Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.132
Filtrar
Más filtros

Intervalo de año de publicación
1.
BMC Bioinformatics ; 25(1): 156, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38641811

RESUMEN

BACKGROUND: Accurately identifying drug-target interaction (DTI), affinity (DTA), and binding sites (DTS) is crucial for drug screening, repositioning, and design, as well as for understanding the functions of target. Although there are a few online platforms based on deep learning for drug-target interaction, affinity, and binding sites identification, there is currently no integrated online platforms for all three aspects. RESULTS: Our solution, the novel integrated online platform Drug-Online, has been developed to facilitate drug screening, target identification, and understanding the functions of target in a progressive manner of "interaction-affinity-binding sites". Drug-Online platform consists of three parts: the first part uses the drug-target interaction identification method MGraphDTA, based on graph neural networks (GNN) and convolutional neural networks (CNN), to identify whether there is a drug-target interaction. If an interaction is identified, the second part employs the drug-target affinity identification method MMDTA, also based on GNN and CNN, to calculate the strength of drug-target interaction, i.e., affinity. Finally, the third part identifies drug-target binding sites, i.e., pockets. The method pt-lm-gnn used in this part is also based on GNN. CONCLUSIONS: Drug-Online is a reliable online platform that integrates drug-target interaction, affinity, and binding sites identification. It is freely available via the Internet at http://39.106.7.26:8000/Drug-Online/ .


Asunto(s)
Aprendizaje Profundo , Interacciones Farmacológicas , Sitios de Unión , Sistemas de Liberación de Medicamentos , Evaluación Preclínica de Medicamentos
2.
BMC Genomics ; 25(1): 406, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724906

RESUMEN

Most proteins exert their functions by interacting with other proteins, making the identification of protein-protein interactions (PPI) crucial for understanding biological activities, pathological mechanisms, and clinical therapies. Developing effective and reliable computational methods for predicting PPI can significantly reduce the time-consuming and labor-intensive associated traditional biological experiments. However, accurately identifying the specific categories of protein-protein interactions and improving the prediction accuracy of the computational methods remain dual challenges. To tackle these challenges, we proposed a novel graph neural network method called GNNGL-PPI for multi-category prediction of PPI based on global graphs and local subgraphs. GNNGL-PPI consisted of two main components: using Graph Isomorphism Network (GIN) to extract global graph features from PPI network graph, and employing GIN As Kernel (GIN-AK) to extract local subgraph features from the subgraphs of protein vertices. Additionally, considering the imbalanced distribution of samples in each category within the benchmark datasets, we introduced an Asymmetric Loss (ASL) function to further enhance the predictive performance of the method. Through evaluations on six benchmark test sets formed by three different dataset partitioning algorithms (Random, BFS, DFS), GNNGL-PPI outperformed the state-of-the-art multi-category prediction methods of PPI, as measured by the comprehensive performance evaluation metric F1-measure. Furthermore, interpretability analysis confirmed the effectiveness of GNNGL-PPI as a reliable multi-category prediction method for predicting protein-protein interactions.


Asunto(s)
Algoritmos , Biología Computacional , Redes Neurales de la Computación , Mapeo de Interacción de Proteínas , Mapeo de Interacción de Proteínas/métodos , Biología Computacional/métodos , Mapas de Interacción de Proteínas , Humanos , Proteínas/metabolismo
3.
Biochem Biophys Res Commun ; 715: 149999, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38678787

RESUMEN

Non-alcoholic fatty liver disease (NAFLD), a chronic liver condition and metabolic disorder, has emerged as a significant health issue worldwide. D-mannose, a natural monosaccharide widely existing in plants and animals, has demonstrated metabolic regulatory properties. However, the effect and mechanism by which D-mannose may counteract NAFLD have not been studied. In this study, network pharmacology followed by molecular docking analysis was utilized to identify potential targets of mannose against NAFLD, and the leptin receptor-deficient, genetically obese db/db mice was employed as an animal model of NAFLD to validate the regulation of D-mannose on core targets. As a result, 67 targets of mannose are predicted associated with NAFLD, which are surprisingly centered on the mechanistic target of rapamycin (mTOR). Further analyses suggest that mTOR signaling is functionally enriched in potential targets of mannose treating NAFLD, and that mannose putatively binds to mTOR as a core mechanism. Expectedly, repeated oral gavage of supraphysiological D-mannose ameliorates liver steatosis of db/db mice, which is based on suppression of hepatic mTOR signaling. Moreover, daily D-mannose administration reduced hepatic expression of lipogenic regulatory genes in counteracting NAFLD. Together, these findings reveal D-mannose as an effective and potential NAFLD therapeutic through mTOR suppression, which holds translational promise.


Asunto(s)
Manosa , Farmacología en Red , Enfermedad del Hígado Graso no Alcohólico , Serina-Treonina Quinasas TOR , Animales , Ratones , Hígado/metabolismo , Hígado/efectos de los fármacos , Manosa/farmacología , Manosa/metabolismo , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
4.
Small ; 20(19): e2306790, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38126896

RESUMEN

Owing to the extremely limited structural deformation caused by the introduction of guest ions that their rigid structure can sustain, crystalline materials typically fail owing to structural collapse when utilized as electrode materials. Amorphous materials, conversely, are more resistant to volume expansion during dynamic ion transport and can introduce a lot of defects as active sites. Here, The amorphous polyaniline-coated/intercalated V2O5·nH2O (PVOH) nanowires are prepared by in situ chemical oxidation combined with self-assembly strategy, which exhibited impressive electrochemical properties because of its short-range ordered crystal structure, oxygen vacancy/defect-rich, improved electronic channels, and ionic channels. Through in situ techniques, the energy storage mechanism of its Zn2+/H+ co-storage is investigated and elucidated. Additionally, this work provides new insights and perspectives for the investigation and application of amorphous cathodes for aqueous zinc ion batteries.

5.
Small ; 20(11): e2306504, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37926769

RESUMEN

Due to their unique advantages, single atoms and clusters of transition metals are expected to achieve a breakthrough in catalytic activity, but large-scale production of active materials remains a challenge. In this work, a simple solvent-free one-step annealing method is developed and applied to construct diatomic and cluster active sites in activated carbon by utilizing the strong anchoring ability of phenanthroline to metal ions, which can be scaled for mass productions. Benefiting from the synergy between the different metals, the obtained sub-nano-bimetallic atom-cluster catalysts (FeNiAC -NC) exhibit high oxygen reduction reactions (ORR) activity (E1/2 = 0.936 V vs. RHE) and a small ORR/oxygen evolution reaction (OER) potential gap of only 0.594 V. An in-house pouch Zn-air battery is assembled using an FeNiAC -NC catalyst, which demonstrates a stability of 1000 h, outperforming previous reports. The existence of clusters and their effects on catalytic activity is analyzed by density functional theory calculations to reveal the chemistry of nano-bimetallic atom-cluster catalysts.

6.
Small ; 20(22): e2308371, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38150631

RESUMEN

By increasing the content of Ni3+, the catalytic activity of nickel-based catalysts for the oxygen evolution reaction (OER), which is still problematic with current synthesis routes, can be increased. Herein, a Ni3+-rich of Ni3S4/FeS on FeNi Foam (Ni3S4/FeS@FNF) via anodic electrodeposition to direct obtain high valence metal ions for OER catalyst is presented. XPS showed that the introduction of Fe not only further increased the Ni3+ concentration in Ni3S4/FeS to 95.02%, but also inhibited the dissolution of NiOOH by up to seven times. Furthermore, the OER kinetics is enhanced by the combination of the inner Ni3S4/FeS heterostructures and the electrochemically induced surface layers of oxides/hydroxides. Ni3S4/FeS@FNF shows the most excellent OER activity with a low Tafel slope of 11.2 mV dec-1 and overpotentials of 196 and 445 mV at current densities of 10 and 1400 mA cm-2, respectively. Furthermore, the Ni3S4/FeS@FNF catalyst can be operated stably at 1500 mA cm-2 for 200 h without significant performance degradation. In conclusion, this work has significantly increased the high activity Ni3+ content in nickel-based OER electrocatalysts through an anodic electrodeposition strategy. The preparation process is time-saving and mature, which is expected to be applied in large-scale industrialization.

7.
Bioinformatics ; 39(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36975610

RESUMEN

MOTIVATION: We have entered the multi-omics era and can measure cells from different aspects. Hence, we can get a more comprehensive view by integrating or matching data from different spaces corresponding to the same object. However, it is particularly challenging in the single-cell multi-omics scenario because such data are very sparse with extremely high dimensions. Though some techniques can be used to measure scATAC-seq and scRNA-seq simultaneously, the data are usually highly noisy due to the limitations of the experimental environment. RESULTS: To promote single-cell multi-omics research, we overcome the above challenges, proposing a novel framework, contrastive cycle adversarial autoencoders, which can align and integrate single-cell RNA-seq data and single-cell ATAC-seq data. Con-AAE can efficiently map the above data with high sparsity and noise from different spaces to a coordinated subspace, where alignment and integration tasks can be easier. We demonstrate its advantages on several datasets. AVAILABILITY AND IMPLEMENTATION: Zenodo link: https://zenodo.org/badge/latestdoi/368779433. github: https://github.com/kakarotcq/Con-AAE.


Asunto(s)
Multiómica , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Secuenciación del Exoma , Análisis de Secuencia de ARN
8.
Hepatology ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38015993

RESUMEN

BACKGROUND AND AIMS: Pseudouridine is a prevalent RNA modification and is highly present in the serum and urine of patients with HCC. However, the role of pseudouridylation and its modifiers in HCC remains unknown. We investigated the function and underlying mechanism of pseudouridine synthase 1 (PUS1) in HCC. APPROACH AND RESULTS: By analyzing the TCGA data set, PUS1 was found to be significantly upregulated in human HCC specimens and positively correlated with tumor grade and poor prognosis of HCC. Knockdown of PUS1 inhibited cell proliferation and the growth of tumors in a subcutaneous xenograft mouse model. Accordingly, increased cell proliferation and tumor growth were observed in PUS1-overexpressing cells. Furthermore, overexpression of PUS1 significantly accelerates tumor formation in a mouse HCC model established by hydrodynamic tail vein injection, while knockout of PUS1 decreases it. Additionally, PUS1 catalytic activity is required for HCC tumorigenesis. Mechanistically, we profiled the mRNA targets of PUS1 by utilizing surveying targets by apolipoprotein B mRNA-editing enzyme 1 (APOBEC1)-mediated profiling and found that PUS1 incorporated pseudouridine into mRNAs of a set of oncogenes, thereby endowing them with greater translation capacity. CONCLUSIONS: Our study highlights the critical role of PUS1 and pseudouridylation in HCC development, and provides new insight that PUS1 enhances the protein levels of a set of oncogenes, including insulin receptor substrate 1 (IRS1) and c-MYC, by means of pseudouridylation-mediated mRNA translation.

9.
BMC Public Health ; 24(1): 322, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287333

RESUMEN

BACKGROUND: Self-monitoring is crucial for behavioral weight loss. However, few studies have examined the role of self-monitoring using mixed methods, which may hinder our understanding of its impact. METHODS: This study examined self-monitoring data from 61 Chinese adults who participated in a 5-week online group intervention for weight loss. Participants reported their baseline Body Mass Index (BMI), weight loss motivation, and engaged in both daily quantitative self-monitoring (e.g., caloric intake, mood, sedentary behavior, etc.) and qualitative self-monitoring (e.g., daily log that summarizes the progress of weight loss). The timeliness of participants' daily self-monitoring data filling was assessed using a scoring rule. One-way repeated measurement ANOVA was employed to analyze the dynamics of each self-monitoring indicator. Correlation and regression analyses were used to reveal the relationship between baseline data, self-monitoring indicators, and weight change. Content analysis was utilized to analyze participants' qualitative self-monitoring data. Participants were categorized into three groups based on their weight loss outcomes, and a chi-square test was used to compare the frequency distribution between these groups. RESULTS: After the intervention, participants achieved an average weight loss of 2.52 kg (SD = 1.36) and 3.99% (SD = 1.96%) of their initial weight. Daily caloric intake, weight loss satisfaction, frequency of daily log, and the speed of weight loss showed a downward trend, but daily sedentary time gradually increased. Moreover, regression analysis showed that baseline BMI, weight loss motivation, and timeliness of daily filling predicted final weight loss. Qualitative self-monitoring data analysis revealed four categories and nineteen subcategories. A significant difference in the frequency of qualitative data was observed, with the excellent group reporting a greater number of daily logs than expected in all categories and most subcategories, and the moderate and poor groups reporting less than expected in all categories and most subcategories. CONCLUSION: The self-monitoring data in short-term online group intervention exhibited fluctuations. Participants with higher baseline BMI, higher levels of weight loss motivation, and timely self-monitoring achieved more weight loss. Participants who achieved greater weight loss reported a higher quantity of qualitative self-monitoring data. Practitioners should focus on enhancing dieters' weight loss motivation and promote adherence to self-monitoring practices.


Asunto(s)
Conductas Relacionadas con la Salud , Pérdida de Peso , Adulto , Humanos , Índice de Masa Corporal , Terapia Conductista/métodos , Ingestión de Energía
10.
Ecotoxicol Environ Saf ; 276: 116301, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599159

RESUMEN

To study the heavy metal accumulation and its impact on insect exterior and chromosome morphology, and reveal the molecular mechanism of insects adapting to long-term heavy metal compound pollution habitats, this study, in the Diaojiang river basin, which has been polluted by heavy metals(HMs) for nearly a thousand years, two Eucriotettix oculatus populations was collected from mining and non-mining areas. It was found that the contents of 7 heavy metals (As, Cd, Pb, Zn, Cu, Sn, Sb) in E. oculatus of the mining area were higher than that in the non-mining 1-11 times. The analysis of morphology shows that the external morphology, the hind wing type and the chromosomal morphology of E. oculatus are significant differences between the two populations. Based on the heavy metal accumulation,morphological change, and stable population density, it is inferred that the mining area population has been affected by heavy metals and has adapted to the environment of heavy metals pollution. Then, by analyzing the transcriptome of the two populations, it was found that the digestion, immunity, excretion, endocrine, nerve, circulation, reproductive and other systems and lysosomes, endoplasmic reticulum and other cell structure-related gene expression were suppressed. This shows that the functions of the above-mentioned related systems of E. oculatus are inhibited by heavy metal stress. However, it has also been found that through the significant up-regulation of genes related to the above system, such as ATP2B, pepsin A, ubiquitin, AQP1, ACOX, ATPeV0A, SEC61A, CANX, ALDH7A1, DLD, aceE, Hsp40, and catalase, etc., and the down-regulation of MAPK signalling pathway genes, can enhanced nutrient absorption, improve energy metabolism, repair damaged cells and degrade abnormal proteins, maintain the stability of cells and systems, and resist heavy metal damage so that E. oculatus can adapt to the environment of heavy metal pollution for a long time.


Asunto(s)
Saltamontes , Metales Pesados , Contaminantes Químicos del Agua , Animales , Metales Pesados/toxicidad , Contaminantes Químicos del Agua/toxicidad , Saltamontes/efectos de los fármacos , Saltamontes/anatomía & histología , Monitoreo del Ambiente/métodos , Minería , China , Adaptación Fisiológica/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Ríos/química
11.
J Stroke Cerebrovasc Dis ; 33(4): 107634, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342274

RESUMEN

BACKGROUND: Intracranial aneurysm (IA) is a common cerebrovascular disease and the leading cause of spontaneous subarachnoid hemorrhage. Recent evidence suggests that gut microbiota is involved in the pathophysiological process of IA through the gut-brain axis. However, the role of gut inflammation in the development of IA has yet to be clarified. Our study aimed to investigate whether fecal calprotectin (FC) level, a sensitive marker of gut inflammation, is correlated with the development of IA and the prognosis of patients with ruptured IA (RIA). METHODS: 182 patients were collected from January 2022 to January 2023, including 151 patients with IA and 31 healthy individuals. 151 IA patients included 109 patients with unruptured IA (UIA) and 42 patients with RIA. The FC level was measured by enzyme-linked immunosorbent assay. Other detailed information was obtained from an electronic medical record system. RESULTS: Compared with healthy controls, the FC levels in patients with IA were increased (P < 0.0001). Patients with RIA had significantly higher FC levels than UIA patients (P < 0.0001). Moreover, the FC level in RIA patients with unfavorable outcomes was higher than in RIA patients with favorable outcomes. Logistic regression analysis showed that the elevated FC level was an independent risk factor for a 3-month poor prognosis in patients with RIA (OR=1.005, 95% CI = 1.000 -1.009, P = 0.044). CONCLUSION: Fecal calprotectin level is significantly elevated in IA patients, especially those with RIA. FC is a novel biomarker of 3-month poor outcomes in RIA patients.


Asunto(s)
Aneurisma Roto , Aneurisma Intracraneal , Hemorragia Subaracnoidea , Humanos , Aneurisma Intracraneal/complicaciones , Aneurisma Intracraneal/diagnóstico , Hemorragia Subaracnoidea/etiología , Aneurisma Roto/etiología , Biomarcadores , Inflamación/complicaciones
12.
Int Heart J ; 65(2): 173-179, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556328

RESUMEN

Keshan disease (KD) is a type of endemic cardiomyopathy with an unknown cause. It is primarily found in areas in China with low selenium levels, from northeast to southwest. The nutritional biogeochemical etiology hypothesis suggests that selenium deficiency is a major factor in KD development. Selenium is important in removing free radicals and protecting cells and tissues from peroxide-induced damage. Thus, low environmental selenium may affect the selenium level within the human body, and selenium level differences are commonly observed between healthy people in KD and nonKD areas. From the 1970s to the 1990s, China successfully reduced KD incidence in endemic KD areas through a selenium supplementation program. After years of implementing prevention and control measures, the selenium level of the population in the KD areas has gradually increased, and the prevalence of KD in China has remained low and stable in recent years. Currently, the pathogenesis of KD remains vague, and the effect of selenium supplementation on the prognosis of KD still needs further study. This paper comprehensively reviews selenium deficiency and its connection to KD. Thus, this study aims to offer novel ideas and directions to effectively prevent and treat KD in light of the current situation.


Asunto(s)
Cardiomiopatías , Infecciones por Enterovirus , Desnutrición , Selenio , Humanos , Selenio/análisis , Cardiomiopatías/epidemiología , Cardiomiopatías/etiología , Cardiomiopatías/prevención & control , Infecciones por Enterovirus/complicaciones , Infecciones por Enterovirus/epidemiología , Infecciones por Enterovirus/prevención & control , China/epidemiología
13.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(1): 11-18, 2024 Feb.
Artículo en Zh | MEDLINE | ID: mdl-38433625

RESUMEN

Objective To investigate the effect of staphylococcal nuclease and tudor domain containing 1(SND1) on the biological function of osteosarcoma cells and decipher the mechanism of SND1 in regulating ferroptosis in osteosarcoma cells via SLC7A11. Methods Human osteoblasts hFOB1.19 and osteosarcoma cell lines Saos-2,U2OS,HOS,and 143B were cultured,in which the expression level of SND1 was determined.Small interfering RNA was employed to knock down the expression of SND1(si-SND1) in the osteosarcoma cell line HOS and 143B.The CCK8 assay kit,colony formation assay,and Transwell assay were employed to examine the effect of SND1 expression on the biological function of osteosarcoma cells.Furthermore,we altered the expression of SND1 and SLC7A11 in osteosarcoma cells to investigate the effect of SND1 on osteosarcoma ferroptosis via SLC7A11. Results The mRNA and protein levels of SND1 in Saos-2,U2OS,HOS,and 143B cells were higher than those in hFOB1.19 cells(all P<0.01).Compared with the control group,transfection with si-SND1 down-regulated the expression level of SND1 in HOS and 143B cells(all P<0.01),decreased the viability of HOS and 143B cells,reduced the number of colony formation,and inhibited cell invasion and migration(all P<0.001).The ferroptosis inducer Erastin promoted the apoptosis of HOS and 143B cells,while the ferroptosis inhibitor Ferrostatin-1 improved the viability of HOS and 143B cells(all P<0.001).After SND-1 knockdown,Erastin reduced the viability of HOS and 143B cells,while Ferrostatin-1 restored the cell viability(all P<0.001).After treatment with Erastin in the si-SND1 group,the levels of iron and malondialdehyde were elevated,and the level of glutathione was lowered(all P<0.001).The results of in vivo experiments showed that SND1 knockdown inhibited the mass of the transplanted tumor in 143B tumor-bearing nude mice(P<0.001).Knocking down the expression of SND1 resulted in down-regulated SLC7A11 expression(all P<0.001) and increased ferroptosis in HOS and 143B cells(P<0.001,P=0.020). Conclusions SND1 presents up-regulated expression in osteosarcoma cells.It may inhibit ferroptosis by up-regulating the expression of SLC7A11,thereby improving the viability of osteosarcoma cells.


Asunto(s)
Neoplasias Óseas , Ciclohexilaminas , Eliptocitosis Hereditaria , Ferroptosis , Osteosarcoma , Fenilendiaminas , Animales , Humanos , Ratones , Sistema de Transporte de Aminoácidos y+ , Endonucleasas , Ratones Desnudos , Nucleasa Microcócica , Dominio Tudor
14.
Zhongguo Zhong Yao Za Zhi ; 49(1): 62-69, 2024 Jan.
Artículo en Zh | MEDLINE | ID: mdl-38403339

RESUMEN

The volatile oils are the effective components of Agastache rugosa, which are stored in the glandular scale. The leaves of pulegone-type A. rugosa were used as materials to observe the leaf morphology of A. rugosa at different growth stages, and the components of volatile oils in gland scales were detected by GC-MS. At the same time, qRT-PCR was used to determine the relative expression of key enzyme genes in the biosynthesis pathway of monoterpenes in volatile oils. The results showed that the density of A. rugosa glandular scale decreased first and then tended to be stable. With the growth of leaves, the relative content of pulegone decreased from 79.26% to 3.94%(89.97%-41.44%), while that of isomenthone increased from 2.43% to 77.87%(0.74%-51.01%), and the changes of other components were relatively insignificant. The correlation analysis between the relative content of monoterpenes and the relative expression levels of their key enzyme genes showed that there was a significant correlation between the relative content of menthone and isomenthone and the relative expression levels of pulegone reductase(PR)(r>0.6, P<0.01). To sum up, this study revealed the accumulation rules of the main components of the contents of the glandular scale of A. rugosa and the expression rules of the key enzyme genes for biosynthesis, which provided a scientific basis and data support for determining the appropriate harvesting period and quality control of the medicinal herbs. This study also initially revealed the biosynthesis mechanism of the monoterpenes mainly composed of pulegone and isomenthone in A. rugosa, laying a foundation for further research on the molecular mechanism of synthesis and accumulation of monoterpenes in A. rugosa.


Asunto(s)
Agastache , Monoterpenos Ciclohexánicos , Aceites Volátiles , Aceites Volátiles/análisis , Agastache/metabolismo , Monoterpenos/metabolismo
15.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1064-1072, 2024 Feb.
Artículo en Zh | MEDLINE | ID: mdl-38621913

RESUMEN

This article explored the mechanism by which ginsenoside Re reduces hypoxia/reoxygenation(H/R) injury in H9c2 cells by regulating mitochondrial biogenesis through nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)/peroxisome prolife-rator-activated receptor gamma coactivator-1α(PGC-1α) pathway. In this study, H9c2 cells were cultured in hypoxia for 4 hours and then reoxygenated for 2 hours to construct a cardiomyocyte H/R injury model. After ginsenoside Re pre-administration intervention, cell activity, superoxide dismutase(SOD) activity, malondialdehyde(MDA) content, intracellular reactive oxygen species(Cyto-ROS), and intramitochondrial reactive oxygen species(Mito-ROS) levels were detected to evaluate the protective effect of ginsenoside Re on H/R injury of H9c2 cells by resisting oxidative stress. Secondly, fluorescent probes were used to detect changes in mitochondrial membrane potential(ΔΨ_m) and mitochondrial membrane permeability open pore(mPTP), and immunofluorescence was used to detect the expression level of TOM20 to study the protective effect of ginsenoside Re on mitochondria. Western blot was further used to detect the protein expression levels of caspase-3, cleaved caspase-3, Cyto C, Nrf2, HO-1, and PGC-1α to explore the specific mechanism by which ginsenoside Re protected mitochondria against oxidative stress and reduced H/R injury. Compared with the model group, ginse-noside Re effectively reduced the H/R injury oxidative stress response of H9c2 cells, increased SOD activity, reduced MDA content, and decreased Cyto-ROS and Mito-ROS levels in cells. Ginsenoside Re showed a good protective effect on mitochondria by increasing ΔΨ_m, reducing mPTP, and increasing TOM20 expression. Further studies showed that ginsenoside Re promoted the expression of Nrf2, HO-1, and PGC-1α proteins, and reduced the activation of the apoptosis-related regulatory factor caspase-3 to cleaved caspase-3 and the expression of Cyto C protein. In summary, ginsenoside Re can significantly reduce I/R injury in H9c2 cells. The specific mechanism is related to the promotion of mitochondrial biogenesis through the Nrf2/HO-1/PGC-1α pathway, thereby increasing the number of mitochondria, improving mitochondrial function, enhancing the ability of cells to resist oxidative stress, and alleviating cell apoptosis.


Asunto(s)
Ginsenósidos , Factor 2 Relacionado con NF-E2 , Biogénesis de Organelos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Caspasa 3/metabolismo , Transducción de Señal , Estrés Oxidativo , Hipoxia , Miocitos Cardíacos , Apoptosis , Superóxido Dismutasa/metabolismo
16.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 394-402, 2024 Apr 15.
Artículo en Zh | MEDLINE | ID: mdl-38660904

RESUMEN

OBJECTIVES: To compare the repair effects of different doses of human umbilical cord mesenchymal stem cells (hUC-MSCs) on white matter injury (WMI) in neonatal rats. METHODS: Two-day-old Sprague-Dawley neonatal rats were randomly divided into five groups: sham operation group, WMI group, and hUC-MSCs groups (low dose, medium dose, and high dose), with 24 rats in each group. Twenty-four hours after successful establishment of the neonatal rat white matter injury model, the WMI group was injected with sterile PBS via the lateral ventricle, while the hUC-MSCs groups received injections of hUC-MSCs at different doses. At 14 and 21 days post-modeling, hematoxylin and eosin staining was used to observe pathological changes in the tissues around the lateral ventricles. Real-time quantitative polymerase chain reaction was used to detect the quantitative expression of myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) mRNA in the brain tissue. Immunohistochemistry was employed to observe the expression levels of GFAP and neuron-specific nuclear protein (NeuN) in the tissues around the lateral ventricles. TUNEL staining was used to observe cell apoptosis in the tissues around the lateral ventricles. At 21 days post-modeling, the Morris water maze test was used to observe the spatial learning and memory capabilities of the neonatal rats. RESULTS: At 14 and 21 days post-modeling, numerous cells with nuclear shrinkage and rupture, as well as disordered arrangement of nerve fibers, were observed in the tissues around the lateral ventricles of the WMI group and the low dose group. Compared with the WMI group, the medium and high dose groups showed alleviated pathological changes; the arrangement of nerve fibers in the medium dose group was relatively more orderly compared with the high dose group. Compared with the WMI group, there was no significant difference in the expression levels of MBP and GFAP mRNA in the low dose group (P>0.05), while the expression levels of MBP mRNA increased and GFAP mRNA decreased in the medium and high dose groups. The expression level of MBP mRNA in the medium dose group was higher than that in the high dose group, and the expression level of GFAP mRNA in the medium dose group was lower than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the protein expression of GFAP and NeuN in the low dose group (P>0.05), while the expression of NeuN protein increased and GFAP protein decreased in the medium and high dose groups. The expression of NeuN protein in the medium dose group was higher than that in the high dose group, and the expression of GFAP protein in the medium dose group was lower than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the number of apoptotic cells in the low dose group (P>0.05), while the number of apoptotic cells in the medium and high dose groups was less than that in the WMI group, and the number of apoptotic cells in the medium dose group was less than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the escape latency time in the low dose group (P>0.05); starting from the third day of the latency period, the escape latency time in the medium dose group was less than that in the WMI group (P<0.05). The medium and high dose groups crossed the platform more times than the WMI group (P<0.05). CONCLUSIONS: Low dose hUC-MSCs may yield unsatisfactory repair effects on WMI in neonatal rats, while medium and high doses of hUC-MSCs have significant repair effects, with the medium dose demonstrating superior efficacy.


Asunto(s)
Animales Recién Nacidos , Trasplante de Células Madre Mesenquimatosas , Ratas Sprague-Dawley , Cordón Umbilical , Sustancia Blanca , Animales , Ratas , Humanos , Cordón Umbilical/citología , Sustancia Blanca/patología , Sustancia Blanca/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/análisis , Células Madre Mesenquimatosas , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/análisis , Proteína Básica de Mielina/metabolismo , Masculino , Apoptosis , Femenino , ARN Mensajero/análisis , ARN Mensajero/metabolismo
17.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(3): 321-324, 2024 Mar 15.
Artículo en Zh | MEDLINE | ID: mdl-38557387

RESUMEN

The male patient, one day old, was admitted to the hospital due to hypoglycemia accompanied by apnea appearing six hours after birth. The patient had transient hypoglycemia early after birth, and acute heart failure suddenly occurred on the eighth day after birth. Laboratory tests showed significantly reduced levels of adrenocorticotropic hormone and cortisol, and pituitary magnetic resonance imaging was normal. Genetic testing results showed that the patient had probably pathogenic compound heterozygous mutations of the TBX19 gene (c.917-2A>G+c.608C>T), inherited respectively from the parents. The patient was conclusively diagnosed with congenital isolated adrenocorticotropic hormone deficiency caused by mutation of the TBX19 gene. Upon initiating hydrocortisone replacement therapy, cardiac function rapidly returned to normal. After being discharged, the patient continued with the hydrocortisone replacement therapy. By the 18-month follow-up, the patient was growing and developing well. In neonates, unexplained acute heart failure requires caution for possible endocrine hereditary metabolic diseases, and timely cortisol testing and genetic testing should be conducted.


Asunto(s)
Insuficiencia Suprarrenal , Insuficiencia Cardíaca , Hipoglucemia , Recién Nacido , Humanos , Masculino , Hidrocortisona/uso terapéutico , Hipoglucemia/etiología , Insuficiencia Suprarrenal/congénito , Insuficiencia Suprarrenal/diagnóstico , Insuficiencia Suprarrenal/genética , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/genética , Hormona Adrenocorticotrópica
18.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(5): 450-455, 2024 May 15.
Artículo en Zh | MEDLINE | ID: mdl-38802903

RESUMEN

OBJECTIVES: To investigate the incidence rate, clinical characteristics, and prognosis of neonatal stroke in Shenzhen, China. METHODS: Led by Shenzhen Children's Hospital, the Shenzhen Neonatal Data Collaboration Network organized 21 institutions to collect 36 cases of neonatal stroke from January 2020 to December 2022. The incidence, clinical characteristics, treatment, and prognosis of neonatal stroke in Shenzhen were analyzed. RESULTS: The incidence rate of neonatal stroke in 21 hospitals from 2020 to 2022 was 1/15 137, 1/6 060, and 1/7 704, respectively. Ischemic stroke accounted for 75% (27/36); boys accounted for 64% (23/36). Among the 36 neonates, 31 (86%) had disease onset within 3 days after birth, and 19 (53%) had convulsion as the initial presentation. Cerebral MRI showed that 22 neonates (61%) had left cerebral infarction and 13 (36%) had basal ganglia infarction. Magnetic resonance angiography was performed for 12 neonates, among whom 9 (75%) had involvement of the middle cerebral artery. Electroencephalography was performed for 29 neonates, with sharp waves in 21 neonates (72%) and seizures in 10 neonates (34%). Symptomatic/supportive treatment varied across different hospitals. Neonatal Behavioral Neurological Assessment was performed for 12 neonates (33%, 12/36), with a mean score of (32±4) points. The prognosis of 27 neonates was followed up to around 12 months of age, with 44% (12/27) of the neonates having a good prognosis. CONCLUSIONS: Ischemic stroke is the main type of neonatal stroke, often with convulsions as the initial presentation, involvement of the middle cerebral artery, sharp waves on electroencephalography, and a relatively low neurodevelopment score. Symptomatic/supportive treatment is the main treatment method, and some neonates tend to have a poor prognosis.


Asunto(s)
Accidente Cerebrovascular , Humanos , Masculino , Recién Nacido , Femenino , China/epidemiología , Accidente Cerebrovascular/epidemiología , Pronóstico , Electroencefalografía , Incidencia , Imagen por Resonancia Magnética
19.
J Neurochem ; 166(2): 215-232, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37284938

RESUMEN

Abnormal activation of the extrasynaptic N-methyl-d-aspartate receptor (NMDAR) contributes to the pathogenesis of Alzheimer's disease (AD). Ceftriaxone (Cef) can improve cognitive impairment by upregulating glutamate transporter-1 and promoting the glutamate-glutamine cycle in an AD mouse model. This study aimed to investigate the effects of Cef on synaptic plasticity and cognitive-behavioral impairment and to unravel the associated underlying mechanisms. We used an APPswe/PS1dE9 (APP/PS1) mouse model of AD in this study. Extrasynaptic components from hippocampal tissue homogenates were isolated using density gradient centrifugation. Western blot was performed to evaluate the expressions of extrasynaptic NMDAR and its downstream elements. Intracerebroventricular injections of adeno-associated virus (AAV)-striatal enriched tyrosine phosphatase 61 (STEP61 ) and AAV-STEP61 -shRNA were used to modulate the expressions of STEP61 and extrasynaptic NMDAR. Long-term potentiation (LTP) and Morris water maze (MWM) tests were performed to evaluate the synaptic plasticity and cognitive function. The results showed that the expressions of GluN2B and GluN2BTyr1472 in the extrasynaptic fraction were upregulated in AD mice. Cef treatment effectively prevented the upregulation of GluN2B and GluN2BTyr1472 expressions. It also prevented changes in the downstream signals of extrasynaptic NMDAR, including increased expressions of m-calpain and phosphorylated p38 MAPK in AD mice. Furthermore, STEP61 upregulation enhanced, whereas STEP61 downregulation reduced the Cef-induced inhibition of the expressions of GluN2B, GluN2BTyr1472 , and p38 MAPK in the AD mice. Similarly, STEP61 modulation affected Cef-induced improvements in induction of LTP and performance in MWM tests. In conclusion, Cef improved synaptic plasticity and cognitive behavioral impairment in APP/PS1 AD mice by inhibiting the overactivation of extrasynaptic NMDAR and STEP61 cleavage due to extrasynaptic NMDAR activation.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Ceftriaxona/farmacología , Ceftriaxona/uso terapéutico , Modelos Animales de Enfermedad , Plasticidad Neuronal/fisiología , Cognición , Ratones Transgénicos , Receptores de N-Metil-D-Aspartato/metabolismo
20.
Small ; 19(46): e2303847, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37464565

RESUMEN

Chalcohalides not only keep the balance between the nonlinear optical (NLO) coefficient and wide band gap, but also provide a promising solution to achieve sufficient birefringence for phase-matching ability in NLO crystals. In this study, a novel chalcohalide, Cs4 Zn5 P6 S18 I2 (1) is successfully synthesized, by incorporating the highly electropositive Cs and the large electronegative I element into the zinc thiophosphate. Its 3D open framework features an edge-shared by distorted [ZnS4 ], ethanol-like [P2 S6 ], and unusual [ZnS2 I2 ] polyhedrons, which is inconsistent with the soft-hard-acids-bases theory. Remarkably, compound 1 simultaneously exhibits the large second-harmonic generation (SHG, 1.1×AgGaS2 , @1.3 µm) and a wide band gap (3.75 eV) toward a high laser-induced damage threshold (16.7×AgGaS2 , @1.06 µm), satisfying the rigorous requirements for a prominent infrared NLO material with concurrent SHG intensity (≥0.5×AGS) and band gap (≥3.5 eV). Moreover, to the best of the knowledge, the experimental result shows that phase 1 has the largest birefringence (0.108, @546 nm) in chalcohalide and meets phase-matching behavior demand originating from the polarizable anisotropy of NLO-functional motifs. This finding may provide great opportunities for designing birefringent chalcohalides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA