Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell ; 22(9): 3066-75, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20870961

RESUMEN

ATP binding cassette (ABC) transporters play diverse roles, including lipid transport, in all kingdoms. ABCG subfamily transporters that are encoded as half-transporters require dimerization to form a functional ABC transporter. Different dimer combinations that may transport diverse substrates have been predicted from mutant phenotypes. In Arabidopsis thaliana, mutant analyses have shown that ABCG11/WBC11 and ABCG12/CER5 are required for lipid export from the epidermis to the protective cuticle. The objective of this study was to determine whether ABCG11 and ABCG12 interact with themselves or each other using bimolecular fluorescence complementation (BiFC) and protein traffic assays in vivo. With BiFC, ABCG11/ABCG12 heterodimers and ABCG11 homodimers were detected, while ABCG12 homodimers were not. Fluorescently tagged ABCG11 or ABCG12 was localized in the stem epidermal cells of abcg11 abcg12 double mutants. ABCG11 could traffic to the plasma membrane in the absence of ABCG12, suggesting that ABCG11 is capable of forming flexible dimer partnerships. By contrast, ABCG12 was retained in the endoplasmic reticulum in the absence of ABCG11, indicating that ABCG12 is only capable of forming a dimer with ABCG11 in epidermal cells. Emerging themes in ABCG transporter biology are that some ABCG proteins are promiscuous, having multiple partnerships, while other ABCG transporters form obligate heterodimers for specialized functions.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Metabolismo de los Lípidos , Transportador de Casetes de Unión a ATP, Subfamilia G , Transportadoras de Casetes de Unión a ATP/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Dimerización , Retículo Endoplásmico/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Multimerización de Proteína , Transporte de Proteínas
2.
BMC Biol ; 9: 85, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-22136116

RESUMEN

The lipid phosphatidic acid (PA) has important roles in cell signaling and metabolic regulation in all organisms. New evidence indicates that PA also has an unprecedented role as a pH biosensor, coupling changes in pH to intracellular signaling pathways. pH sensing is a property of the phosphomonoester headgroup of PA. A number of other potent signaling lipids also contain headgroups with phosphomonoesters, implying that pH sensing by lipids may be widespread in biology.


Asunto(s)
Ácidos Fosfatidicos/metabolismo , Animales , Humanos , Concentración de Iones de Hidrógeno , Ácidos Fosfatidicos/química , Proteínas/metabolismo , Transducción de Señal
3.
Nat Commun ; 11(1): 5987, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239640

RESUMEN

Intracellular traffic between compartments of the secretory and endocytic pathways is mediated by vesicle-based carriers. The proteomes of carriers destined for many organelles are ill-defined because the vesicular intermediates are transient, low-abundance and difficult to purify. Here, we combine vesicle relocalisation with organelle proteomics and Bayesian analysis to define the content of different endosome-derived vesicles destined for the trans-Golgi network (TGN). The golgin coiled-coil proteins golgin-97 and GCC88, shown previously to capture endosome-derived vesicles at the TGN, were individually relocalised to mitochondria and the content of the subsequently re-routed vesicles was determined by organelle proteomics. Our findings reveal 45 integral and 51 peripheral membrane proteins re-routed by golgin-97, evidence for a distinct class of vesicles shared by golgin-97 and GCC88, and various cargoes specific to individual golgins. These results illustrate a general strategy for analysing intracellular sub-proteomes by combining acute cellular re-wiring with high-resolution spatial proteomics.


Asunto(s)
Autoantígenos/metabolismo , Proteínas de la Matriz de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Red trans-Golgi/metabolismo , Autoantígenos/genética , Endosomas/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas de la Matriz de Golgi/genética , Células HEK293 , Células HeLa , Humanos , Mitocondrias/metabolismo , Proteómica/métodos , Análisis Espacial
4.
Dev Cell ; 52(4): 461-476.e4, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-31928972

RESUMEN

Phosphoinositides, diacylglycerolpyrophosphate, ceramide-1-phosphate, and phosphatidic acid belong to a unique class of membrane signaling lipids that contain phosphomonoesters in their headgroups having pKa values in the physiological range. The phosphomonoester headgroup of phosphatidic acid enables this lipid to act as a pH biosensor as changes in its protonation state with intracellular pH regulate binding to effector proteins. Here, we demonstrate that binding of pleckstrin homology (PH) domains to phosphatidylinositol 4-phosphate (PI4P) in the yeast trans-Golgi network (TGN) is dependent on intracellular pH, indicating PI4P is a pH biosensor. pH biosensing by TGN PI4P in response to nutrient availability governs protein sorting at the TGN, likely by regulating sterol transfer to the TGN by Osh1, a member of the conserved oxysterol-binding protein (OSBP) family of lipid transfer proteins. Thus, pH biosensing by TGN PI4P allows for direct metabolic regulation of protein trafficking and cell growth.


Asunto(s)
Proteínas Portadoras/metabolismo , Glucosa/farmacología , Fosfatos de Fosfatidilinositol/metabolismo , Receptores de Esteroides/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Red trans-Golgi/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Transporte de Proteínas , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Transducción de Señal , Edulcorantes/farmacología , Red trans-Golgi/efectos de los fármacos
5.
Nat Cell Biol ; 20(2): 222, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29311657

RESUMEN

In the version of Supplementary Table 1 originally published with this Article, in the sheet relating to Fig. 3c, all values in the 'golgin-97-mito' column were 1.3 times larger than the actual values, which was due to author error when generating the Supplementary Table. These errors did not affect the graph in Fig. 3c, which was plotted with the correct values. Supplementary Table 1 has now been replaced so that it contains the correct values.

6.
Nat Cell Biol ; 19(12): 1424-1432, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29084197

RESUMEN

The specificity of membrane traffic involves tethers at destination organelles that selectively capture incoming transport vesicles to allow SNAREs on opposing membranes to then assemble and drive fusion. Tethers include both protein complexes and long coiled-coil proteins, although how they contribute to specificity remains unclear. The golgin coiled-coil proteins at the Golgi apparatus capture vesicles from different origins, but the vesicle-specific molecular cues that they recognize are unknown. Vesicle tethering is typically a transient process and therefore is challenging to interrogate in vivo. Thus, we have used a system in which an ectopic golgin causes vesicles to accumulate in a tethered state. By applying proximity biotinylation to the golgin-captured vesicles, we identify TBC1D23, an apparently catalytically inactive member of a family of Rab GTPase-activating proteins (GAPs), as a vesicle-golgin adaptor that is required for endosome-to-Golgi trafficking. The Rab GAP domain of TBC1D23 binds to a conserved motif at the tip of golgin-245 and golgin-97 at the trans-Golgi, while the C terminus binds to the WASH complex on endosome-derived vesicles. Thus, TBC1D23 is a specificity determinant that links the vesicle to the target membrane during endosome-to-Golgi trafficking.


Asunto(s)
Endosomas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Red trans-Golgi/metabolismo , Secuencia de Aminoácidos , Autoantígenos/química , Autoantígenos/metabolismo , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/genética , Proteínas de la Matriz de Golgi , Células HeLa , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Proteínas de Unión a Fosfato , Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Proteínas/metabolismo
7.
Science ; 329(5995): 1085-8, 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-20798321

RESUMEN

Recognition of lipids by proteins is important for their targeting and activation in many signaling pathways, but the mechanisms that regulate such interactions are largely unknown. Here, we found that binding of proteins to the ubiquitous signaling lipid phosphatidic acid (PA) depended on intracellular pH and the protonation state of its phosphate headgroup. In yeast, a rapid decrease in intracellular pH in response to glucose starvation regulated binding of PA to a transcription factor, Opi1, that coordinately repressed phospholipid metabolic genes. This enabled coupling of membrane biogenesis to nutrient availability.


Asunto(s)
Membrana Celular/metabolismo , Ácidos Fosfatidicos/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Inositol/genética , Inositol/metabolismo , Liposomas/metabolismo , Mutación , Unión Proteica , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Transcripción Genética , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA