Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Eur J Immunol ; 44(2): 440-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24214530

RESUMEN

Mucosal boosting of BCG-immunised individuals with a subunit tuberculosis (TB) vaccine would be highly desirable, considering that the lungs are the principal port of entry for Mycobacterium tuberculosis (MTB) and the site of the primary infection and reactivation. However, the main roadblock for subunit TB vaccine development is the lack of suitable adjuvants that could induce robust local and systemic immune responses. Here, we describe a novel vaccine delivery system that was designed to mimic, in part, the MTB pathogen itself. The surface of yellow carnauba wax nanoparticles was coated with the highly immunogenic Ag85B Ag of MTB and they were directed to the alveolar epithelial surfaces by the incorporation of the heparin-binding hemagglutinin adhesion (HBHA) protein. Our results showed that the i.n. immunisation of BCG-primed BALB/c mice with nanoparticles adsorbed with Ag85B-HBHA (Nano-AH vaccine) induced robust humoral and cellular immune responses and IFN-γ production, and multifunctional CD4⁺ T cells expressing IFN-γ, IL-2 and TNF-α. Mice challenged with H37Rv MTB had a significantly reduced bacterial load in their lungs when compared with controls immunised with BCG alone. We therefore conclude that this immunisation approach is an effective means of boosting the BCG-induced anti-TB immunity.


Asunto(s)
Antígenos Bacterianos/inmunología , Mycobacterium tuberculosis/inmunología , Nanopartículas/administración & dosificación , Alveolos Pulmonares/inmunología , Mucosa Respiratoria/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/inmunología , Aciltransferasas/genética , Aciltransferasas/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/genética , Animales , Antígenos Bacterianos/genética , Vacuna BCG/inmunología , Carga Bacteriana/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Proliferación Celular , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Femenino , Interferón gamma/inmunología , Interleucina-2/inmunología , Lectinas/genética , Lectinas/inmunología , Ratones , Ratones Endogámicos BALB C , Alveolos Pulmonares/microbiología , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Mucosa Respiratoria/microbiología , Tuberculosis/microbiología , Vacunas contra la Tuberculosis/genética , Factor de Necrosis Tumoral alfa/inmunología , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología
2.
Plant Biotechnol J ; 12(7): 840-50, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24629003

RESUMEN

Progress with protein-based tuberculosis (TB) vaccines has been limited by poor availability of adjuvants suitable for human application. Here, we developed and tested a novel approach to molecular engineering of adjuvanticity that circumvents the need for exogenous adjuvants. Thus, we generated and expressed in transgenic tobacco plants the recombinant immune complexes (RICs) incorporating the early secreted Ag85B and the latency-associated Acr antigen of Mycobacterium tuberculosis, genetically fused as a single polypeptide to the heavy chain of a monoclonal antibody to Acr. The RICs were formed by virtue of the antibody binding to Acr from adjacent molecules, thus allowing self-polymerization of the complexes. TB-RICs were purified from the plant extracts and shown to be biologically active by demonstrating that they could bind to C1q component of the complement and also to the surface of antigen-presenting cells. Mice immunized with BCG and then boosted with two intranasal immunizations with TB-RICs developed antigen-specific serum IgG antibody responses with mean end-point titres of 1 : 8100 (Acr) and 1 : 24 300 (Ag85B) and their splenocytes responded to in vitro stimulation by producing interferon gamma. 25% of CD4+ proliferating cells simultaneously produced IFN-γ, IL-2 and TNF-α, a phenotype that has been linked with protective immune responses in TB. Importantly, mucosal boosting of BCG-immunized mice with TB-RICs led to a reduced M. tuberculosis infection in their lungs from log10 mean = 5.69 ± 0.1 to 5.04 ± 0.2, which was statistically significant. We therefore propose that the plant-expressed TB-RICs represent a novel molecular platform for developing self-adjuvanting mucosal vaccines.


Asunto(s)
Adyuvantes Inmunológicos/biosíntesis , Complejo Antígeno-Anticuerpo/metabolismo , Mycobacterium tuberculosis/inmunología , Nicotiana/genética , Vacunas contra la Tuberculosis/inmunología , Adyuvantes Inmunológicos/metabolismo , Administración Intranasal , Animales , Formación de Anticuerpos , Linfocitos T CD4-Positivos/metabolismo , Proliferación Celular , Clonación Molecular , Humanos , Interleucina-2/metabolismo , Ratones , Plantas Modificadas Genéticamente/metabolismo , Nicotiana/metabolismo , Vacunas contra la Tuberculosis/administración & dosificación , Factor de Necrosis Tumoral alfa/metabolismo
3.
Infect Immun ; 81(11): 4071-80, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23959722

RESUMEN

Needle-free, mucosal immunization is a highly desirable strategy for vaccination against many pathogens, especially those entering through the respiratory mucosa, such as Mycobacterium tuberculosis. Unfortunately, mucosal vaccination against tuberculosis (TB) is impeded by a lack of suitable adjuvants and/or delivery platforms that could induce a protective immune response in humans. Here, we report on a novel biotechnological approach for mucosal vaccination against TB that overcomes some of the current limitations. This is achieved by coating protective TB antigens onto the surface of inert bacterial spores, which are then delivered to the respiratory tract. Our data showed that mice immunized nasally with coated spores developed humoral and cellular immune responses and multifunctional T cells and, most importantly, presented significantly reduced bacterial loads in their lungs and spleens following pathogenic challenge. We conclude that this new vaccine delivery platform merits further development as a mucosal vaccine for TB and possibly also other respiratory pathogens.


Asunto(s)
Antígenos Bacterianos/inmunología , Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/prevención & control , Vacunación/métodos , Administración Intranasal , Administración a través de la Mucosa , Animales , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/administración & dosificación , Carga Bacteriana , Técnicas de Visualización de Superficie Celular , Modelos Animales de Enfermedad , Portadores de Fármacos/administración & dosificación , Femenino , Pulmón/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Bazo/microbiología , Esporas Bacterianas/inmunología , Linfocitos T/inmunología , Tuberculosis/inmunología , Vacunas contra la Tuberculosis/administración & dosificación
4.
Vaccines (Basel) ; 11(10)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37897006

RESUMEN

Intravenously (IV) delivered BCG provides superior tuberculosis (TB) protection compared with the intradermal (ID) route in non-human primates (NHPs). We examined how γδ T cell responses changed in vivo after IV BCG vaccination of NHPs, and whether these correlated with protection against aerosol M. tuberculosis challenge. In the circulation, Vδ2 T cell populations expanded after IV BCG vaccination, from a median of 1.5% (range: 0.8-2.3) of the CD3+ population at baseline, to 5.3% (range: 1.4-29.5) 4 weeks after M. tb, and were associated with TB protection. This protection was related to effector and central memory profiles; homing markers; and production of IFN-γ, TNF-α and granulysin. In comparison, Vδ2 cells did not expand after ID BCG, but underwent phenotypic and functional changes. When Vδ2 responses in bronchoalveolar lavage (BAL) samples were compared between routes, IV BCG vaccination resulted in highly functional mucosal Vδ2 cells, whereas ID BCG did not. We sought to explore whether an aerosol BCG boost following ID BCG vaccination could induce a γδ profile comparable to that induced with IV BCG. We found evidence that the aerosol BCG boost induced significant changes in the Vδ2 phenotype and function in cells isolated from the BAL. These results indicate that Vδ2 population frequency, activation and function are characteristic features of responses induced with IV BCG, and the translation of responses from the circulation to the site of infection could be a limiting factor in the response induced following ID BCG. An aerosol boost was able to localise activated Vδ2 populations at the mucosal surfaces of the lung. This vaccine strategy warrants further investigation to boost the waning human ID BCG response.

5.
Front Immunol ; 14: 1246826, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881438

RESUMEN

Tuberculosis remains a major health threat globally and a more effective vaccine than the current Bacillus Calmette Guerin (BCG) is required, either to replace or boost it. The Spore-FP1 mucosal vaccine candidate is based on the fusion protein of Ag85B-Acr-HBHA/heparin-binding domain, adsorbed on the surface of inactivated Bacillus subtilis spores. The candidate conferred significant protection against Mycobacterium. tuberculosis challenge in naïve guinea pigs and markedly improved protection in the lungs and spleens of animals primed with BCG. We then immunized rhesus macaques with BCG intradermally, and subsequently boosted with one intradermal and one aerosol dose of Spore-FP1, prior to challenge with low dose aerosolized M. tuberculosis Erdman strain. Following vaccination, animals did not show any adverse reactions and displayed higher antigen specific cellular and antibody immune responses compared to BCG alone but this did not translate into significant improvement in disease pathology or bacterial burden in the organs.


Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Vacunas contra la Tuberculosis , Tuberculosis , Cobayas , Animales , Vacuna BCG , Macaca mulatta , Antígenos Bacterianos , Tuberculosis/prevención & control , Esporas
6.
Pharmaceutics ; 14(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36559163

RESUMEN

Innovative cross-over study designs were explored in non-human primate (NHP) studies to determine the value of this approach for the evaluation of drug efficacy against tuberculosis (TB). Firstly, the pharmacokinetics (PK) of each of the drugs Isoniazid (H), Rifampicin (R), Pyrazinamide (Z) and Ethambutol (E), that are standardly used for the treatment of tuberculosis, was established in the blood of macaques after oral dosing as a monotherapy or in combination. Two studies were conducted to evaluate the pharmacokinetics and pharmacodynamics of different drug combinations using cross-over designs. The first employed a balanced, three-period Pigeon design with an extra period; this ensured that treatment by period interactions and carry-over could be detected comparing the treatments HR, HZ and HRZ using H37Rv as the challenge strain of Mycobacterium tuberculosis (M. tb). Although the design accounted for considerable variability between animals, the three regimens evaluated could not be distinguished using any of the alternative endpoints assessed. However, the degree of pathology achieved using H37Rv in the model during this study was less than expected. Based on these findings, a second experiment using a classical AB/BA design comparing HE with HRZ was conducted using the M. tb Erdman strain. More extensive pathology was observed, and differences in computerized tomography (CT) scores and bacteriology counts in the lungs were detected, although due to the small group sizes, clearer differences were not distinguished. Type 1 T helper (Th1) cell response profiles were characterized using the IFN-γ ELISPOT assay and revealed differences between drug treatments that corresponded to decreases in disease burden. Therefore, the studies performed support the utility of the NHP model for the determination of PK/PD of TB drugs, although further work is required to optimize the use of cross-over study designs.

7.
Sci Rep ; 11(1): 8810, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33893359

RESUMEN

Rhesus (Macaca mulatta) and cynomolgus (Macaca fasicularis) macaques of distinct genetic origin are understood to vary in susceptibility to Mycobacterium tuberculosis, and therefore differences in their immune systems may account for the differences in disease control. Monocyte:lymphocyte (M:L) ratio has been identified as a risk factor for M. tuberculosis infection and is known to vary between macaque species. We aimed to characterise the constituent monocyte and lymphocyte populations between macaque species, and profile other major immune cell subsets including: CD4+ and CD8+ T-cells, NK-cells, B-cells, monocyte subsets and myeloid dendritic cells. We found immune cell subsets to vary significantly between macaque species. Frequencies of CD4+ and CD8+ T-cells and the CD4:CD8 ratio showed significant separation between species, while myeloid dendritic cells best associated macaque populations by M. tuberculosis susceptibility. A more comprehensive understanding of the immune parameters between macaque species may contribute to the identification of new biomarkers and correlates of protection.


Asunto(s)
Susceptibilidad a Enfermedades/inmunología , Macaca fascicularis/inmunología , Macaca mulatta/inmunología , Tuberculosis/inmunología , Animales , Inmunofenotipificación , Subgrupos Linfocitarios , Estudios Retrospectivos , Especificidad de la Especie
8.
Vaccines (Basel) ; 9(9)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34579182

RESUMEN

This pilot study aimed to determine the utility of a cynomolgus macaque model of coinfection with simian immunodeficiency virus (SIV) for the assessment of vaccines designed to prevent reactivation of TB. Following infection caused by aerosol exposure to an ultralow dose of Mycobacterium tuberculosis (M. tb), data trends indicated that subsequent coinfection with SIVmac32H perturbed control of M. tb infection as evidenced by the increased occurrence of progressive disease in this group, higher levels of pathology and increased frequency of progressive tuberculous granulomas in the lung. BCG vaccination led to improved control of TB-induced disease and lower viral load in comparison to unvaccinated coinfected animals. The M. tb-specific IFNγ response after exposure to M. tb, previously shown to be associated with bacterial burden, was lower in the BCG-vaccinated group than in the unvaccinated groups. Levels of CD4+ and CD8+ T cells decreased in coinfected animals, with counts recovering more quickly in the BCG-vaccinated group. This pilot study provides proof of concept to support the use of the model for evaluation of interventions against reactivated/exacerbated TB caused by human immunodeficiency virus (HIV) infection.

9.
Front Immunol ; 12: 754589, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34707617

RESUMEN

In many countries where tuberculosis (TB) is endemic, the Bacillus Calmette-Guérin (BCG) vaccine is given as close to birth as possible to protect infants and children from severe forms of TB. However, BCG has variable efficacy and is not as effective against adult pulmonary TB. At present, most animal models used to study novel TB vaccine candidates rely on the use of adult animals. Human studies show that the infant immune system is different to that of an adult. Understanding how the phenotypic profile and functional ability of the immature host immune system compares to that of a mature adult, together with the subsequent BCG immune response, is critical to ensuring that new TB vaccines are tested in the most appropriate models. BCG-specific immune responses were detected in macaques vaccinated within a week of birth from six weeks after immunization indicating that neonatal macaques are able to generate a functional cellular response to the vaccine. However, the responses measured were significantly lower than those typically observed following BCG vaccination in adult rhesus macaques and infant profiles were skewed towards the activation and attraction of macrophages and monocytes and the synthesis in addition to release of pro-inflammatory cytokines such as IL-1, IL-6 and TNF-α. The frequency of specific immune cell populations changed significantly through the first three years of life as the infants developed into young adult macaques. Notably, the CD4:CD8 ratio significantly declined as the macaques aged due to a significant decrease in the proportion of CD4+ T-cells relative to a significant increase in CD8+ T-cells. Also, the frequency of both CD4+ and CD8+ T-cells expressing the memory marker CD95, and memory subset populations including effector memory, central memory and stem cell memory, increased significantly as animals matured. Infant macaques, vaccinated with BCG within a week of birth, possessed a significantly higher frequency of CD14+ classical monocytes and granulocytes which remained different throughout the first three years of life compared to unvaccinated age matched animals. These findings, along with the increase in monokines following vaccination in infants, may provide an insight into the mechanism by which vaccination with BCG is able to provide non-specific immunity against non-mycobacterial organisms.


Asunto(s)
Envejecimiento/inmunología , Vacuna BCG/inmunología , Sistema Inmunológico/crecimiento & desarrollo , Inmunogenicidad Vacunal , Macaca mulatta/inmunología , Animales , Animales Recién Nacidos/inmunología , Antígenos Bacterianos/inmunología , Biomarcadores , Relación CD4-CD8 , Citocinas/sangre , Femenino , Inmunidad Innata , Esquemas de Inmunización , Memoria Inmunológica , Péptidos y Proteínas de Señalización Intercelular/sangre , Interferón gamma/sangre , Macaca mulatta/crecimiento & desarrollo , Macrófagos/inmunología , Masculino , Monocitos/inmunología , Mycobacterium tuberculosis/inmunología , Especificidad de la Especie , Tuberculina/inmunología
10.
NPJ Vaccines ; 6(1): 4, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397991

RESUMEN

A single intradermal vaccination with MTBVAC given to adult rhesus macaques was well tolerated and conferred a significant improvement in outcome following aerosol exposure to M. tuberculosis compared to that provided by a single BCG vaccination. Vaccination with MTBVAC resulted in a significant reduction in M. tuberculosis infection-induced disease pathology measured using in vivo medical imaging, in gross pathology lesion counts and pathology scores recorded at necropsy, the frequency and severity of pulmonary granulomas and the frequency of recovery of viable M. tuberculosis from extrapulmonary tissues following challenge. The immune profiles induced following immunisation with MTBVAC reflect those identified in human clinical trials of MTBVAC. Evaluation of MTBVAC- and TB peptide-pool-specific T-cell cytokine production revealed a predominantly Th1 response from poly- (IFN-γ+TNF-α+IL2+) and multi-(IFN-γ+TNF-α+) functional CD4 T cells, while only low levels of Th22, Th17 and cytokine-producing CD8 T-cell populations were detected together with low-level, but significant, increases in CFP10-specific IFN-γ secreting cells. In this report, we describe concordance between immune profiles measured in clinical trials and a macaque pre-clinical study demonstrating significantly improved outcome after M. tuberculosis challenge as evidence to support the continued development of MTBVAC as an effective prophylactic vaccine for TB vaccination campaigns.

11.
Sci Rep ; 11(1): 12274, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112845

RESUMEN

This study describes the use of cynomolgus macaques of Chinese origin (CCM) to evaluate the efficacy and immunogenicity of the BCG vaccine against high dose aerosol Mycobacterium tuberculosis challenge. Progressive disease developed in three of the unvaccinated animals within 10 weeks of challenge, whereas all six vaccinated animals controlled disease for 26 weeks. Three unvaccinated animals limited disease progression, highlighting the intrinsic ability of this macaque species to control disease in comparison to macaques of other species and genotypes. Low levels of IFNγ were induced by BCG vaccination in CCM suggesting that IFNγ alone does not provide a sufficiently sensitive biomarker of vaccination in this model. An early response after challenge, together with the natural bias towards terminal effector memory T-cell populations and the contribution of monocytes appears to enhance the ability of CCM to naturally control infection. The high dose aerosol challenge model of CCM has value for examination of the host immune system to characterise control of infection which would influence future vaccine design. Although it may not be the preferred platform for the assessment of prophylactic vaccine candidates, the model could be well suited for testing post-exposure vaccination strategies and drug evaluation studies.


Asunto(s)
Vacuna BCG/administración & dosificación , Vacuna BCG/inmunología , Interacciones Huésped-Patógeno/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis/prevención & control , Administración por Inhalación , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Inmunidad Humoral , Inmunización , Memoria Inmunológica , Macaca , Masculino , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
12.
Vaccine ; 39(34): 4885-4894, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34253420

RESUMEN

Safe and effective vaccines will provide essential medical countermeasures to tackle the COVID-19 pandemic. Here, we assessed the safety, immunogenicity and efficacy of the intradermal delivery of INO-4800, a synthetic DNA vaccine candidate encoding the SARS-CoV-2 spike protein in the rhesus macaque model. Single and 2 dose vaccination regimens were evaluated. Vaccination induced both binding and neutralizing antibodies, along with IFN-γ-producing T cells against SARS-CoV-2. Upon administration of a high viral dose (5 × 106 pfu) via the intranasal and intratracheal routes we observed significantly reduced virus load in the lung and throat, in the vaccinated animals compared to controls. 2 doses of INO-4800 was associated with more robust vaccine-induced immune responses and improved viral protection. Importantly, histopathological examination of lung tissue provided no indication of vaccine-enhanced disease following SARS-CoV-2 challenge in INO-4800 immunized animals. This vaccine candidate is currently under clinical evaluation as a 2 dose regimen.


Asunto(s)
COVID-19 , Vacunas de ADN , Vacunas Virales , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Humanos , Macaca mulatta , Pandemias , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
13.
Front Immunol ; 12: 801799, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35222355

RESUMEN

The tuberculosis vaccine, Bacille Calmette-Guerin (BCG), also affords protection against non-tuberculous diseases attributable to heterologous immune mechanisms such as trained innate immunity, activation of non-conventional T-cells, and cross-reactive adaptive immunity. Aerosol vaccine delivery can target immune responses toward the primary site of infection for a respiratory pathogen. Therefore, we hypothesised that aerosol delivery of BCG would enhance cross-protective action against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and be a deployable intervention against coronavirus disease 2019 (COVID-19). Immune parameters were monitored in vaccinated and unvaccinated rhesus macaques for 28 days following aerosol BCG vaccination. High-dose SARS-CoV-2 challenge was applied by intranasal and intrabronchial instillation and animals culled 6-8 days later for assessment of viral, disease, and immunological parameters. Mycobacteria-specific cell-mediated immune responses were detected following aerosol BCG vaccination, but SARS-CoV-2-specific cellular- and antibody-mediated immunity was only measured following challenge. Early secretion of cytokine and chemokine markers associated with the innate cellular and adaptive antiviral immune response was detected following SARS-CoV-2 challenge in vaccinated animals, at concentrations that exceeded titres measured in unvaccinated macaques. Classical CD14+ monocytes and Vδ2 γδ T-cells quantified by whole-blood immunophenotyping increased rapidly in vaccinated animals following SARS-CoV-2 challenge, indicating a priming of innate immune cells and non-conventional T-cell populations. However, viral RNA quantified in nasal and pharyngeal swabs, bronchoalveolar lavage (BAL), and tissue samples collected at necropsy was equivalent in vaccinated and unvaccinated animals, and in-life CT imaging and histopathology scoring applied to pulmonary tissue sections indicated that the disease induced by SARS-CoV-2 challenge was comparable between vaccinated and unvaccinated groups. Hence, aerosol BCG vaccination did not induce, or enhance the induction of, SARS-CoV-2 cross-reactive adaptive cellular or humoral immunity, although an influence of BCG vaccination on the subsequent immune response to SARS-CoV-2 challenge was apparent in immune signatures indicative of trained innate immune mechanisms and primed unconventional T-cell populations. Nevertheless, aerosol BCG vaccination did not enhance the initial clearance of virus, nor reduce the occurrence of early disease pathology after high dose SARS-CoV-2 challenge. However, the heterologous immune mechanisms primed by BCG vaccination could contribute to the moderation of COVID-19 disease severity in more susceptible species following natural infection.


Asunto(s)
Vacuna BCG/inmunología , COVID-19/inmunología , ADN Viral/análisis , SARS-CoV-2/fisiología , Linfocitos T/inmunología , Inmunidad Adaptativa , Aerosoles , Animales , Reacciones Cruzadas , Modelos Animales de Enfermedad , Humanos , Inmunidad Heteróloga , Inmunidad Innata , Inmunomodulación , Activación de Linfocitos , Macaca mulatta , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Vacunación
14.
Commun Biol ; 4(1): 915, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34312487

RESUMEN

Vaccines against SARS-CoV-2 are urgently required, but early development of vaccines against SARS-CoV-1 resulted in enhanced disease after vaccination. Careful assessment of this phenomena is warranted for vaccine development against SARS CoV-2. Here we report detailed immune profiling after ChAdOx1 nCoV-19 (AZD1222) and subsequent high dose challenge in two animal models of SARS-CoV-2 mediated disease. We demonstrate in rhesus macaques the lung pathology caused by SARS-CoV-2 mediated pneumonia is reduced by prior vaccination with ChAdOx1 nCoV-19 which induced neutralising antibody responses after a single intramuscular administration. In a second animal model, ferrets, ChAdOx1 nCoV-19 reduced both virus shedding and lung pathology. Antibody titre were boosted by a second dose. Data from these challenge models on the absence of enhanced disease and the detailed immune profiling, support the continued clinical evaluation of ChAdOx1 nCoV-19.


Asunto(s)
Vacunas contra la COVID-19/inmunología , SARS-CoV-2/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , ChAdOx1 nCoV-19 , Hurones , Macaca mulatta
15.
Sci Adv ; 7(37): eabg7996, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34516768

RESUMEN

There is an urgent requirement for safe and effective vaccines to prevent COVID-19. A concern for the development of new viral vaccines is the potential to induce vaccine-enhanced disease (VED). This was reported in several preclinical studies with both SARS-CoV-1 and MERS vaccines but has not been reported with SARS-CoV-2 vaccines. We have used ferrets and rhesus macaques challenged with SARS-CoV-2 to assess the potential for VED in animals vaccinated with formaldehyde-inactivated SARS-CoV-2 (FIV) formulated with Alhydrogel, compared to a negative control vaccine. We showed no evidence of enhanced disease in ferrets or rhesus macaques given FIV except for mild transient enhanced disease seen 7 days after infection in ferrets. This increased lung pathology was observed at day 7 but was resolved by day 15. We also demonstrate that formaldehyde treatment of SARS-CoV-2 reduces exposure of the spike receptor binding domain providing a mechanistic explanation for suboptimal immunity.

16.
Nat Commun ; 12(1): 1260, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627662

RESUMEN

A novel coronavirus, SARS-CoV-2, has been identified as the causative agent of the current COVID-19 pandemic. Animal models, and in particular non-human primates, are essential to understand the pathogenesis of emerging diseases and to assess the safety and efficacy of novel vaccines and therapeutics. Here, we show that SARS-CoV-2 replicates in the upper and lower respiratory tract and causes pulmonary lesions in both rhesus and cynomolgus macaques. Immune responses against SARS-CoV-2 are also similar in both species and equivalent to those reported in milder infections and convalescent human patients. This finding is reiterated by our transcriptional analysis of respiratory samples revealing the global response to infection. We describe a new method for lung histopathology scoring that will provide a metric to enable clearer decision making for this key endpoint. In contrast to prior publications, in which rhesus are accepted to be the preferred study species, we provide convincing evidence that both macaque species authentically represent mild to moderate forms of COVID-19 observed in the majority of the human population and both species should be used to evaluate the safety and efficacy of interventions against SARS-CoV-2. Importantly, accessing cynomolgus macaques will greatly alleviate the pressures on current rhesus stocks.


Asunto(s)
COVID-19/inmunología , COVID-19/virología , Pulmón/patología , Pulmón/virología , Animales , Modelos Animales de Enfermedad , Femenino , Inmunidad Celular/fisiología , Interferón gamma/metabolismo , Macaca fascicularis , Macaca mulatta , Masculino , Pandemias , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad
17.
Pharmaceutics ; 12(5)2020 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-32344890

RESUMEN

Ten million cases of tuberculosis (TB) were reported in 2018 with a further 1.5 million deaths attributed to the disease. Improved vaccination strategies are urgently required to tackle the ongoing global TB epidemic. In the absence of a validated correlate of protection, highly characterised pre-clinical models are required to assess the protective efficacy of new vaccination strategies. In this study, we demonstrate the application of a rhesus macaque ultra-low dose (ULD) aerosol M. tuberculosis challenge model for the evaluation of TB vaccination strategies by directly comparing the immunogenicity and efficacy of intradermal (ID) and aerosol BCG vaccination delivered using a portable vibrating mesh nebulizer (VMN). Aerosol- and ID-delivered Bacille Calmette-Guérin (BCG) induced comparable frequencies of IFN-γ spot forming units (SFU) measured in peripheral blood mononuclear cells (PBMCs) by ELISpot, although the induction of IFN-γ SFU was significantly delayed following aerosol immunisation. This delayed response was also apparent in an array of secreted pro-inflammatory and chemokine markers, as well as in the frequency of antigen-specific cytokine producing CD4 and CD8 T-cells measured by multi-parameter flow cytometry. Interrogation of antigen-specific memory T-cell phenotypes revealed that vaccination-induced CD4 and CD8 T-cell populations primarily occupied the central memory (TCM) and transitional effector memory (TransEM) phenotype, and that the frequency of CD8 TCM and TransEM populations was significantly higher in aerosol BCG-vaccinated animals in the week prior to M. tuberculosis infection. The total and lung pathology measured following M. tuberculosis challenge was significantly lower in vaccinated animals relative to the unvaccinated control group and pathology measured in extra-pulmonary tissues was significantly reduced in aerosol BCG-vaccinated animals, relative to the ID-immunised group. Similarly, significantly fewer viable M. tuberculosis CFU were recovered from the extra-pulmonary tissues of aerosol BCG-vaccinated macaques relative to unvaccinated animals. In this study, a rhesus macaque ULD M. tuberculosis aerosol challenge model was applied as a refined and sensitive system for the evaluation of TB vaccine efficacy and to confirm that aerosol BCG vaccination delivered by portable VMN can confer a significant level of protection that is equivalent, and by some measures superior, to intradermal BCG vaccination.

18.
Sci Rep ; 9(1): 3340, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833652

RESUMEN

Monocyte:lymphocyte ratio (M:L) has been identified as a risk factor in development of TB disease in children and those undergoing treatment for HIV in co-infected individuals. Retrospective analysis was performed using M:L data collected from TB modelling studies performed in Rhesus macaques of Indian genotype (RM), cynomolgus macaque of Chinese genotype (CCM) and cynomolgus macaque of Mauritian genotype (MCM), which found that the more susceptible populations (RM and MCM) had higher M:L ratios than the least susceptible population (CCM). Following Mycobacterium tuberculosis exposure, significant increases in M:L ratio were observed in susceptible RM and MCM within 12 weeks of TB infection, whereas M:L in CCM remained stable, suggesting that changes in M:L ratio may also act as a biomarker of TB disease progression. The frequency of PPD-specific interferon gamma (IFNγ) secreting cells (SFU) were compared, with the more susceptible macaque populations showing an association between M:L and IFNγ SFU frequency. Investigation of the genes associated with monocyte-derived antigen presenting cells revealed differences between RM and CCM, highlighting differences in their monocyte populations, as well as overall M:L ratio. Differences in M:L ratio between macaque populations could be used to explore immunological mechanisms in susceptible populations that would complement human population studies.


Asunto(s)
Linfocitos/patología , Macaca fascicularis/genética , Macaca mulatta/genética , Monocitos/patología , Tuberculosis/inmunología , Animales , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Interferón gamma/biosíntesis , Transcriptoma , Tuberculosis/genética , Tuberculosis/patología
19.
Tuberculosis (Edinb) ; 108: 99-105, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29523335

RESUMEN

The lack of validated immunological correlates of protection makes tuberculosis vaccine development difficult and expensive. Using intradermal bacille Calmette-Guréin (BCG) as a surrogate for aerosol Mycobacterium tuberculosis (M.tb) in a controlled human infection model could facilitate vaccine development, but such a model requires preclinical validation. Non-human primates (NHPs) may provide the best model in which to do this. Cynomolgus and rhesus macaques were infected with BCG by intradermal injection. BCG was quantified from a skin biopsy of the infection site and from draining axillary lymph nodes, by culture on solid agar and quantitative polymerase chain reaction. BCG was detected up to 28 days post-infection, with higher amounts of BCG detected in lymph nodes after high dose compared to standard dose infection. Quantifying BCG from lymph nodes of cynomolgus macaques 14 days post-high dose infection showed a significant reduction in the amount of BCG detected in the BCG-vaccinated compared to BCG-naïve animals. Demonstrating a detectable vaccine effect in the lymph nodes of cynomolgus macaques, which is similar in magnitude to that seen in an aerosol M.tb infection model, provides support for proof-of-concept of an intradermal BCG infection model and evidence to support the further evaluation of a human BCG infection model.


Asunto(s)
Vacuna BCG/administración & dosificación , Mycobacterium bovis/efectos de los fármacos , Tuberculosis/prevención & control , Animales , Vacuna BCG/inmunología , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/microbiología , Macaca fascicularis , Macaca mulatta , Mycobacterium bovis/inmunología , Mycobacterium bovis/patogenicidad , Piel/inmunología , Piel/microbiología , Factores de Tiempo , Tuberculosis/inmunología , Tuberculosis/microbiología
20.
Tuberculosis (Edinb) ; 96: 141-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26723465

RESUMEN

Non-human primates (NHP) provide a key component in the preclinical assessment pathway for new TB vaccines. In the established models, Mycobacterium tuberculosis challenge is typically delivered to airways of macaques either by aerosol or bronchoscopic instillation and therefore, an understanding of these delivery routes would facilitate the comparison of data generated from models using different challenge methods. This study compared the clinical effects, antigen-specific IFNγ response profiles and disease burden following delivery of comparable doses of M. tuberculosis to the lungs of rhesus macaques by either aerosol or bronchoscopic instillation. The outcome of infection in terms of clinical effects and overall disease burden was comparable between both routes of challenge. However, the pathology in the lungs differed as disease was localised to the site of inoculation following bronchoscopic instillation while aerosol exposure resulted in lesions being evenly distributed through the lung. Whilst the IFNγ response to PPD was similar, responses to CFP10 and ESAT6 peptide pools measured with an ex vivo ELISPOT differed with regards to responses to the N-terminal regions depending on the route of infection. Both challenge routes therefore provide valid and comparable models for evaluation of new TB vaccines, although subtle differences in host responses may occur.


Asunto(s)
Pulmón/microbiología , Mycobacterium tuberculosis/patogenicidad , Tuberculosis Pulmonar/microbiología , Aerosoles , Animales , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Broncoscopía , Modelos Animales de Enfermedad , Ensayo de Immunospot Ligado a Enzimas , Interacciones Huésped-Patógeno , Exposición por Inhalación , Interferón gamma/inmunología , Interferón gamma/metabolismo , Ensayos de Liberación de Interferón gamma , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Macaca mulatta , Masculino , Mycobacterium tuberculosis/inmunología , Factores de Tiempo , Tomografía Computarizada por Rayos X , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/metabolismo , Tuberculosis Pulmonar/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA