RESUMEN
Recombinant adeno-associated virus (AAV)-2 has significant potential as a delivery vehicle of therapeutic genes to retinal ganglion cells (RGCs), which are key interventional targets in optic neuropathies. Here we show that when injected intravitreally, AAV2 engineered with a reporter gene driven by cytomegalovirus (CMV) enhancer and chicken ß-actin (CBA) promoters, displays ubiquitous and high RGC expression, similar to its synthetic derivative AAV8BP2. A novel AAV2 vector combining the promoter of the human RGC-selective γ-synuclein (hSNCG) gene and woodchuck hepatitis post-transcriptional regulatory element (WPRE) inserted upstream and downstream of a reporter gene, respectively, induces widespread transduction and strong transgene expression in RGCs. High transduction efficiency and selectivity to RGCs is further achieved by incorporating in the vector backbone a leading CMV enhancer and an SV40 intron at the 5' and 3' ends, respectively, of the reporter gene. As a delivery vehicle of hSIRT1, a 2.2-kb therapeutic gene with anti-apoptotic, anti-inflammatory and anti-oxidative stress properties, this recombinant vector displayed improved transduction efficiency, a strong, widespread and selective RGC expression of hSIRT1, and increased RGC survival following optic nerve crush. Thus, AAV2 vector carrying hSNCG promoter with additional regulatory sequences may offer strong potential for enhanced effects of candidate gene therapies targeting RGCs.
Asunto(s)
Infecciones por Citomegalovirus , Parvovirinae , Humanos , Células Ganglionares de la Retina/metabolismo , Terapia Genética , Transgenes , Nervio Óptico , Dependovirus/genética , Parvovirinae/genética , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/metabolismo , Vectores Genéticos/genéticaRESUMEN
PURPOSE: Resveratrol is a natural polyphenol which has a very low bioavailability but whose antioxidant, anti-inflammatory and anti-apoptotic properties may have therapeutic potential for the treatment of neurodegenerative diseases such as multiple sclerosis (MS). Previously, we reported the oral administration of resveratrol nanoparticles (RNs) elicited a neuroprotective effect in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS, at significantly lower doses than unconjugated resveratrol (RSV) due to enhanced bioavailability. Furthermore, we demonstrated that the intranasal administration of a cell-derived secretome-based therapy at low concentrations leads to the selective neuroprotection of the optic nerve in EAE mice. The current study sought to assess the potential selective efficacy of lower concentrations of intranasal RNs for attenuating optic nerve damage in EAE mice. METHODS: EAE mice received either a daily intranasal vehicle, RNs or unconjugated resveratrol (RSV) for a period of thirty days beginning on the day of EAE induction. Mice were assessed daily for limb paralysis and weekly for visual function using the optokinetic response (OKR) by observers masked to treatment regimes. After sacrifice at day 30, spinal cords and optic nerves were stained to assess inflammation and demyelination, and retinas were immunostained to quantify retinal ganglion cell (RGC) survival. RESULTS: Intranasal RNs significantly increased RGC survival at half the dose previously shown to be required when given orally, reducing the risk of systemic side effects associated with prolonged use. Both intranasal RSV and RN therapies enhanced RGC survival trends, however, only the effects of intranasal RNs were significant. RGC loss was prevented even in the presence of inflammatory and demyelinating changes induced by EAE in optic nerves. CONCLUSIONS: The intranasal administration of RNs is able to reduce RGC loss independent of the inflammatory and demyelinating effects on the optic nerve and the spinal cord. The concentration of RNs needed to achieve neuroprotection is lower than previously demonstrated with oral administration, suggesting intranasal drug delivery combined with nanoparticle conjugation warrants further exploration as a potential neuroprotective strategy for the treatment of optic neuritis, alone as well as in combination with glucocorticoids.
Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Nanopartículas , Animales , Ratones , Resveratrol/farmacología , Neuroprotección , Administración Intranasal , Encefalomielitis Autoinmune Experimental/tratamiento farmacológicoRESUMEN
Neurotropic mouse hepatitis virus (MHV-A59/RSA59) infection in mice induces acute neuroinflammation due to direct neural cell dystrophy, which proceeds with demyelination with or without axonal loss, the pathological hallmarks of human neurological disease, Multiple sclerosis (MS). Recent studies in the RSA59-induced neuroinflammation model of MS showed a protective role of CNS-infiltrating CD4+ T cells compared to their pathogenic role in the autoimmune model. The current study further investigated the molecular nexus between CD4+ T cell-expressed CD40Ligand and microglia/macrophage-expressed CD40 using CD40L-/- mice. Results demonstrate CD40L expression in the CNS is modulated upon RSA59 infection. We show evidence that CD40L-/- mice are more susceptible to RSA59 induced disease due to reduced microglia/macrophage activation and significantly dampened effector CD4+ T recruitment to the CNS on day 10 p.i. Additionally, CD40L-/- mice exhibited severe demyelination mediated by phagocytic microglia/macrophages, axonal loss, and persistent poliomyelitis during chronic infection, indicating CD40-CD40L as host-protective against RSA59-induced demyelination. This suggests a novel target in designing prophylaxis for virus-induced demyelination and axonal degeneration, in contrast to immunosuppression which holds only for autoimmune mechanisms of inflammatory demyelination.
Asunto(s)
Ligando de CD40/inmunología , Infecciones por Coronavirus/inmunología , Enfermedad Autoinmune Experimental del Sistema Nervioso/inmunología , Enfermedad Autoinmune Experimental del Sistema Nervioso/virología , Animales , Linfocitos T CD4-Positivos , Infecciones por Coronavirus/patología , Ratones , Virus de la Hepatitis Murina , Enfermedad Autoinmune Experimental del Sistema Nervioso/patologíaRESUMEN
Immunofluorescence is used in numerous research areas including eye research to detect specific antigens in cells and tissues. One limitation is that fluorescent signal can fade, causing detection problems if data recording was not completed in a timely manner or if additional data acquisition is required. The ability to repeat immunostaining for the same antigen after initial fluorescence has faded may require time-consuming and potentially damaging steps to remove primary antibodies. Our studies assessed whether immunofluorescence could be reapplied to previously labeled retinal ganglion cells (RGCs). To examine whether immunostaining of Brn3a, a commonly used RGC marker, could be repeated in retinas with previously faded immunostaining, retinal whole mounts were labeled with anti-Brn3a primary antibodies and green fluorescent secondary antibodies, then allowed to fade over time. Faded retinas were restained with anti-Brn3a antibody followed by secondary antibody, or with secondary antibody alone. Results show restaining with anti-Brn3a primary antibody followed by Alexa-fluor green secondary antibody is effective for RGC detection. Repeat RGC labeling improved the clarity of staining compared with original staining prior to fading, with significant reduction in the percentage of blurry/out of focus fluorescent cells (6 vs 26%); whereas, repeat application of secondary antibody alone was not effective. Preflattening retinas under a coverslip prior to initial Brn3a staining also increased the clarity of staining, and facilitated significantly more accurate automated counting of RGCs. Findings suggest Brn3a antigen remains accessible for repeat immunofluorescence labeling after original staining fades. Staining retinas after flattening tissue may enhance the clarity of staining and accuracy of automated RGC counting. Repeat immunofluorescence staining, without the need to strip off prior bound antibodies, may be useful in other tissues as well and warrants future examination.
Asunto(s)
Retina , Células Ganglionares de la Retina , Células Ganglionares de la Retina/metabolismo , Técnica del Anticuerpo Fluorescente , Coloración y Etiquetado , Factor de Transcripción Brn-3A/metabolismoRESUMEN
ABSTRACT: Optic neuropathies encompass a breadth of diseases that ultimately result in dysfunction and/or loss of retinal ganglion cells (RGCs). Although visual impairment from optic neuropathies is common, there is a lack of effective clinical treatments. Addressing a critical need for novel interventions, preclinical studies have been generating a growing body of evidence that identify promising new drug-based and cell-based therapies. Gene therapy is another emerging therapeutic field that offers the potential of specifically and robustly increasing long-term RGC survival in optic neuropathies. Gene therapy offers additional benefits of driving improvements following a single treatment administration, and it can be designed to target a variety of pathways that may be involved in individual optic neuropathies or across multiple etiologies. This review explores the history of gene therapy, the fundamentals of its application, and the emerging development of gene therapy technology as it relates to treatment of optic neuropathies.
Asunto(s)
Enfermedades del Nervio Óptico , Células Ganglionares de la Retina , Humanos , Neuroprotección , Enfermedades del Nervio Óptico/genética , Terapia GenéticaRESUMEN
BACKGROUND: To identify the frequency and etiologies of visual disturbances after cataract surgery in patients referred to Neuro-ophthalmology. METHODS: This study is a retrospective chart review. Records of patients 18 years and older referred to neuro-ophthalmology clinics for new-onset visual disturbances within 6 months of cataract surgery were reviewed. Those with pre-existing neuro-ophthalmic disorders, combined intraocular procedures with cataract surgery, or inadequate follow-up were excluded. The main outcome measures were frequency and etiologies of visual disturbances after cataract surgery. Secondary analyses of a cohort of patients who had cataract surgery at our institution were performed to determine the frequency and etiology of visual disturbances after uneventful cataract surgery. RESULTS: One hundred seventy-three patients met the inclusion criteria (internal referral: 36/173, from outside surgeons: 137/173). Sixty-one percent (106/173) were newly diagnosed with neuro-ophthalmic etiologies, including 21% (36/173) with afferent and 40% (70/173) with efferent disorders. Thirty-six percent (62/173) of patients had non neuro-ophthalmic causes and 3% (5/173) had systemic conditions responsible for visual disturbances postoperatively. Decompensated strabismus causing diplopia was the most common neuro-ophthalmic diagnosis after cataract surgery (50%, 53/106). Of the 13,715 patients who had cataract surgery performed at our institution over a 9-year period, 20 of 36 patients referred for visual disturbances were identified with neuro-ophthalmic etiologies of which 85% (17/20) had postoperative diplopia. CONCLUSIONS: In our study, decompensated strabismus causing diplopia was the most common neuro-ophthalmic visual disturbance after cataract surgery. Detailed history and ocular alignment should be assessed before cataract surgery to identify patients with the risk.
Asunto(s)
Catarata , Oftalmología , Estrabismo , Humanos , Diplopía/etiología , Estudios Retrospectivos , Trastornos de la Visión/diagnóstico , Trastornos de la Visión/epidemiología , Trastornos de la Visión/etiología , Catarata/complicacionesRESUMEN
BACKGROUND: Repository corticotrophin injection (RCI, Acthar Gel) and intravenous methylprednisolone (IVMP) improve the rate but not the extent of visual recovery following acute optic neuritis. RCI has adrenal-stimulating and melanocortin receptor-stimulating properties that may endow it with unique anti-inflammatory properties relative to IVMP. METHODS: Individuals with acute optic neuritis of less than 2 weeks duration were prospectively enrolled and randomized 1:1 to receive either RCI or IVMP. Peripapillary retinal nerve fiber layer (pRNFL) and ganglion cell plus inner plexiform layer thickness (GC + IPL) were serially evaluated by OCT. In addition, patient-reported outcomes (PROs) for changes in fatigue, mood, visual function, depression, and quality of life (QOL) were measured, and high and low contrast visual acuity were recorded. RESULTS: Thirty-seven subjects were enrolled (19 RCI; 18 IVMP); the average time from symptom to treatment was 8.8 days. At 6 months, there was no difference in the primary outcome: loss of average pRNFL thickness in the affected eye (RCI vs IVMP: -13.1 vs -11.7 µm, P = 0.88) 6 months after randomization. Additional outcomes also showed no difference between treatment groups: 6-month attenuation of GC + IPL thickness (RCI vs IVMP: -13.8 vs -12.0 µm, P = 0.58) and frequency of pRNFL swelling at 1 month (RCI vs IVMP: 63% vs 72%, P = 0.73) and 3 months (RCI vs IVMP: 26% vs 31%, P = 0.99). Both treatments resulted in improvement in visual function and PROs. CONCLUSIONS: Treatment of acute optic neuritis with RCI or IVMP produced no clinically meaningful differences in optic nerve structure or visual function.
Asunto(s)
Metilprednisolona , Neuritis Óptica , Humanos , Metilprednisolona/uso terapéutico , Calidad de Vida , Neuroprotección , Estudios Prospectivos , Neuritis Óptica/diagnóstico , Neuritis Óptica/tratamiento farmacológico , Hormona Adrenocorticotrópica , Tomografía de Coherencia Óptica/métodosRESUMEN
Mouse hepatitis virus (MHV; murine coronavirus) causes meningoencephalitis, myelitis, and optic neuritis followed by axonal loss and demyelination. This murine virus is used as a common model to study acute and chronic virus-induced demyelination in the central nervous system. Studies with recombinant MHV strains that differ in the gene encoding the spike protein have demonstrated that the spike has a role in MHV pathogenesis and retrograde axonal transport. Fusion peptides (FPs) in the spike protein play a key role in MHV pathogenesis. In a previous study of the effect of deleting a single proline residue in the FP of a demyelinating MHV strain, we found that two central, consecutive prolines are important for cell-cell fusion and pathogenesis. The dihedral fluctuation of the FP was shown to be repressed whenever two consecutive prolines were present, in contrast to the presence of a single proline in the chain. Using this proline-deleted MHV strain, here we investigated whether intracranial injection of this strain can induce optic neuritis by retrograde axonal transport from the brain to the retina through the optic nerve. We observed that the proline-deleted recombinant MHV strain is restricted to the optic nerve, is unable to translocate to the retina, and causes only minimal demyelination and no neuronal death. We conclude that an intact proline dyad in the FP of the recombinant demyelinating MHV strain plays a crucial role in translocation of the virus through axons and subsequent neurodegeneration.
Asunto(s)
Transporte Axonal/genética , Virus de la Hepatitis Murina/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Transporte Axonal/fisiología , Axones/metabolismo , Axones/virología , Encéfalo/metabolismo , Infecciones por Coronavirus/patología , Enfermedades Desmielinizantes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Virus de la Hepatitis Murina/metabolismo , Nervio Óptico/metabolismo , Nervio Óptico/virología , Péptidos/metabolismo , Prolina/metabolismo , Eliminación de Secuencia/genética , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas del Envoltorio Viral/metabolismoRESUMEN
SIRT1 prevents retinal ganglion cell (RGC) loss in models of optic neuropathy following pharmacologic activation or genetic overexpression. The exact mechanism of loss is not known, prior evidence suggests this is through oxidative stress to either neighboring cells or RGC specifically. We investigated the neuroprotective potential of RGC-selective SIRT1 gene therapy in the optic nerve crush (ONC) model. We hypothesized that AAV-mediated overexpression of SIRT1 in RGCs reduces RGC loss, thereby preserving visual function. Cohorts of C57Bl/6J mice received intravitreal injection of experimental or control AAVs using either a ganglion cell promoter or a constitutive promoter and ONC was performed. Visual function was examined by optokinetic response (OKR) for 7 days following ONC. Retina and optic nerves were harvested to investigate RGC survival by immunolabeling. The AAV7m8-SNCG.SIRT1 vector showed 44% transduction efficiency for RGCs compared with 25% (P > 0.05) by AAV2-CAG.SIRT1, and AAV7m8-SNCG.SIRT1 drives expression selectively in RGCs in vivo. Animals modeling ONC demonstrated reduced visual acuity compared to controls. Intravitreal delivery of AAV7m8-SNCG.SIRT1 mediated significant preservation of the OKR and RGC survival compared to AAV7m8-SNCG.eGFP controls, an effect not seen with the AAV2 vector. RGC-selective expression of SIRT1 offers a targeted therapy for an animal model with significant ganglion cell loss. Over-expression of SIRT1 through AAV-mediated gene transduction suggests a RGC selective component of neuro-protection using the ONC model. This study expands our understanding of SIRT1 mediated neuroprotection in the context of compressive or traumatic optic neuropathy, making it a strong therapeutic candidate for testing in all optic neuropathies.
Asunto(s)
Traumatismos del Nervio Óptico , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Compresión Nerviosa , Nervio Óptico , Traumatismos del Nervio Óptico/genética , Traumatismos del Nervio Óptico/terapia , Células Ganglionares de la Retina , Sirtuina 1/genéticaRESUMEN
Mouse hepatitis virus (MHV) is a murine betacoronavirus (m-CoV) that causes a wide range of diseases in mice and rats, including hepatitis, enteritis, respiratory diseases, and encephalomyelitis in the central nervous system (CNS). MHV infection in mice provides an efficient cause-effect experimental model to understand the mechanisms of direct virus-induced neural-cell damage leading to demyelination and axonal loss, which are pathological features of multiple sclerosis (MS), the most common disabling neurological disease in young adults. Infiltration of T lymphocytes, activation of microglia, and their interplay are the primary pathophysiological events leading to disruption of the myelin sheath in MS. However, there is emerging evidence supporting gray matter involvement and degeneration in MS. The investigation of T cell function in the pathogenesis of deep gray matter damage is necessary. Here, we employed RSA59 (an isogenic recombinant strain of MHV-A59)-induced experimental neuroinflammation model to compare the disease in CD4-/- mice with that in CD4+/+ mice at days 5, 10, 15, and 30 postinfection (p.i.). Viral titer estimation, nucleocapsid gene amplification, and viral antinucleocapsid staining confirmed enhanced replication of the virions in the absence of functional CD4+ T cells in the brain. Histopathological analyses showed elevated susceptibility of CD4-/- mice to axonal degeneration in the CNS, with augmented progression of acute poliomyelitis and dorsal root ganglionic inflammation rarely observed in CD4+/+ mice. Depletion of CD4+ T cells showed unique pathological bulbar vacuolation in the brain parenchyma of infected mice with persistent CD11b+ microglia/macrophages in the inflamed regions on day 30 p.i. In summary, the current study suggests that CD4+ T cells are critical for controlling acute-stage poliomyelitis (gray matter inflammation), chronic axonal degeneration, and inflammatory demyelination due to loss of protective antiviral host immunity.IMPORTANCE The current trend in CNS disease biology is to attempt to understand the neural-cell-immune interaction to investigate the underlying mechanism of neuroinflammation, rather than focusing on peripheral immune activation. Most studies in MS are targeted toward understanding the involvement of CNS white matter. However, the importance of gray matter damage has become critical in understanding the long-term progressive neurological disorder. Our study highlights the importance of CD4+ T cells in safeguarding neurons against axonal blebbing and poliomyelitis from murine betacoronavirus-induced neuroinflammation. Current knowledge of the mechanisms that lead to gray matter damage in MS is limited, because the most widely used animal model, experimental autoimmune encephalomyelitis (EAE), does not present this aspect of the disease. Our results, therefore, add to the existing limited knowledge in the field. We also show that the microglia, though important for the initiation of neuroinflammation, cannot establish a protective host immune response without the help of CD4+ T cells.
Asunto(s)
Axones/inmunología , Axones/metabolismo , Antígenos CD4/deficiencia , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Virus de la Hepatitis Murina/fisiología , Poliomielitis/etiología , Animales , Axones/patología , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Infecciones por Coronavirus/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/inmunología , Ganglios Espinales/inmunología , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Inmunohistoquímica , Mediadores de Inflamación/metabolismo , RatonesRESUMEN
BACKGROUND: Prospective and longitudinal studies assessing the utility of spectral-domain optical coherence tomography (SD-OCT) to differentiate papilledema from pseudopapilledema are lacking. We studied the sensitivity and specificity of baseline and longitudinal changes in SD-OCT parameters with 3D segmentation software to distinguish between papilledema and pseudopapilledema in a cohort of patients referred for evaluation of undiagnosed optic disc elevation. METHODS: Fifty-two adult patients with optic disc elevation were enrolled in a prospective longitudinal study. A diagnosis of papilledema was made when there was a change in the appearance of the optic disc elevation on fundus photographs as noted by an independent observer at or before 6 months. The degree of optic disc elevation was graded using the Frisen scale and patients with mild optic disc elevation (Frisen grades 1 and 2) were separately analyzed. SD-OCT parameters including peripapillary retinal nerve fiber layer (pRNFL), total retinal thickness (TRT), paracentral ganglion cell layer-inner plexiform layer (GCL-IPL) thickness, and optic nerve head volume (ONHV) at baseline and within 6 months of follow-up were measured. RESULTS: Twenty-seven (52%) patients were diagnosed with papilledema and 25 (48%) with pseudopapilledema. Among patients with mild optic disc elevation (Frisen grades 1 and 2), baseline pRNFL (110.1 µm vs 151.3 µm) and change in pRNFL (ΔpRNFL) (7.3 µm vs 52.3 µm) were greater among those with papilledema. Baseline and absolute changes in TRT and ONHV were also significantly higher among patients with papilledema. The mean GCL-IPL thickness was similar at baseline, but there was a small reduction in GCL-IPL thickness among patients with papilledema. Receiver operator curves (ROCs) were generated; ΔpRNFL (0.93), ΔTRT (0.94), and ΔONHV (0.95) had the highest area under the curve (AUC). CONCLUSIONS: The mean baseline and absolute changes in SD-OCT measurements (pRFNL, TRT, and ONHV) were significantly greater among patients with papilledema, and remained significantly greater when patients with mild optic disc elevation were separately analyzed. ROCs demonstrated that ΔpRNFL, ΔTRT, and ΔONHV have the highest AUC and are best able to differentiate between papilledema and pseudopapilledema.
Asunto(s)
Papiledema , Tomografía de Coherencia Óptica , Adulto , Enfermedades Hereditarias del Ojo , Humanos , Estudios Longitudinales , Fibras Nerviosas , Enfermedades del Nervio Óptico , Papiledema/diagnóstico , Estudios Prospectivos , Células Ganglionares de la Retina , Tomografía de Coherencia Óptica/métodosRESUMEN
BACKGROUND: We prospectively evaluated the sensitivity and specificity of ocular ultrasonography (OUS) to distinguish papilledema from pseudopapilledema. METHODS: Forty-nine study participants, with optic disc elevation, underwent neuro-ophthalmic evaluation, OUS, fundus photography, and optical coherence tomography (OCT) of the optic nerve head at the initial and follow-up visits (≤6 months apart). Participants were classified as having papilledema if there was a change in optic nerve appearance on fundus photographs, as determined by a masked observer, between initial and follow-up visits ≤6 months apart. OUS was considered positive when the optic nerve sheath width was >3.3 mm and the 30° test was positive. Ocular ultrasonographic findings were correlated in patients who had papilledema vs patients who had pseudopapilledema. In a subanalysis, OUS findings were also correlated with change in peripapillary retinal nerve fiber layer thickness on OCT of the optic nerve head between initial and follow-up visits. RESULTS: OUS was 68% (17/25) sensitive for papilledema and 54% (13/24) specific for pseudopapilledema. When using OCT parameters to define papilledema, the sensitivity of OUS to diagnose papilledema decreased to 62%. Positive OUS correlated with elevated opening pressure on lumbar puncture and with signs of increased intracranial pressure on MRI. CONCLUSION: OUS alone was less sensitive in diagnosing papilledema than previously thought. Therefore, OUS may not be helpful in distinguishing between papilledema and pseudopapilledema.
Asunto(s)
Enfermedades Hereditarias del Ojo/diagnóstico , Disco Óptico/diagnóstico por imagen , Enfermedades del Nervio Óptico/diagnóstico , Papiledema/diagnóstico , Ultrasonografía/métodos , Adulto , Diagnóstico Diferencial , Femenino , Estudios de Seguimiento , Humanos , Masculino , Estudios Prospectivos , Curva ROC , Tomografía de Coherencia Óptica/métodosRESUMEN
BACKGROUND: The benefit of thymectomy in reducing requirement for corticosteroids, symptom severity, need for immunosuppression, and hospitalization rates in patients with seropositive generalized myasthenia has recently been established. It is unclear whether this benefit applies to patients with myasthenia and purely ocular manifestations (ocular myasthenia gravis [OMG]). METHODS: We conducted a retrospective single-center cohort study of patients with OMG. Patients were included if their diagnosis was confirmed by acetylcholine receptor or muscle-specific kinase antibodies, abnormal electrophysiology, or a positive edrophonium test and at least 1 year of clinical follow-up. At each visit, the presence and severity of ocular and generalized symptoms was ascertained using a 4-point scale. Prednisone dose, steroid-sparing agent use, and need for intravenous immunoglobulin or plasmapheresis were recorded. The effect of thymectomy on time-weighted prednisone dose and symptom severity score was assessed using linear regression models. To adjust for nonrandomization of thymectomy, we used inverse probability weighting using a propensity score model derived from the prethymectomy observation period for thymectomy patients and a 6-month lead-in period for nonthymectomy patients that incorporated age, sex, acetylcholine receptor antibody seropositivity, disease severity (as defined by both symptom severity and treatment requirement), and treating physician preferences. RESULTS: Eighty-two patients (30 with thymectomy and 52 nonthymectomy) were included. In unadjusted analyses, time-weighted daily prednisone dose was 2.9 mg higher with thymectomy compared with nonthymectomy (95% CI: 0.2-5.7), but after inverse probability weighting, this was no longer statistically significant (difference = 1.7 mg, 95% CI: -0.8 to 4.2). There was no statistically significant difference in symptom severity score (adjusted difference = 0.35, 95% CI: -0.02 to 0.72) or risk of generalization (P = 0.22). CONCLUSIONS: In this retrospective study that used statistical techniques to account for nonrandomization, no significant differences in prednisone dose or symptom severity after thymectomy in ocular myasthenia were demonstrated.
Asunto(s)
Miastenia Gravis/cirugía , Timectomía/métodos , Adulto , Anciano , Autoanticuerpos , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Miastenia Gravis/inmunología , Receptores Colinérgicos/inmunología , Estudios Retrospectivos , Resultado del TratamientoRESUMEN
INTRODUCTION: Previous studies have shown that intranasally administered ST266, a novel biological secretome of amnion-derived multipotent progenitor cells containing multiple growth factors and anti-inflammatory cytokines, attenuated visual dysfunction and prevented retinal ganglion cell (RGC) loss in experimental optic neuritis. Long-term effects and dose escalation studies examined here have not been reported previously. METHODS: Optic neuritis was induced in the multiple sclerosis model experimental autoimmune encephalomyelitis (EAE). EAE and control mice were treated once or twice daily with intranasal placebo/vehicle or ST266 beginning after onset of optic neuritis for either 15 days or continuously until sacrifice. Visual function was assessed by optokinetic responses (OKRs). RGC survival and optic nerve inflammation and demyelination were measured. RESULTS: Both once and twice daily continuous intranasal ST266 treatment from disease onset to 56 days after EAE induction significantly increased OKR scores, decreased RGC loss, and reduced optic nerve inflammation and demyelination compared with placebo (saline, nonspecific protein solution, or cell culture media)-treated EAE mice. ST266 treatment given for just 15 days after disease onset, then discontinued, only delayed OKR decreases, and had limited effects on RGC survival and optic nerve inflammation 56 days after disease induction. CONCLUSIONS: ST266 is a potential neuroprotective therapy to prevent RGC damage, and intranasal delivery warrants further study as a novel mechanism to deliver protein therapies for optic neuropathies. Results suggest that once daily ST266 treatment is sufficient to sustain maximal benefits and demonstrate that neuroprotective effects promoted by ST266 are specific to the combination of factors present in this complex biologic therapy.
Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Neuritis Óptica/prevención & control , Enfermedades de la Retina/prevención & control , Células Ganglionares de la Retina/efectos de los fármacos , Administración Intranasal , Amnios , Animales , Supervivencia Celular/fisiología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/fisiopatología , Femenino , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Madre Multipotentes/metabolismo , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/metabolismo , Nistagmo Optoquinético/fisiología , Neuritis Óptica/fisiopatología , Enfermedades de la Retina/fisiopatología , Células Ganglionares de la Retina/fisiología , Agudeza Visual/fisiologíaRESUMEN
OBJECTIVE: Revised diagnostic criteria for idiopathic intracranial hypertension (IIH) were proposed in part to reduce misdiagnosis of intracranial hypertension without papilledema (WOP) by using 3 or 4 MRI features of intracranial hypertension when a sixth nerve palsy is absent. This study was undertaken to evaluate the sensitivity and specificity of the MRI criteria and to validate their utility for diagnosing IIH in patients with chronic headaches and elevated opening pressure (CH + EOP), but WOP. METHODS: Brain MRIs from 80 patients with IIH with papilledema (WP), 33 patients with CH + EOP, and 70 control patients with infrequent episodic migraine were assessed in a masked fashion for MRI features of intracranial hypertension. RESULTS: Reduced pituitary gland height was moderately sensitive for IIH WP (80%) but had low specificity (64%). Increased optic nerve sheath diameter was less sensitive (51%) and only moderately specific (83%). Flattening of the posterior globe was highly specific (97%) but had low sensitivity (57%). Transverse venous sinus stenosis was moderately sensitive for IIH WP (78%) but of undetermined specificity. A combination of any 3 of 4 MRI features was nearly 100% specific, while maintaining a sensitivity of 64%. Of patients with CH + EOP, 30% had 3 or more MRI features, suggesting IIH WOP in those patients. CONCLUSION: A combination of any 3 of 4 MRI features is highly specific for intracranial hypertension and suggests IIH WOP when present in patients with chronic headache and no papilledema.
Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Papiledema/diagnóstico por imagen , Seudotumor Cerebral/diagnóstico por imagen , Adulto , Femenino , Humanos , Masculino , Sensibilidad y EspecificidadRESUMEN
BACKGROUND: Although giant cell arteritis (GCA) is a well-known cause of transient and permanent vision loss, diplopia as a presenting symptom of this condition is uncommon. We compared symptoms and signs of patients presenting with diplopia from GCA to those from other causes. METHODS: This was a multicenter, retrospective study comparing the clinical characteristics of patients presenting with diplopia from GCA with age-matched controls. Demographic information, review of symptoms, ophthalmic examination, and laboratory data of biopsy-proven patients with GCA were compared with those of age-matched controls presenting with diplopia. RESULTS: A total of 27 patients presented with diplopia from GCA, 19 with constant diplopia, and 8 with transient diplopia. All patients with constant diplopia from GCA were matched with 67 control subjects who had diplopia from other etiologies. Patients with GCA were more likely to describe other accompanying visual symptoms (58% vs 25%, P = 0.008), a greater number of systemic GCA symptoms (3.5, GCA vs 0.6, controls, P < 0.001) such as headache (94% [17/18] vs 39% [23/67]; P < 0.001), jaw claudication (80% [12/15] vs 0% [0/36]; P < 0.001), and scalp tenderness (44% [7/16] vs 7% [3/43]; P < 0.001). Ocular ischemic lesions (26% vs 1%, P < 0.001) were also common in patients with diplopia from GCA. Inflammatory markers were elevated significantly in patients with GCA vs controls (erythrocyte sedimentation rate: 91% [10/11] vs 12% [3/25], P < 0.001; C-reactive protein: 89% [8/9] vs 11% [2/19], P < 0.001). CONCLUSIONS: GCA is a rare but serious cause of diplopia among older adults and must be differentiated from other more common benign etiologies. Our study suggests that most patients with diplopia from GCA have concerning systemic symptoms and/or elevated inflammatory markers that should trigger further work-up. Moreover, careful ophthalmoscopic examination should be performed to look for presence of ocular ischemic lesions in older patients presenting with acute diplopia.
Asunto(s)
Diplopía/etiología , Arteritis de Células Gigantes/complicaciones , Arterias Temporales/patología , Visión Binocular/fisiología , Agudeza Visual/fisiología , Anciano , Biopsia , Sedimentación Sanguínea , Proteína C-Reactiva/metabolismo , Diplopía/diagnóstico , Diplopía/fisiopatología , Femenino , Estudios de Seguimiento , Arteritis de Células Gigantes/diagnóstico , Arteritis de Células Gigantes/metabolismo , Humanos , Masculino , Pronóstico , Estudios RetrospectivosRESUMEN
PURPOSE: Recent publications have reported the adverse effects of prostaglandin analogues on the periocular tissues. These medications may cause periorbital lipodystrophy, enophthalmos, and deepening of the superior sulcus deformity. While these effects may have adverse consequences for some patients, the atrophy of the periorbital fat may have a useful role in diseases that lead to orbital and periorbital fat hypertrophy such as thyroid eye disease. In this pilot study, the authors investigated the effects of retrobulbar bimatoprost injection on the intraocular pressure and orbital fat in a rat animal model. METHODS: Three rats were sedated and intraocular pressure was measured. A 0.1 ml aliquot of bimatoprost was injected into the right orbit of all rats. In the left orbit, 0.1 ml of phosphate-buffered saline was injected as a control. Three weeks later, all rats were sedated and intraocular pressure was measured before euthanizing. Routine histologic staining was performed and thin sections through the intraconal orbital fat were obtained. Density of intraconal adipocytes was measured and adipocyte heterogeneity was determined using a computer image analysis algorithm. RESULTS: The specimens injected with bimatoprost demonstrated atrophy of orbital fat with significantly increased adipocyte density (p = 0.009) and heterogeneity (p = 0.008) when compared with control. Intraocular pressure was not significantly decreased at 3 weeks after injection of retrobulbar bimatoprost. CONCLUSIONS: In this pilot study, orbital injection of bimatoprost demonstrated atrophy of intraconal adipocytes when compared with control orbits injected with saline. The orbits injected with bimatoprost were noted to have smaller, more heterogeneous adipocytes that were densely packed in the intraconal space. The study limitations include the small sample size, which limited the ability for us to make conclusions about the effect on intraocular pressure. Nevertheless, the findings presented suggest that retrobulbar bimatoprost may present a nonsurgical alternative to induce atrophy of the orbital fat without inducing inflammation or hypotony.
Asunto(s)
Tejido Adiposo/efectos de los fármacos , Antihipertensivos/farmacología , Bimatoprost/farmacología , Órbita/efectos de los fármacos , Adipocitos/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Presión Intraocular/efectos de los fármacos , Masculino , Proyectos Piloto , Ratas , Ratas Endogámicas LewRESUMEN
Neoplastic infiltration of the extraocular muscle (EOM) is a rare condition which can pose a diagnostic dilemma due to its rarity and overlapping ultrasonographic features with orbital myositis. The ultrasonographic features of neoplastic enlargement of EOM have not been systematically studied and previously have been described in only a few case reports. Orbital ultrasonography, in conjunction with the pattern of ocular misalignment, was assessed for its potential role in identifying patients with neoplastic EOM enlargement. Retrospective chart review of patients with neoplasm and myositis. The clinical features of 8 patients with neoplastic infiltration of the EOM were compared to 15 patients with myositis. In the neoplastic group the width of the EOM was (10.5 mm) almost twice the normal width of the muscle with myositis (p < 0.001). All the muscles in the neoplastic category were low to medium reflective. Paretic deviation was seen in 4/8(50%), purely restrictive in 2/8 (25%) and combined pattern in 2/8 (25%) were noted. In the myositis group the average EOM enlargement was 5.8 mm and all muscles showed low reflectivity. Although ultrasonographic features overlapped between the 2 groups paretic deviations were more common in the neoplastic group versus the myositis group (50% versus 7%). Neoplastic muscle enlargement tends to be larger with paretic deviations of ocular motility seen clinically. These findings in a patient with EOM enlargement should raise the suspicion of neoplasm as the etiology and further work up should be considered.