theoretically have the potential to produce chlorophyll a by the addition of an enzyme, chlorophyll synthase, because the direct precursor for the enzyme, chlorophyllide a, is produced as an intermediate of BChl a biosynthesis. In this study, we attempted to modify the type-II proteobacterial phototroph Rhodovulum sulfidophilum to produce chlorophyll a by introducing chlorophyll synthase, which catalyzes the esterification of a diterpenoid group to chlorophyllide a thereby producing chlorophyll a. However, the resulting strain did not accumulate chlorophyll a, perhaps due to absence of endogenous chlorophyll a-binding proteins. We further heterologously incorporated genes encoding the type-I RC complex to provide a target for chlorophyll a. Heterologous expression of type-I RC subunits, chlorophyll synthase, and galactolipid synthase successfully afforded detectable accumulation of chlorophyll a in Rdv. sulfidophilum. This suggests that the type-I RC can work to accumulate chlorophyll a and that galactolipids are likely necessary for the type-I RC assembly. The evolutionary acquisition of type-I RCs could be related to prior or concomitant acquisition of galactolipids and chlorophylls.

4.
Environ Microbiol ; 24(12): 6144-6163, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36284406

RESUMEN

In deep-sea hydrothermal vent environments, metal-enriched fluids and sediments abound, making these habitats ideal to study metal resistance in prokaryotes. In this investigation, we employed transcriptomics and shotgun proteomics with scanning transmission electron microscopy and energy-dispersive x-ray spectroscopy (STEM-EDX) to better understand mechanisms of tolerance for cadmium (Cd) and copper (Cu) at stress-inducing concentrations in Nitratiruptor sp. SB155-2 (phylum Campylobacterota). Transcriptomic profiles were remarkably different in the presence of these two metals, displaying 385 (19%) and 629 (31%) differentially transcribed genes (DTG) in the presence of Cd(II) and Cu(II), respectively, while only 7% of differentially transcribed (DT) genes were shared, with genes for non-specific metal transporters and genes involved in oxidative stress-response predominating. Transcriptomic and proteomic analyses confirmed that metal-specific DT pathways under Cu(II) stress, including those involving sulfur, cysteine, and methionine, are likely required for high-affinity efflux systems, while flagella formation and chemotaxis were over-represented under Cd(II) stress. Consistent with these differences, STEM-EDX analysis revealed that polyphosphate-like granules (pPLG), the formation of CdS particles, and the periplasmic space are crucial for Cd(II) sequestration. Overall, this study provides new insights regarding metal-specific adaptations of Campylobacterota to deep-sea hydrothermal vent environments.


Asunto(s)
Epsilonproteobacteria , Respiraderos Hidrotermales , Cadmio , Cobre , Proteómica , Metales
5.
Artículo en Inglés | MEDLINE | ID: mdl-36166368

RESUMEN

A sulphate-reducing magnetotactic bacterium, designated strain FSS-1T, was isolated from sediments and freshwater of Suwa Pond located in Hidaka, Saitama, Japan. Strain FSS-1T was a motile, Gram-negative and curved rod-shaped bacterium that synthesizes bullet-shaped magnetite (Fe3O4) nanoparticles in each cell. Strain FSS-1T was able to grow in the range of pH 6.5-8.0 (optimum, pH 7.0), 22-34 °C (optimum, 28 °C) and with 0-8.0 g l-1 NaCl (optimum, 0-2.0 g l-1 NaCl). Strain FSS-1T grew well in the presence of 50 µM ferric quinate as an iron source. The major fatty acids were anteiso-C15 : 0, iso-C15 : 0 and anteiso-C17 : 0. The major menaquinone was MK-7 (H2). Strain FSS-1T contained desulfoviridin, cytochrome c 3 and catalase, but did not contain oxidase. Strain FSS-1T used fumarate, lactate, pyruvate, malate, formate/acetate, succinate, tartrate, ethanol, 1-propanol, peptone, soytone and yeast extract as electron donors, while the strain used sulphate, thiosulphate and fumarate as electron acceptors. Fumarate was fermented in the absence of electron acceptors. Analysis of the 16S rRNA gene sequence showed that strain FSS-1T is a member of the genus Fundidesulfovibrio. The gene sequence showed 96.7, 95.0, 92.0, 91.2 and 91.4% similarities to the most closely related members of the genera Fundidesulfovibrio putealis B7-43T, Fundidesulfovibrio butyratiphilus BSYT, Desulfolutivibrio sulfoxidireducens DSM 107105T, Desulfolutivibrio sulfodismutans ThAc01T and Solidesulfovibrio magneticus RS-1T, respectively. The DNA G+C content of strain FSS-1T was 67.5 mol%. The average nucleotide identity value between strain FSS-1T and F. putealis B7-43T was 80.7 %. Therefore, strain FSS-1T represents a novel species within the genus Fundidesulfovibrio, for which the name Fundidesulfovibrio magnetotacticus sp. nov. is proposed (=JCM 32405T=DSM 110007T).


Asunto(s)
Sulfatos , Tartratos , 1-Propanol , Técnicas de Tipificación Bacteriana , Composición de Base , Catalasa/genética , Citocromos c/genética , ADN Bacteriano/genética , Etanol , Ácidos Grasos/química , Óxido Ferrosoférrico , Formiatos , Fumaratos , Hidrogenosulfito Reductasa/genética , Hierro , Lactatos , Malatos , Nucleótidos , Peptonas , Filogenia , Estanques , Piruvatos , Ácido Quínico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Cloruro de Sodio , Succinatos , Tiosulfatos , Vitamina K 2
6.
Proc Natl Acad Sci U S A ; 112(11): E1230-6, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25713387

RESUMEN

Hadal oceans at water depths below 6,000 m are the least-explored aquatic biosphere. The Challenger Deep, located in the western equatorial Pacific, with a water depth of ∼11 km, is the deepest ocean on Earth. Microbial communities associated with waters from the sea surface to the trench bottom (0∼10,257 m) in the Challenger Deep were analyzed, and unprecedented trench microbial communities were identified in the hadal waters (6,000∼10,257 m) that were distinct from the abyssal microbial communities. The potentially chemolithotrophic populations were less abundant in the hadal water than those in the upper abyssal waters. The emerging members of chemolithotrophic nitrifiers in the hadal water that likely adapt to the higher flux of electron donors were also different from those in the abyssal waters that adapt to the lower flux of electron donors. Species-level niche separation in most of the dominant taxa was also found between the hadal and abyssal microbial communities. Considering the geomorphology and the isolated hydrotopographical nature of the Mariana Trench, we hypothesized that the distinct hadal microbial ecosystem was driven by the endogenous recycling of organic matter in the hadal waters associated with the trench geomorphology.


Asunto(s)
Archaea/crecimiento & desarrollo , Bacterias/crecimiento & desarrollo , Planeta Tierra , Ecosistema , Océanos y Mares , Archaea/genética , Bacterias/genética , Procesos Heterotróficos , Datos de Secuencia Molecular , Nitrificación , Células Procariotas/metabolismo , ARN Ribosómico/genética , Subunidades Ribosómicas Pequeñas/genética , Salinidad , Temperatura
7.
Arch Microbiol ; 199(2): 335-346, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27766355

RESUMEN

A novel iron-oxidizing chemolithoautotrophic bacterium, strain ET2T, was isolated from a deep-sea sediment in a hydrothermal field of the Bayonnaise knoll of the Izu-Ogasawara arc. Cells were bean-shaped, curved short rods. Growth was observed at a temperature range of 15-30 °C (optimum 25 °C, doubling time 24 h) and a pH range of 5.8-7.0 (optimum pH 6.4) in the presence of NaCl at a range of 1.0-4.0 % (optimum 2.75 %). The isolate was a microaerophilic, strict chemolithoautotroph capable of growing using ferrous iron and molecular oxygen (O2) as the sole electron donor and acceptor, respectively; carbon dioxide as the sole carbon source; and either ammonium or nitrate as the sole nitrogen source. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the new isolate was related to the only previously isolated Mariprofundus species, M. ferrooxydans. Although relatively high 16S rRNA gene similarity (95 %) was found between the new isolate and M. ferrooxydans, the isolate was distinct in terms of cellular fatty acid composition, genomic DNA G+C content and cell morphology. Furthermore, genomic comparison between ET2T and M. ferrooxydans PV-1 indicated that the genomic dissimilarity of these strains met the standard for species-level differentiation. On the basis of its physiological and molecular characteristics, strain ET2T (= KCTC 15556T = JCM 30585 T) represents a novel species of Mariprofundus, for which the name Mariprofundus micogutta is proposed. We also propose the subordinate taxa Mariprofundales ord. nov. and Zetaproteobacteria classis nov. in the phylum Proteobacteria.


Asunto(s)
Proteobacteria/clasificación , Proteobacteria/aislamiento & purificación , Agua de Mar/microbiología , Crecimiento Quimioautotrófico , Ácidos Grasos/análisis , Respiraderos Hidrotermales , Hierro/metabolismo , Filogenia , Proteobacteria/genética , Proteobacteria/metabolismo , ARN Ribosómico 16S/genética
8.
Environ Microbiol ; 18(6): 1889-906, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26486095

RESUMEN

Subseafloor pelagic sediments with high concentrations of organic matter form habitats for diverse microorganisms. Here, we determined depth profiles of genes for SSU rRNA, mcrA, dsrA and amoA from just beneath the seafloor to 363.3 m below the seafloor (mbsf) using core samples obtained from the forearc basin off the Shimokita Peninsula. The molecular profiles were combined with data on lithostratigraphy, depositional age, sedimentation rate and pore-water chemistry. The SSU rRNA gene tag structure and diversity changed at around the sulfate-methane transition zone (SMTZ), whereas the profiles varied further with depth below the SMTZ, probably in connection with the variation in pore-water chemistry. The depth profiles of diversity and abundance of dsrA, a key gene for sulfate reduction, suggested the possible niche separations of sulfate-reducing populations, even below the SMTZ. The diversity and abundance patterns of mcrA, a key gene for methanogenesis/anaerobic methanotrophy, suggested a stratified distribution and separation of anaerobic methanotrophy and hydrogenotrophic or methylotrophic methanogensis below the SMTZ. This study provides novel insights into the relationships between the composition and function of microbial communities and the chemical environment in the nutrient-rich continental margin subseafloor sediments, which may result in niche separation and variability in subseafloor microbial populations.


Asunto(s)
Bacterias/aislamiento & purificación , Sedimentos Geológicos/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Ecosistema , Sedimentos Geológicos/química , Japón , Metano/análisis , Metano/metabolismo , Filogenia , Sulfatos/análisis , Sulfatos/metabolismo
9.
Microbiology (Reading) ; 162(1): 53-61, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26475231

RESUMEN

Two distinct bacterial and eukaryotic serine racemases (SRs) have been identified based on phylogenetic and biochemical characteristics. Although some reports have suggested that marine heterotrophic bacteria have the potential to produce d-serine, the gene encoding bacterial SRs is not found in those bacterial genomes. In this study, using in-depth genomic analysis, we found that eukaryotic SR homologues were distributed widely in various bacterial genomes. Additionally, we selected a eukaryotic SR homologue from a marine heterotrophic bacterium, Roseobacter litoralis Och 149 (RiSR), and constructed an RiSR gene expression system in Escherichia coli for studying the properties of the enzyme. Among the tested amino acids, the recombinant RiSR exhibited both racemization and dehydration activities only towards serine, similar to many eukaryotic SRs. Mg2+ and MgATP enhanced both activities of RiSR, whereas EDTA abolished these enzymatic activities. The enzymatic properties and domain structure of RiSR were similar to those of eukaryotic SRs, particularly mammalian SRs. However, RiSR showed lower catalytic efficiency for L-serine dehydration (kcat/Km=0.094 min(-1) mM(-1)) than those of eukaryotic SRs reported to date (kcat/Km=0.6-21 min(-1) mM(-1)). In contrast, the catalytic efficiency for L-serine racemization of RiSR (kcat/Km=3.14 min(-1) mM(-1)) was 34-fold higher than that of l-serine dehydration. These data suggested that RiSR primarily catalysed serine racemization rather than dehydration.


Asunto(s)
Proteínas Bacterianas/química , Eucariontes/enzimología , Racemasas y Epimerasas/química , Roseobacter/enzimología , Secuencia de Aminoácidos , Bacterias/química , Bacterias/clasificación , Bacterias/enzimología , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Eucariontes/química , Eucariontes/clasificación , Eucariontes/genética , Expresión Génica , Humanos , Cinética , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Transporte de Proteínas , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Roseobacter/química , Roseobacter/genética , Alineación de Secuencia , Especificidad por Sustrato
10.
Amino Acids ; 47(3): 571-8, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25501502

RESUMEN

It has been suggested that invertebrates inhabiting deep-sea hydrothermal vent areas use the sulfinic acid hypotaurine, a precursor of taurine, to protect against the toxicity of hydrogen sulfide contained in the seawater from the vent. In this protective system, hypotaurine is accumulated in the gill, the primary site of sulfide exposure. However, the pathway for hypotaurine synthesis in mollusks has not been identified. In this study, we screened for the mRNAs of enzymes involved in hypotaurine synthesis in the deep-sea mussel Bathymodiolus septemdierum and cloned cDNAs encoding cysteine dioxygenase and cysteine sulfinate decarboxylase. As mRNAs encoding cysteamine dioxygenase and cysteine lyase were not detected, the cysteine sulfinate pathway is suggested to be the major pathway of hypotaurine and taurine synthesis. The two genes were found to be expressed in all the tissues examined, but the gill exhibited the highest expression. The mRNA level in the gill was not significantly changed by exposure to sulfides or thiosulfate. These results suggests that the gill of B. septemdierum maintains high levels of expression of the two genes regardless of ambient sulfide level and accumulates hypotaurine continuously to protect against sudden exposure to high level of sulfide.


Asunto(s)
Adaptación Fisiológica , Bivalvos , Carboxiliasas , Cisteína-Dioxigenasa , Sulfuro de Hidrógeno/metabolismo , Taurina/análogos & derivados , Animales , Bivalvos/enzimología , Bivalvos/genética , Carboxiliasas/biosíntesis , Carboxiliasas/genética , Cisteína-Dioxigenasa/biosíntesis , Cisteína-Dioxigenasa/genética , Taurina/biosíntesis , Taurina/genética
12.
ISME Commun ; 4(1): ycad006, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38282645

RESUMEN

Microfluidic capillary electrophoresis-mass spectrometry (CE-MS) is a rapid and highly accurate method to determine isotopomer patterns in isotopically labeled compounds. Here, we developed a novel method for tracer-based metabolomics using CE-MS for underivatized proteinogenic amino acids. The method consisting of a ZipChip CE system and a high-resolution Orbitrap Fusion Tribrid mass spectrometer allows us to obtain highly accurate data from 1 µl of 100 nmol/l amino acids comparable to a mere 1 [Formula: see text] 104-105 prokaryotic cells. To validate the capability of the CE-MS method, we analyzed 16 protein-derived amino acids from a methanogenic archaeon Methanothermobacter thermautotrophicus as a model organism, and the mass spectra showed sharp peaks with low mass errors and background noise. Tracer-based metabolome analysis was then performed to identify the central carbon metabolism in M. thermautotrophicus using 13C-labeled substrates. The mass isotopomer distributions of serine, aspartate, and glutamate revealed the occurrence of both the Wood-Ljungdahl pathway and an incomplete reductive tricarboxylic acid cycle for carbon fixation. In addition, biosynthesis pathways of 15 amino acids were constructed based on the mass isotopomer distributions of the detected protein-derived amino acids, genomic information, and public databases. Among them, the presence of alternative enzymes of alanine dehydrogenase, ornithine cyclodeaminase, and homoserine kinase was suggested in the biosynthesis pathways of alanine, proline, and threonine, respectively. To our knowledge, the novel 13C tracer-based metabolomics using CE-MS can be considered the most efficient method to identify central carbon metabolism and amino acid biosynthesis pathways and is applicable to any kind of isolated microbe.

13.
Sci Rep ; 14(1): 5938, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467689

RESUMEN

Detailed investigation of extremely severe pathological conditions in ancient human skeletons is important as it could shed light on the breadth of potential interactions between humans and disease etiologies in the past. Here, we applied palaeoproteomics to investigate an ancient human skeletal individual with severe oral pathology, focusing our research on bacterial pathogenic factors and host defense response. This female skeleton, from the Okhotsk period (i.e., fifth to thirteenth century) of Northern Japan, poses relevant amounts of abnormal dental calculus deposition and exhibits oral dysfunction due to severe periodontal disease. A shotgun mass-spectrometry analysis identified 81 human proteins and 15 bacterial proteins from the calculus of the subject. We identified two pathogenic or bioinvasive proteins originating from two of the three "red complex" bacteria, the core species associated with severe periodontal disease in modern humans, as well as two additional bioinvasive proteins of periodontal-associated bacteria. Moreover, we discovered defense response system-associated human proteins, although their proportion was mostly similar to those reported in ancient and modern human individuals with lower calculus deposition. These results suggest that the bacterial etiology was similar and the host defense response was not necessarily more intense in ancient individuals with significant amounts of abnormal dental calculus deposition.


Asunto(s)
Cálculos Dentales , Periodontitis , Humanos , Femenino , Bacterias , Proteínas Bacterianas , Esqueleto
14.
BBA Adv ; 6: 100118, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39081798

RESUMEN

Archaeal cells are typically enveloped by glycosylated S-layer proteins. Archaeal protein glycosylation provides valuable insights not only into their adaptation to their niches but also into their evolutionary trajectory. Notably, thermophilic Thermoproteota modify proteins with N-glycans that include two GlcNAc units at the reducing end, resembling the "core structure" preserved across eukaryotes. Recently, Asgard archaea, now classified as members of the phylum Promethearchaeota, have offered unprecedented opportunities for understanding the role of archaea in eukaryogenesis. Despite the presence of genes indicative of protein N-glycosylation in this archaeal group, these have not been experimentally investigated. Here we performed a glycoproteome analysis of the firstly isolated Asgard archaeon Promethearchaeum syntrophicum. Over 700 different proteins were identified through high-resolution LC-MS/MS analysis, however, there was no evidence of either the presence or glycosylation of putative S-layer proteins. Instead, N-glycosylation in this archaeon was primarily observed in an extracellular solute-binding protein, possibly related to chemoreception or transmembrane transport of oligopeptides. The glycan modification occurred on an asparagine residue located within the conserved N-X-S/T sequon, consistent with the pattern found in other archaea, bacteria, and eukaryotes. Unexpectedly, three structurally different N-glycans lacking the conventional core structure were identified in this archaeon, presenting unique compositions that included atypical sugars. Notably, one of these sugars was likely HexNAc modified with a threonine residue, similar to modifications previously observed in mesophilic methanogens within the Methanobacteriati. Our findings advance our understanding of Asgard archaea physiology and evolutionary dynamics.

15.
J Exp Biol ; 216(Pt 23): 4403-14, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24031050

RESUMEN

Deep-sea Calyptogena clams harbor thioautotrophic intracellular symbiotic bacteria in their gill epithelial cells. The symbiont fixes CO2 to synthesize organic compounds. Carbonic anhydrase (CA) from the host catalyzes the reaction CO2 + H2O ↔ HCO3(-) + H(+), and is assumed to facilitate inorganic carbon (Ci) uptake and transport to the symbiont. However, the localization of CA in gill tissue remains unknown. We therefore analyzed mRNA sequences, proteins and CA activity in Calyptogena okutanii using expression sequence tag, SDS-PAGE and LC-MS/MS. We found that acetazolamide-sensitive soluble CA was abundantly expressed in the gill tissue of C. okutanii, and the enzyme was purified by affinity chromatography. Mouse monoclonal antibodies against the CA of C. okutanii were used in western blot analysis and immunofluorescence staining of the gill tissues of C. okutanii, which showed that CA was exclusively localized in the symbiont-harboring cells (bacteriocytes) in gill epithelial cells. Western blot analysis and measurement of activity showed that CA was abundantly (26-72% of total soluble protein) detected in the gill tissues of not only Calyptogena clams but also deep-sea Bathymodiolus mussels that harbor thioautotrophic or methanotrophic symbiotic bacteria, but was not detected in a non-symbiotic mussel, Mytilus sp. The present study showed that CA is abundant in the gill tissues of deep-sea symbiotic bivalves and specifically localizes in the cytoplasm of bacteriocytes of C. okutanii. This indicates that the Ci supply process to symbionts in the vacuole (symbiosome) in bacteriocytes is essential for symbiosis.


Asunto(s)
Bivalvos/enzimología , Anhidrasas Carbónicas/análisis , Secuencia de Aminoácidos , Animales , Bivalvos/citología , Bivalvos/microbiología , Anhidrasas Carbónicas/metabolismo , Cromatografía Liquida , Electroforesis en Gel de Poliacrilamida , Branquias/enzimología , Datos de Secuencia Molecular , ARN Mensajero/química , Alineación de Secuencia , Análisis de Secuencia de Proteína , Análisis de Secuencia de ARN , Simbiosis , Espectrometría de Masas en Tándem
16.
Int J Syst Evol Microbiol ; 63(Pt 6): 1987-1994, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23041635

RESUMEN

A novel Gram-negative, aerobic, psychrotolerant, alkali-tolerant, heterotrophic and dimorphic prosthecate bacterium, designated strain TAR-001(T), was isolated from deep-sea floor sediment in Japan. Cells of this strain had a dimorphic life cycle and developed an adhesive stalk at a site not coincident with the centre of the cell pole, and the other type of cell, a swarm cell, had a polar flagellum. Colonies were glossy, viscous and yellowish-white in colour. The temperature, pH and salt concentration range for growth were 2-41 °C, pH 6.5-10.0 and 1-4% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences confirmed that strain TAR-001(T) belongs to the family Caulobacteraceae of the class Alphaproteobacteria, and lies between the genus Brevundimonas and the genus Caulobacter. Levels of similarity between the 16S rRNA gene sequence of strain TAR-001(T) and those of the type strains of Brevundimonas species were 93.3-95.7%; highest sequence similarity was with the type strain of Brevundimonas diminuta. Levels of sequence similarity between those of the type strains of Caulobacter species were 94.9-96.0%; highest sequence similarity was with the type strain of Caulobacter mirabilis. The G+C content of strain TAR-001(T) was 67.6 mol%. Q-10 was the major respiratory isoprenoid quinone. The major fatty acids were C18:1ω7c and C16:0, and the presence of 1,2-di-O-acyl-3-O-[D-glucopyranosyl-(1→4)-α-D-glucopyranuronosyl]glycerol suggests strain TAR-001(T) is more closely to the genus Brevundimonas than to the genus Caulobacter. The mean DNA-DNA hybridization levels between strain TAR-001(T) and the type strains of two species of the genus Brevundimonas were higher than that of the genus Caulobacter. On the basis of polyphasic biological features and the 16S rRNA gene sequence comparison presented here, strain TAR-001(T) is considered to represent a novel species of the genus Brevundimonas, for which the name Brevundimonas abyssalis sp. nov. is proposed; the type strain is TAR-001(T) (=JCM 18150(T)=CECT 8073(T)).


Asunto(s)
Caulobacteraceae/clasificación , Sedimentos Geológicos/microbiología , Filogenia , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Caulobacteraceae/genética , Caulobacteraceae/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/análisis , Japón , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/análogos & derivados , Ubiquinona/análisis
17.
Extremophiles ; 17(3): 405-19, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23512119

RESUMEN

Epsilonproteobacteria are among the predominant primary producers in deep-sea hydrothermal vent ecosystems. However, phages infecting deep-sea vent Epsilonproteobacteria have never been isolated and characterized. Here, we successfully isolated a novel temperate phage, NrS-1, that infected a deep-sea vent chemolithoautotrophic isolate of Epsilonproteobacteria, Nitratiruptor sp. SB155-2, and its entire genome sequence was obtained and analyzed. The NrS-1 genome is linear, circularly permuted, and terminally redundant. The NrS-1 genome is 37,159 bp in length and contains 51 coding sequences. Five major structural proteins including major capsid protein and tape measure protein were identified by SDS-PAGE and mass spectrometry analysis. NrS-1 belongs to the family Siphoviridae, but its sequence and genomic organization are distinct from those of any other previously known Siphoviridae phages. Homologues of genes encoded in the NrS-1 genome were widely distributed among the genomes of diverse Epsilonproteobacteria. The distribution patterns had little relation to the evolutionary traits and ecological and physiological differentiation of the host epsilonproteobacterial species. The widespread occurrence of phage genes in diverse Epsilonproteobacteria supports early co-evolution between temperate phages and Epsilonproteobacteria prior to the divergence of their habitats and physiological adaptation.


Asunto(s)
Epsilonproteobacteria/genética , Evolución Molecular , Genes Virales , Respiraderos Hidrotermales/microbiología , Siphoviridae/genética , Adaptación Fisiológica/genética , Proteínas de la Cápside/genética , Ecosistema , Epsilonproteobacteria/virología , Genes Bacterianos , Respiraderos Hidrotermales/virología , Filogenia , Agua de Mar/microbiología , Agua de Mar/virología
18.
Int J Syst Evol Microbiol ; 62(Pt 5): 1075-1080, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21705444

RESUMEN

A novel, facultatively anaerobic bacterium (strain JAM-BA0501(T)) was isolated from a deep subseafloor sediment sample at a depth of 247 m below seafloor off the Shimokita Peninsula of Japan in the north-western Pacific Ocean (Site C9001, 1180 m water depth). Cells of strain JAM-BA0501(T) were gram-negative, filamentous, non-spore-forming and motile on solid medium by gliding. Phylogenetic analysis based on the 16S rRNA gene sequence of strain JAM-BA0501(T) indicated a distant relationship to strains representing genera within the order Bacteroidales, such as Alkaliflexus imshenetskii Z-7010(T) (91.1 % similarity), Marinilabilia salmonicolor ATCC 19041(T) (86.2 %) and Anaerophaga thermohalophila Fru22(T) (89.3 %). The new isolate produced isoprenoid quinones with menaquinone MK-7 as the major component, and the predominant fatty acids were iso-C(15 : 0) and anteiso-C(15 : 0). The DNA G+C content of the isolate was 42.9 mol%. Based on its taxonomic distinctiveness, strain JAM-BA0501(T) is considered to represent a novel species of a new genus within the family Marinilabiliaceae, for which the name Geofilum rubicundum gen. nov., sp. nov. is proposed. The type strain of Geofilum rubicundum is JAM-BA0501(T) ( = JCM 15548(T)  = NCIMB 14482(T)).


Asunto(s)
Bacteroidetes/clasificación , Bacteroidetes/aislamiento & purificación , Sedimentos Geológicos/microbiología , Anaerobiosis , Técnicas de Tipificación Bacteriana , Bacteroidetes/genética , Bacteroidetes/fisiología , Composición de Base , Análisis por Conglomerados , Citosol/química , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Ácidos Grasos/análisis , Japón , Locomoción , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Océano Pacífico , Filogenia , Quinonas/análisis , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
19.
Microorganisms ; 10(7)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35889008

RESUMEN

Chloroflexus aurantiacus is a filamentous anoxygenic phototrophic bacterium that grows chemotrophically under oxic conditions and phototrophically under anoxic conditions. Because photosynthesis-related genes are scattered without any gene clusters in the genome, it is still unclear how this bacterium regulates protein expression in response to environmental changes. In this study, we performed a proteomic time-course analysis of how C. aurantiacus expresses proteins to acclimate to environmental changes, namely the transition from chemoheterotrophic respiratory to photoheterotrophic growth mode. Proteomic analysis detected a total of 2520 proteins out of 3934 coding sequences in the C. aurantiacus genome from samples collected at 13 time points. Almost all proteins for reaction centers, light-harvesting chlorosomes, and carbon fixation pathways were successfully detected during the growing phases in which optical densities and relative bacteriochlorophyll c contents increased simultaneously. Combination of proteomics and pigment analysis suggests that the self-aggregation of bacteriochlorophyllide c could precede the esterification of the hydrophobic farnesyl tail in cells. Cytoplasmic subunits of alternative complex III were interchanged between oxic and anoxic conditions, although membrane-bound subunits were used for both conditions. These data highlight the protein expression dynamics of phototrophy-related genes during the transition from respiration to phototrophy.

20.
Front Microbiol ; 13: 1042116, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532468

RESUMEN

In deep-sea hydrothermal environments, inorganic sulfur compounds are important energy substrates for sulfur-oxidizing, -reducing, and -disproportionating microorganisms. Among these, sulfur-disproportionating bacteria have been poorly understood in terms of ecophysiology and phylogenetic diversity. Here, we isolated and characterized a novel mesophilic, strictly chemolithoautotrophic, diazotrophic sulfur-disproportionating bacterium, designated strain GF1T, from a deep-sea hydrothermal vent chimney at the Suiyo Seamount in the Izu-Bonin Arc, Japan. Strain GF1T disproportionated elemental sulfur, thiosulfate, and tetrathionate in the presence of ferrihydrite. The isolate also grew by respiratory hydrogen oxidation coupled to sulfate reduction. Phylogenetic and physiological analyses support that strain GF1T represents the type strain of a new genus and species in the family Desulfobulbaceae, for which the name Desulfolithobacter dissulfuricans gen. nov. sp. nov. is proposed. Proteomic analysis revealed that proteins related to tetrathionate reductase were specifically and abundantly produced when grown via thiosulfate disproportionation. In addition, several proteins possibly involved in thiosulfate disproportionation, including those encoded by the YTD gene cluster, were also found. The overall findings pointed to a possible diversity of sulfur-disproportionating bacteria in hydrothermal systems and provided a refined picture of microbial sulfur disproportionation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA