Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 19(1): 387, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29792157

RESUMEN

BACKGROUND: Transposon-mediated, non-viral gene delivery is a powerful tool for generating stable cell lines and transgenic animals. However, as multi-copy insertion is the preferred integration pattern, there is the potential for uncontrolled changes in endogenous gene expression and detrimental effects in cells or animals. Our group has previously reported on the generation of several transgenic cattle by using microinjection of the Sleeping Beauty (SB) and PiggyBac (PB) transposons and seeks to explore the long-term effects of this technology on cattle. RESULTS: Transgenic cattle, one female (SNU-SB-1) and one male (SNU-PB-1), reached over 36 months of age with no significant health issues and normal blood parameters. The detection of transgene integration and fluorescent signal in oocytes and sperm suggested the capacity for germline transmission in both of the founder animals. After natural breeding, the founder transgenic cow delivered a male calf and secreted milk containing fluorescent transgenic proteins. The calf expressed green fluorescent protein in primary cells from ear skin, with no significant change in overall genomic stability and blood parameters. Three sites of transgene integration were identified by next-generation sequencing of the calf's genome. CONCLUSIONS: Overall, these data demonstrate that transposon-mediated transgenesis can be applied to cattle without being detrimental to their long-term genomic stability or general health. We further suggest that this technology may be usefully applied in other fields, such as the generation of transgenic animal models.


Asunto(s)
Técnicas de Transferencia de Gen , Salud , Óvulo/metabolismo , Espermatozoides/metabolismo , Transposasas/genética , Animales , Animales Modificados Genéticamente , Bovinos , Femenino , Masculino , Transgenes/genética , Secuenciación Completa del Genoma
2.
Hortic Res ; 7: 112, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32637140

RESUMEN

Triterpenoid saponins (TSs) are common plant defense phytochemicals with potential pharmaceutical properties. Platycodon grandiflorus (Campanulaceae) has been traditionally used to treat bronchitis and asthma in East Asia. The oleanane-type TSs, platycosides, are a major component of the P. grandiflorus root extract. Recent studies show that platycosides exhibit anti-inflammatory, antiobesity, anticancer, antiviral, and antiallergy properties. However, the evolutionary history of platycoside biosynthesis genes remains unknown. In this study, we sequenced the genome of P. grandiflorus and investigated the genes involved in platycoside biosynthesis. The draft genome of P. grandiflorus is 680.1 Mb long and contains 40,017 protein-coding genes. Genomic analysis revealed that the CYP716 family genes play a major role in platycoside oxidation. The CYP716 gene family of P. grandiflorus was much larger than that of other Asterid species. Orthologous gene annotation also revealed the expansion of ß-amyrin synthases (bASs) in P. grandiflorus, which was confirmed by tissue-specific gene expression. In these expanded gene families, we identified key genes showing preferential expression in roots and association with platycoside biosynthesis. In addition, whole-genome bisulfite sequencing showed that CYP716 and bAS genes are hypomethylated in P. grandiflorus, suggesting that epigenetic modification of these two gene families affects platycoside biosynthesis. Thus whole-genome, transcriptome, and methylome data of P. grandiflorus provide novel insights into the regulation of platycoside biosynthesis by CYP716 and bAS gene families.

3.
Data Brief ; 21: 775-778, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30417039

RESUMEN

MicroRNA (miRNA) are found in numerous biofluids including blood and are considered a new class of biomarkers. The data presented here are related to the research article entitled "Profiling and identification of pregnancy-associated circulating microRNAs in dairy cattle" (Markkandan et al. 2018). In the cited article, we sequenced the circulating microRNAs of the three healthy dairy cows of normal and 30 days of pregnancy (DOP) using Illumina RNA-Seq. Differentially expressed genes (DEG) analysis between normal and pregnant samples showed perturbations in miRNA expression. Herein, we made a comparison of DEGs at normal and 60 DOP libraries. The analysis results showed that 147 known miRNAs were differently expressed at 60 DOP groups when compared to the normal group. In addition, stage specific miRNAs were also predicted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA