Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Neurosci ; 35(49): 16282-94, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26658876

RESUMEN

The chromosome 15q13.3 microdeletion is a pathogenic copy number variation conferring epilepsy, intellectual disability, schizophrenia, and autism spectrum disorder (ASD). We generated mice carrying a deletion of 1.2 Mb homologous to the 15q13.3 microdeletion in human patients. Here, we report that mice with a heterozygous deletion on a C57BL/6 background (D/+ mice) demonstrated phenotypes including enlarged/heavier brains (macrocephaly) with enlarged lateral ventricles, decreased social interactions, increased repetitive grooming behavior, reduced ultrasonic vocalizations, decreased auditory-evoked gamma band EEG, and reduced event-related potentials. D/+ mice had normal body weight, activity levels, sensory gating, and cognitive abilities and no signs of epilepsy/seizures. Our results demonstrate that D/+ mice represent ASD-related phenotypes associated with 15q13.3 microdeletion syndrome. Further investigations using this chromosome-engineered mouse model may uncover the common mechanism(s) underlying ASD and other neurodevelopmental/psychiatric disorders representing the 15q13.3 microdeletion syndrome, including epilepsy, intellectual disability, and schizophrenia. SIGNIFICANCE STATEMENT: Recently discovered pathologic copy number variations (CNVs) from patients with neurodevelopmental/psychiatric disorders show very strong penetrance and thus are excellent candidates for mouse models of disease that can mirror the human genetic conditions with high fidelity. A 15q13.3 microdeletion in humans results in a range of neurodevelopmental/psychiatric disorders, including epilepsy, intellectual disability, schizophrenia, and autism spectrum disorder (ASD). The disorders conferred by a 15q13.3 microdeletion also have overlapping genetic architectures and comorbidity in other patient populations such as those with epilepsy and schizophrenia/psychosis, as well as schizophrenia and ASD. We generated mice carrying a deletion of 1.2 Mb homologous to the 15q13.3 microdeletion in human patients, which allowed us to investigate the potential causes of neurodevelopmental/psychiatric disorders associated with the CNV.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Encéfalo/patología , Trastornos de los Cromosomas/fisiopatología , Discapacidad Intelectual/fisiopatología , Convulsiones/fisiopatología , Animales , Ansiedad/etiología , Aprendizaje por Asociación/fisiología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Deleción Cromosómica , Trastornos de los Cromosomas/genética , Trastornos de los Cromosomas/patología , Cromosomas Humanos Par 15/genética , Discriminación en Psicología/efectos de los fármacos , Discriminación en Psicología/fisiología , Potenciales Evocados/fisiología , Femenino , Expresión Génica/fisiología , Aseo Animal/fisiología , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Relaciones Interpersonales , Masculino , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Pilocarpina/farmacología , Convulsiones/genética , Convulsiones/patología , Olfato/fisiología , Vocalización Animal/fisiología
2.
Neurobiol Dis ; 73: 289-95, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25461194

RESUMEN

Reductions in glutamate function are regarded as an important contributory factor in schizophrenia. However, there is a paucity of animal models characterized by developmental and sustained reductions in glutamate function. Pharmacological models using NMDA antagonists have been widely used but these typically produce only transient changes in behavior and brain function. Likewise, mice with homozygous constitutive reductions in glutamate receptor expression show stable brain and behavioral changes, but many of these phenotypes are more severe than the human disease. The current study examines a variety of schizophrenia-related EEG measures in mice with a heterozygous alteration of the NMDA receptor NR1 subunit gene (NR1) that is known to result in reduced NR1 receptor expression in the homozygous mouse (NR1-/-). (NR1+/-) mice showed a 30% reduction in NR1 receptor expression and were reared after weaning in either group or isolated conditions. Outcome measures include the response to paired white noise stimuli, escalating inter-stimulus intervals (ISIs) and deviance-related mismatch negativity (MMN). In contrast to what has been reported in (NR1-/-) mice and mice treated with NMDA antagonists, (NR1+/-) mice showed no change on obligatory Event Related Potential (ERP) measures including the murine P50 and N100 equivalents (P20 and N40), or measures of baseline or evoked gamma power. Alternatively, (NR1+/-) mice showed a marked reduction in response to a deviant auditory tone during MMN task. Data suggest that EEG response to deviant, rather than static, stimuli may be more sensitive for detecting subtle changes in glutamate function. Deficits in these heterozygous NR1 knockdown mice are consistent with data demonstrating MMN deficits among family members of schizophrenia patients and among prodromal patients. Therefore, the current study suggests that (NR1+/-) mice may be among the most sensitive models for increased vulnerability to schizophrenia.


Asunto(s)
Encéfalo/fisiopatología , Potenciales Evocados/fisiología , Ritmo Gamma/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/fisiopatología , Aislamiento Social , Animales , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Síntomas Prodrómicos
3.
Stem Cells ; 32(9): 2454-66, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24806094

RESUMEN

In the postnatal hippocampus, newly generated neurons contribute to learning and memory. Disruptions in neurogenesis and neuronal development have been linked to cognitive impairment and are implicated in a broad variety of neurological and psychiatric disorders. To identify putative factors involved in this process, we examined hippocampal gene expression alterations in mice possessing a heterozygous knockout of the calcium/calmodulin-dependent protein kinase II alpha heterozygous knockout gene (CaMK2α-hKO), an established model of cognitive impairment that also displays altered neurogenesis and neuronal development. Using this approach, we identified gastrin-releasing peptide (GRP) as the most dysregulated gene. In wild-type mice, GRP labels NeuN-positive neurons, the lone exception being GRP-positive, NeuN-negative cells in the subgranular zone, suggesting GRP expression may be relevant to neurogenesis and/or neuronal development. Using a model of in vitro hippocampal neurogenesis, we determined that GRP signaling is essential for the continued survival and development of newborn neurons, both of which are blocked by transient knockdown of GRP's cognate receptor (GRPR). Furthermore, GRP appears to negatively regulate neurogenesis-associated proliferation in neural stem cells both in vitro and in vivo. Intracerebroventricular infusion of GRP resulted in a decrease in immature neuronal markers, increased cAMP response element-binding protein (CREB) phosphorylation, and decreased neurogenesis. Despite increased levels of GRP mRNA, CaMK2α-hKO mutant mice expressed reduced levels of GRP peptide. This lack of GRP may contribute to the elevated neurogenesis and impaired neuronal development, which are reversed following exogenous GRP infusion. Based on these findings, we hypothesize that GRP modulates neurogenesis and neuronal development and may contribute to hippocampus-associated cognitive impairment.


Asunto(s)
Péptido Liberador de Gastrina/metabolismo , Hipocampo/citología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Neuronas/citología , Animales , Modelos Animales de Enfermedad , Péptido Liberador de Gastrina/genética , Péptido Liberador de Gastrina/farmacología , Hipocampo/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Transducción de Señal
4.
Bipolar Disord ; 15(4): 405-21, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23560889

RESUMEN

OBJECTIVES: There is accumulating evidence to suggest psychiatric disorders, such as bipolar disorder and schizophrenia, share common etiologies, pathophysiologies, genetics, and drug responses with many of the epilepsies. Here, we explored overlaps in cellular/molecular, electrophysiological, and behavioral phenotypes between putative mouse models of bipolar disorder/schizophrenia and epilepsy. We tested the hypothesis that an immature dentate gyrus (iDG), whose association with psychosis in patients has recently been reported, represents a common phenotype of both diseases. METHODS: Behaviors of calcium/calmodulin-dependent protein kinase II alpha (α-CaMKII) heterozygous knock-out (KO) mice, which are a representative bipolar disorder/schizophrenia model displaying iDG, and pilocarpine-treated mice, which are a representative epilepsy model, were tested followed by quantitative polymerase chain reaction (qPCR)/immunohistochemistry for mRNA/protein expression associated with an iDG phenotype. In vitro electrophysiology of dentate gyrus granule cells (DG GCs) was examined in pilocarpine-treated epileptic mice. RESULTS: The two disease models demonstrated similar behavioral deficits, such as hyperactivity, poor working memory performance, and social withdrawal. Significant reductions in mRNA expression and immunoreactivity of the mature neuronal marker calbindin and concomitant increases in mRNA expression and immunoreactivity of the immature neuronal marker calretinin represent iDG signatures that are present in both mice models. Electrophysiologically, we have confirmed that DG GCs from pilocarpine-treated mice represent an immature state. A significant decrease in hippocampal α-CaMKII protein levels was also found in both models. CONCLUSIONS: Our data have shown iDG signatures from mouse models of both bipolar disorder/schizophrenia and epilepsy. The evidence suggests that the iDG may, in part, be responsible for the abnormal behavioral phenotype, and that the underlying pathophysiologies in epilepsy and bipolar disorder/schizophrenia are strikingly similar.


Asunto(s)
Síntomas Conductuales , Trastorno Bipolar , Calbindina 2/metabolismo , Giro Dentado , Epilepsia , Esquizofrenia , Animales , Síntomas Conductuales/metabolismo , Síntomas Conductuales/fisiopatología , Biomarcadores/metabolismo , Trastorno Bipolar/metabolismo , Trastorno Bipolar/patología , Trastorno Bipolar/fisiopatología , Trastorno Bipolar/psicología , Giro Dentado/crecimiento & desarrollo , Giro Dentado/metabolismo , Giro Dentado/patología , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos , Epilepsia/metabolismo , Epilepsia/patología , Epilepsia/fisiopatología , Epilepsia/psicología , Ratones , Agonistas Muscarínicos/farmacología , Pilocarpina/farmacología , Esquizofrenia/metabolismo , Esquizofrenia/patología , Esquizofrenia/fisiopatología
5.
Eur J Neurosci ; 36(5): 2597-608, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22697179

RESUMEN

SREB2/GPR85, a member of the super-conserved receptor expressed in brain (SREB) family, is the most conserved G-protein-coupled receptor in vertebrate evolution. Previous human and mouse genetic studies have indicated a possible link between SREB2 and schizophrenia. SREB2 is robustly expressed in the hippocampal formation, especially in the dentate gyrus, a structure with an established involvement in psychiatric disorders and cognition. However, the function of SREB2 in the hippocampus remains elusive. Here we show that SREB2 regulates hippocampal adult neurogenesis, which impacts on cognitive function. Bromodeoxyuridine incorporation and immunohistochemistry were conducted in SREB2 transgenic (Tg, over-expression) and knockout (KO, null-mutant) mice to quantitatively assay adult neurogenesis and newborn neuron dendritic morphology. Cognitive responses associated with adult neurogenesis alteration were evaluated in SREB2 mutant mice. In SREB2 Tg mice, both new cell proliferation and new neuron survival were decreased in the dentate gyrus, whereas an enhancement of new neuron survival occurred in SREB2 KO mouse dentate gyrus. Doublecortin staining revealed dendritic morphology deficits of newly generated neurons in SREB2 Tg mice. In a spatial pattern separation task, SREB2 Tg mice displayed a decreased ability to discriminate spatial relationships, whereas SREB2 KO mice had enhanced abilities in this task. Additionally, SREB2 Tg and KO mice had reciprocal phenotypes in a Y-maze working memory task. Our results indicate that SREB2 is a negative regulator of adult neurogenesis and consequential cognitive functions. Inhibition of SREB2 function may be a novel approach to enhance hippocampal adult neurogenesis and cognitive abilities to ameliorate core symptoms of psychiatric patients.


Asunto(s)
Hipocampo/fisiología , Aprendizaje , Memoria , Neurogénesis , Receptores Acoplados a Proteínas G/fisiología , Animales , Proliferación Celular , Supervivencia Celular , Hipocampo/citología , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Factores de Riesgo , Esquizofrenia/epidemiología
6.
Nat Commun ; 12(1): 2811, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990558

RESUMEN

The supramammillary region (SuM) is a posterior hypothalamic structure, known to regulate hippocampal theta oscillations and arousal. However, recent studies reported that the stimulation of SuM neurons with neuroactive chemicals, including substances of abuse, is reinforcing. We conducted experiments to elucidate how SuM neurons mediate such effects. Using optogenetics, we found that the excitation of SuM glutamatergic (GLU) neurons was reinforcing in mice; this effect was relayed by their projections to septal GLU neurons. SuM neurons were active during exploration and approach behavior and diminished activity during sucrose consumption. Consistently, inhibition of SuM neurons disrupted approach responses, but not sucrose consumption. Such functions are similar to those of mesolimbic dopamine neurons. Indeed, the stimulation of SuM-to-septum GLU neurons and septum-to-ventral tegmental area (VTA) GLU neurons activated mesolimbic dopamine neurons. We propose that the supramammillo-septo-VTA pathway regulates arousal that reinforces and energizes behavioral interaction with the environment.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Hipotálamo Posterior/citología , Hipotálamo Posterior/fisiología , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Conducta Consumatoria/efectos de los fármacos , Conducta Consumatoria/fisiología , Dopamina/fisiología , Femenino , Ácido Glutámico/fisiología , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Neurológicos , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Optogenética , Ratas , Ratas Wistar , Refuerzo en Psicología , Tabique del Cerebro/citología , Tabique del Cerebro/efectos de los fármacos , Tabique del Cerebro/fisiología , Área Tegmental Ventral/citología , Área Tegmental Ventral/fisiología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/administración & dosificación
7.
BMC Neurosci ; 11: 101, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20716371

RESUMEN

BACKGROUND: Picrotoxin blocks GABAA receptors, whose activation typically inhibits neuronal firing activity. We recently found that rats learn to selectively self-administer picrotoxin or bicuculline, another GABAA receptor antagonist, into the supramammillary nucleus (SuM), a posterior hypothalamic structure localized anterior to the ventral tegmental area. Other drugs such as nicotine or the excitatory amino acid AMPA are also self-administered into the SuM. The SuM appears to be functionally linked with the mesolimbic dopamine system and is closely connected with other brain structures that are implicated in motivational processes, including the prefrontal cortex, septal area, preoptic area, lateral hypothalamic area and dorsal raphe nucleus. Here, we hypothesized that these brain structures are activated by picrotoxin injections into the SuM. RESULTS: Picrotoxin administration into the SuM markedly facilitated locomotion and rearing. Further, it increased c-Fos expression in this region, suggesting blockade of tonic inhibition and thus the disinhibition of local neurons. This manipulation also increased c-Fos expression in structures including the ventral tegmental area, medial shell of the nucleus accumbens, medial prefrontal cortex, septal area, preoptic area, lateral hypothalamic area and dorsal raphe nucleus. CONCLUSIONS: Picrotoxin administration into the SuM appears to disinhibit local neurons and recruits activation of brain structures associated with motivational processes, including the mesolimbic dopamine system, prefrontal cortex, septal area, preoptic area, lateral hypothalamic area and dorsal raphe nucleus. These regions may be involved in mediating positive motivational effects triggered by intra-SuM picrotoxin.


Asunto(s)
Antagonistas del GABA/farmacología , Tubérculos Mamilares/fisiología , Picrotoxina/farmacología , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Receptores de GABA-A/efectos de los fármacos , Recompensa , Animales , Estimulación Eléctrica , Lateralidad Funcional/fisiología , Antagonistas del GABA/administración & dosificación , Inmunohistoquímica , Masculino , Microinyecciones , Actividad Motora/efectos de los fármacos , Picrotoxina/administración & dosificación , Ratas , Ratas Wistar
8.
Psychopharmacology (Berl) ; 198(2): 261-70, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18389222

RESUMEN

RATIONALE: Behavioral and anatomical data suggest that the ventral striatum, consisting of the nucleus accumbens and olfactory tubercle, is functionally heterogeneous. Cocaine and D: -amphetamine appear to be more rewarding when administered into the medial olfactory tubercle or medial accumbens shell than into their lateral counterparts, including the accumbens core. OBJECTIVES: We sought to determine whether rats self-administer the popular recreational drug (+/-)-3,4-methylenedioxymethamphetamine (MDMA) into ventrostriatal subregions and whether the medial olfactory tubercle and medial accumbens shell mediate MDMA's positive reinforcing effects more effectively than their lateral counterparts. RESULTS: Rats receiving 30 mM MDMA into the medial olfactory tubercle, medial accumbens shell, or accumbens core, but not the lateral tubercle or lateral shell, showed higher self-administration rates than rats receiving vehicle. The medial shell supported more vigorous self-administration of MDMA at higher concentrations than the core or medial olfactory tubercle. In addition, intra-medial shell MDMA self-administration was disrupted by co-administration of the D1 or D2 receptor antagonists SCH 23390 (1-3 mM) or raclopride (3-10 mM). CONCLUSIONS: Our data suggest that the ventral striatum is functionally heterogeneous. The medial accumbens shell appears to be more important than other ventrostriatal subregions in mediating the positive reinforcing effects of MDMA via both D1- and D2-type receptors. Together with previous data, our data also suggest that unidentified actions of MDMA interfere with the positive reinforcing effects of dopamine in the medial olfactory tubercle.


Asunto(s)
Alucinógenos/farmacología , N-Metil-3,4-metilenodioxianfetamina/farmacología , Neostriado/fisiología , Núcleo Accumbens/fisiología , Bulbo Olfatorio/fisiología , Animales , Conducta Animal/efectos de los fármacos , Dopamina/fisiología , Alucinógenos/administración & dosificación , Alucinógenos/farmacocinética , Masculino , Actividad Motora/efectos de los fármacos , N-Metil-3,4-metilenodioxianfetamina/administración & dosificación , N-Metil-3,4-metilenodioxianfetamina/farmacocinética , Ratas , Ratas Wistar , Receptores de Dopamina D1/efectos de los fármacos , Receptores de Dopamina D2/efectos de los fármacos , Recompensa , Autoadministración
9.
Neuropharmacology ; 52(2): 321-32, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17027042

RESUMEN

The involvement of alpha(2) noradrenergic receptors during amygdala 'massed' stimulation (MS) was examined in rats that were selectively bred to be seizure-prone (Fast) or seizure-resistant (Slow) to amygdala kindling. The selective alpha(2) noradrenergic agonist guanfacine, or the antagonist idazoxan, was intraperitoneally injected during the MS procedure to study subsequent changes in afterdischarge (AD) threshold, AD duration and behavioral seizure expression. These measurements were again assessed weekly for 2 weeks after the MS treatment. Daily kindling began immediately thereafter. Following 6 stage-5 once daily convulsive seizures, guanfacine or idazoxan were re-administered. With idazoxan, the Slow rats expressed greater numbers of convulsive seizures and longer AD durations compared to guanfacine or saline controls during MS treatment. This pro-convulsive property of idazoxan was absent in Fast rats. By contrast, Fast rats showed enhanced convulsive expression in the presence of guanfacine. In the fully kindled rat, idazoxan and guanfacine differentially impacted seizure duration and severity in the Slow rats, but again not in the Fast rats. These data suggest that some aspect(s) of the alpha(2) noradrenergic system in the Fast and Slow rats are dissimilar and the mechanisms by which these receptors govern seizure genesis and propagation may be genetically controlled and distinct.


Asunto(s)
Amígdala del Cerebelo/fisiopatología , Excitación Neurológica , Norepinefrina/metabolismo , Convulsiones/fisiopatología , Agonistas alfa-Adrenérgicos/administración & dosificación , Antagonistas Adrenérgicos alfa/administración & dosificación , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/efectos de la radiación , Análisis de Varianza , Animales , Relación Dosis-Respuesta en la Radiación , Esquema de Medicación , Estimulación Eléctrica/efectos adversos , Guanfacina/administración & dosificación , Idazoxan/administración & dosificación , Excitación Neurológica/efectos de los fármacos , Excitación Neurológica/genética , Excitación Neurológica/patología , Ratas , Tiempo de Reacción/efectos de los fármacos , Convulsiones/tratamiento farmacológico
10.
Brain Res ; 946(1): 31-42, 2002 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-12133592

RESUMEN

A neurochemical basis for many of the epilepsies has long been suspected to result from an imbalance between excitatory and inhibitory neurotransmitter mechanisms. Data supporting changes in extrasynaptic amino acid levels during epileptogenesis, however, remain controversial. In the present study, we used in vivo microdialysis to measure the levels of extracellular GABA (gamma-aminobutyric acid) and glutamate during seizure development in rats with a genetic predisposition for (Fast), or against (Slow), amygdala kindling. Dialysates were collected from both amygdalae before, during, and up to 12 min after a threshold-triggered amygdala afterdischarge (AD). One hour later, samples were again collected from both amygdalae in response to a hippocampal threshold AD. Daily amygdala kindling commenced the next day but without dialysis. After the rats were fully kindled, the same protocol was again employed. Amino acid levels were not consistently increased above baseline with triggered seizures in either strain. Instead, before kindling, a focal seizure in the Slow rats was associated with a large decrease in GABA in the non-stimulated amygdala, while amino acid levels in the Fast rats remained near baseline in both amygdalae. Similar results were seen after kindling. By contrast, before and after kindling, hippocampal stimulation caused large decreases in all amino acid levels in both amygdalae in both strains. These data suggest that, in response to direct stimulation, extracellular amino acid concentrations remain stable in tissues associated with either greater natural (Fast) or induced (kindled Fast/Slow) excitability, but are lowered with indirect stimulation (hippocampus) and/or low excitability.


Asunto(s)
Aminoácidos/metabolismo , Amígdala del Cerebelo/metabolismo , Espacio Extracelular/metabolismo , Excitación Neurológica/fisiología , Animales , Umbral Diferencial , Electrofisiología , Predisposición Genética a la Enfermedad , Ácido Glutámico/metabolismo , Hipocampo/fisiología , Excitación Neurológica/genética , Masculino , Ratas , Ratas Endogámicas/genética , Convulsiones/etiología , Convulsiones/fisiopatología , Factores de Tiempo , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA