Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 594(7861): 51-56, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34079136

RESUMEN

In perovskite solar cells, doped organic semiconductors are often used as charge-extraction interlayers situated between the photoactive layer and the electrodes. The π-conjugated small molecule 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9-spirobifluorene (spiro-OMeTAD) is the most frequently used semiconductor in the hole-conducting layer1-6, and its electrical properties considerably affect the charge collection efficiencies of the solar cell7. To enhance the electrical conductivity of spiro-OMeTAD, lithium bis(trifluoromethane)sulfonimide (LiTFSI) is typically used in a doping process, which is conventionally initiated by exposing spiro-OMeTAD:LiTFSI blend films to air and light for several hours. This process, in which oxygen acts as the p-type dopant8-11, is time-intensive and largely depends on ambient conditions, and thus hinders the commercialization of perovskite solar cells. Here we report a fast and reproducible doping method that involves bubbling a spiro-OMeTAD:LiTFSI solution with CO2 under ultraviolet light. CO2 obtains electrons from photoexcited spiro-OMeTAD, rapidly promoting its p-type doping and resulting in the precipitation of carbonates. The CO2-treated interlayer exhibits approximately 100 times higher conductivity than a pristine film while realizing stable, high-efficiency perovskite solar cells without any post-treatments. We also show that this method can be used to dope π-conjugated polymers.

3.
ACS Catal ; 14(9): 6868-6880, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38933735

RESUMEN

Electrochemical ozone production (EOP), a six-electron water oxidation reaction, offers promising avenues for creating value-added oxidants and disinfectants. However, progress in this field is slowed by a dearth of understanding of fundamental reaction mechanisms. In this work, we combine experimental electrochemistry, spectroscopic detection of reactive oxygen species (ROS), oxygen-anion chemical ionization mass spectrometry, and computational quantum chemistry calculations to determine a plausible reaction mechanism on nickel- and antimony-doped tin oxide (Ni/Sb-SnO2, NATO), one of the most selective EOP catalysts. Antimony doping is shown to increase the conductivity of the catalyst, leading to improved electrochemical performance. Spectroscopic analysis and electrochemical experiments combined with quantum chemistry predictions reveal that hydrogen peroxide (H2O2) is a critical reaction intermediate. We propose that leached Ni4+ cations catalyze hydrogen peroxide into solution phase hydroperoxyl radicals (•OOH); these radicals are subsequently oxidized to ozone. Isotopic product analysis shows that ozone is generated catalytically from water and corrosively from the catalyst oxide lattice without regeneration of lattice oxygens. Further quantum chemistry calculations and thermodynamic analysis suggest that the electrochemical corrosion of tin oxide itself might generate hydrogen peroxide, which is then catalyzed to ozone. The proposed pathways explain both the roles of dopants in NATO and its lack of stability. Our study interrogates the possibility that instability and electrochemical activity are intrinsically linked through the formation of ROS. In doing so, we provide the first mechanism for EOP that is consistent with computational and experimental results and highlight the central challenge of instability as a target for future research efforts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA