Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Immunity ; 54(8): 1788-1806.e7, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34166622

RESUMEN

Lymphoid stromal cells (LSCs) are essential organizers of immune responses. We analyzed tonsillar tissue by combining flow cytometry, in situ imaging, RNA sequencing, and functional assays, defining three distinct human LSC subsets. The integrin CD49a designated perivascular stromal cells exhibiting features of local committed LSC precursors and segregated cytokine and chemokine-producing fibroblastic reticular cells (FRCs) supporting B and T cell survival. The follicular dendritic cell transcriptional profile reflected active responses to B cell and non-B cell stimuli. We therefore examined the effect of B cell stimuli on LSCs in follicular lymphoma (FL). FL B cells interacted primarily with CD49a+ FRCs. Transcriptional analyses revealed LSC reprogramming in situ downstream of the cytokines tumor necrosis factor (TNF) and transforming growth factor ß (TGF-ß), including increased expression of the chemokines CCL19 and CCL21. Our findings define human LSC populations in healthy tissue and reveal bidirectional crosstalk between LSCs and malignant B cells that may present a targetable axis in lymphoma.


Asunto(s)
Linfocitos B/inmunología , Células Dendríticas/inmunología , Linfoma Folicular/inmunología , Linfoma Folicular/patología , Tonsila Palatina/inmunología , Células del Estroma/inmunología , Células Cultivadas , Quimiocina CCL19/metabolismo , Quimiocina CCL21/metabolismo , Humanos , Integrina alfa1/metabolismo , Tonsila Palatina/citología , Transducción de Señal/inmunología , Células del Estroma/citología , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
3.
J Gen Virol ; 103(10)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36282569

RESUMEN

Bracoviruses and ichnoviruses are endogenous viruses of parasitic wasps that produce particles containing virulence genes expressed in host tissues and necessary for parasitism success. In the case of bracoviruses the particles are produced by conserved genes of nudiviral origin integrated permanently in the wasp genome, whereas the virulence genes can strikingly differ depending on the wasp lineage. To date most data obtained on bracoviruses concerned species from the braconid subfamily of Microgastrinae. To gain a broader view on the diversity of virulence genes we sequenced the genome packaged in the particles of Chelonus inanitus bracovirus (CiBV) produced by a wasp belonging to a different subfamily: the Cheloninae. These are egg-larval parasitoids, which means that they oviposit into the host egg and the wasp larvae then develop within the larval stages of the host. We found that most of CiBV virulence genes belong to families that are specific to Cheloninae. As other bracoviruses and ichnoviruses however, CiBV encode v-ank genes encoding truncated versions of the immune cactus/IκB factor, which suggests these proteins might play a key role in host-parasite interactions involving domesticated endogenous viruses. We found that the structures of CiBV V-ANKs are different from those previously reported. Phylogenetic analysis supports the hypothesis that they may originate from a cactus/IκB immune gene from the wasp genome acquired by the bracovirus. However, their evolutionary history is different from that shared by other V-ANKs, whose common origin probably reflects horizontal gene transfer events of virus sequences between braconid and ichneumonid wasps.


Asunto(s)
Polydnaviridae , Avispas , Humanos , Animales , Polydnaviridae/genética , Filogenia , Avispas/genética , Proteínas Virales/genética , Evolución Biológica
4.
Stem Cells ; 38(1): 146-159, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31502731

RESUMEN

Clinical-grade mesenchymal stromal cells (MSCs) can be expanded from bone marrow and adipose tissue to treat inflammatory diseases and degenerative disorders. However, the influence of their tissue of origin on their functional properties, including their immunosuppressive activity, remains unsolved. In this study, we produced paired bone marrow-derived mesenchymal stromal cell (BM-MSC) and adipose-derived stromal cell (ASC) batches from 14 healthy donors. We then compared them using transcriptomic, phenotypic, and functional analyses and validated our results on purified native MSCs to infer which differences were really endowed by tissue of origin. Cultured MSCs segregated together owing to their tissue of origin based on their gene expression profile analyzed using differential expression and weighted gene coexpression network analysis. This translated into distinct immune-related gene signatures, phenotypes, and functional cell interactions. Importantly, sorted native BM-MSCs and ASCs essentially displayed the same distinctive patterns than their in vitro-expanded counterparts. As a whole, ASCs exhibited an immune profile consistent with a stronger inhibition of immune response and a lower immunogenicity, supporting the use of adipose tissue as a valuable source for clinical applications.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Transcriptoma/genética , Adulto , Diferenciación Celular , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Adulto Joven
5.
Sci Adv ; 9(48): eadh2708, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38019914

RESUMEN

Mature lymphoid stromal cells (LSCs) are key organizers of immune responses within secondary lymphoid organs. Similarly, inflammation-driven tertiary lymphoid structures depend on immunofibroblasts producing lymphoid cytokines and chemokines. Recent studies have explored the origin and heterogeneity of LSC/immunofibroblasts, yet the molecular and epigenetic mechanisms involved in their commitment are still unknown. This study explored the transcriptomic and epigenetic reprogramming underlying LSC/immunofibroblast commitment. We identified the induction of lysine demethylase 6B (KDM6B) as the primary epigenetic driver of early immunofibroblast differentiation. In addition, we observed an enrichment for KDM6B gene signature in murine inflammatory fibroblasts and pathogenic stroma of patients with autoimmune diseases. Last, KDM6B was required for the acquisition of LSC/immunofibroblast functional properties, including the up-regulation of CCL2 and the resulting recruitment of monocytes. Overall, our results reveal epigenetic mechanisms that participate in the early commitment and immune properties of immunofibroblasts and support the use of epigenetic modifiers as fibroblast-targeting strategies in chronic inflammation.


Asunto(s)
Epigénesis Genética , Células del Estroma , Animales , Humanos , Ratones , Diferenciación Celular/genética , Inflamación , Histona Demetilasas con Dominio de Jumonji/genética , Regulación hacia Arriba
6.
BMC Genomics ; 12: 112, 2011 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-21324179

RESUMEN

BACKGROUND: The processing ability of poultry meat is highly related to its ultimate pH, the latter being mainly determined by the amount of glycogen in the muscle at death. The genetic determinism of glycogen and related meat quality traits has been established in the chicken but the molecular mechanisms involved in variations in these traits remain to be fully described. In this study, Chicken Genome Arrays (20 K) were used to compare muscle gene expression profiles of chickens from Fat (F) and Lean (L) lines that exhibited high and low muscle glycogen content, respectively, and of individuals exhibiting extremely high (G+) or low (G-) muscle glycogen content originating from the F2 cross between the Fat and Lean lines. Real-time RT-PCR was subsequently performed to validate the differential expression of genes either selected from the microarray analysis or whose function in regulating glycogen metabolism was well known. RESULTS: Among the genes found to be expressed in chicken P. major muscle, 197 and 254 transcripts appeared to be differentially expressed on microarrays for the F vs. L and the G+ vs. G- comparisons, respectively. Some involved particularly in lipid and carbohydrate metabolism were selected for further validation studies by real-time RT-PCR. We confirmed that, as in mammals, the down-regulation of CEBPB and RGS2 coincides with a decrease in peripheral adiposity in the chicken, but these genes are also suggested to affect muscle glycogen turnover through their role in the cAMP-dependent signalling pathway. Several other genes were suggested to have roles in the regulation of glycogen storage in chicken muscle. PDK4 may act as a glycogen sensor in muscle, UGDH may compete for glycogen synthesis by using UDP-glucose for glucoronidation, and PRKAB1, PRKAG2, and PHKD may impact on glycogen turnover in muscle, through AMP-activated signalling pathways. CONCLUSIONS: This study is the first stage in the understanding of molecular mechanisms underlying variations in poultry meat quality. Large scale analyses are now required to validate the role of the genes identified and ultimately to find molecular markers that can be used for selection or to optimize rearing practices.


Asunto(s)
Pollos/genética , Perfilación de la Expresión Génica , Glucógeno/análisis , Carne , Músculos/metabolismo , Adiposidad , Animales , Cruzamiento , Cruzamientos Genéticos , Anotación de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo
7.
BMC Genomics ; 11: 57, 2010 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-20092629

RESUMEN

BACKGROUND: As uricoletic animals, chickens produce cleidoic eggs, which are self-contained bacteria-resistant biological packages for extra-uterine development of the chick embryo. The eggshell constitutes a natural physical barrier against bacterial penetration if it forms correctly and remains intact. The eggshell's remarkable mechanical properties are due to interactions among mineral components and the organic matrix proteins. The purpose of our study was to identify novel eggshell proteins by examining the transcriptome of the uterus during calcification of the eggshell. An extensive bioinformatic analysis on genes over-expressed in the uterus allowed us to identify novel eggshell proteins that contribute to the egg's natural defenses. RESULTS: Our 14 K Del-Mar Chicken Integrated Systems microarray was used for transcriptional profiling in the hen's uterus during eggshell deposition. A total of 605 transcripts were over-expressed in the uterus compared with the magnum or white isthmus across a wide range of abundance (1.1- to 79.4-fold difference). The 605 highly-expressed uterine transcripts correspond to 469 unique genes, which encode 437 different proteins. Gene Ontology (GO) analysis was used for interpretation of protein function. The most over-represented GO terms are related to genes encoding ion transport proteins, which provide eggshell mineral precursors. Signal peptide sequence was found for 54 putative proteins secreted by the uterus during eggshell formation. Many functional proteins are involved in calcium binding or biomineralization--prerequisites for interacting with the mineral phase during eggshell fabrication. While another large group of proteins could be involved in proper folding of the eggshell matrix. Many secreted uterine proteins possess antibacterial properties, which would protect the egg against microbial invasion. A final group includes proteases and protease inhibitors that regulate protein activity in the acellular uterine fluid where eggshell formation takes place. CONCLUSIONS: Our original study provides the first detailed description of the chicken uterus transcriptome during formation of the eggshell. We have discovered a cache of about 600 functional genes and identified a large number of encoded proteins secreted into uterine fluid for fabrication of the eggshell and chemical protection of the egg. Some of these uterine genes could prove useful as biological markers for genetic improvement of phenotypic traits (i.e., egg and eggshell quality).


Asunto(s)
Proteínas Aviares/genética , Pollos/genética , Proteínas del Huevo/genética , Cáscara de Huevo/química , Perfilación de la Expresión Génica , Animales , Calcificación Fisiológica , Biología Computacional , Femenino , Análisis de Secuencia por Matrices de Oligonucleótidos , Útero/metabolismo
8.
Sci Rep ; 10(1): 21985, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33319783

RESUMEN

Reverse-phase protein array (RPPA) technology uses panels of high-specificity antibodies to measure proteins and protein post-translational modifications in cells and tissues. The approach offers sensitive and precise quantification of large numbers of samples and has thus found applications in the analysis of clinical and pre-clinical samples. For effective integration into drug development and clinical practice, robust assays with consistent results are essential. Leveraging a collaborative RPPA model, we set out to assess the variability between three different RPPA platforms using distinct instrument set-ups and workflows. Employing multiple RPPA-based approaches operated across distinct laboratories, we characterised a range of human breast cancer cells and their protein-level responses to two clinically relevant cancer drugs. We integrated multi-platform RPPA data and used unsupervised learning to identify protein expression and phosphorylation signatures that were not dependent on RPPA platform and analysis workflow. Our findings indicate that proteomic analyses of cancer cell lines using different RPPA platforms can identify concordant profiles of response to pharmacological inhibition, including when using different antibodies to measure the same target antigens. These results highlight the robustness and the reproducibility of RPPA technology and its capacity to identify protein markers of disease or response to therapy.


Asunto(s)
Antineoplásicos/farmacología , Terapia Molecular Dirigida , Análisis por Matrices de Proteínas/métodos , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Análisis de Componente Principal
9.
Nat Commun ; 7: 13476, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27917878

RESUMEN

Type-I interferons (IFNs) play a key role in the immune defences against viral and bacterial infections, and in cancer immunosurveillance. We have established that clathrin-dependent endocytosis of the type-I interferon (IFN-α/ß) receptor (IFNAR) is required for JAK/STAT signalling. Here we show that the internalized IFNAR1 and IFNAR2 subunits of the IFNAR complex are differentially sorted by the retromer at the early endosome. Binding of the retromer VPS35 subunit to IFNAR2 results in IFNAR2 recycling to the plasma membrane, whereas IFNAR1 is sorted to the lysosome for degradation. Depletion of VPS35 leads to abnormally prolonged residency and association of the IFNAR subunits at the early endosome, resulting in increased activation of STAT1- and IFN-dependent gene transcription. These experimental data establish the retromer complex as a key spatiotemporal regulator of IFNAR endosomal sorting and a new factor in type-I IFN-induced JAK/STAT signalling and gene transcription.


Asunto(s)
Interferón-alfa/farmacología , Interferón beta/farmacología , Quinasas Janus/metabolismo , Complejos Multiproteicos/metabolismo , Factores de Transcripción STAT/metabolismo , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Proteínas de Transporte Vesicular/metabolismo , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Endocitosis/efectos de los fármacos , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Humanos , Modelos Biológicos , Unión Proteica/efectos de los fármacos , Subunidades de Proteína/metabolismo , Transporte de Proteínas/efectos de los fármacos , Receptor de Interferón alfa y beta/metabolismo , Proteínas de Unión al GTP rab/metabolismo
10.
Cell Cycle ; 14(12): 1961-72, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26017556

RESUMEN

The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) plays a major role in DNA damage signaling and repair and is also frequently overexpressed in tumor metastasis. We used isogenic cell lines expressing different levels of DNA-PKcs to investigate the role of DNA-PKcs in metastatic development. We found that DNA-PKcs participates in melanoma primary tumor and metastasis development by stimulating angiogenesis, migration and invasion. Comparison of conditioned medium content from DNA-PKcs-proficient and deficient cells reveals that DNA-PKcs controls secretion of at least 103 proteins (including 44 metastasis-associated with FBLN1, SERPINA3, MMP-8, HSPG2 and the inhibitors of matrix metalloproteinases, such as α-2M and TIMP-2). High throughput analysis of secretomes, proteomes and transcriptomes, indicate that DNA-PKcs regulates the secretion of 85 proteins without affecting their gene expression. Our data demonstrate that DNA-PKcs has a pro-metastatic activity via the modification of the tumor microenvironment. This study shows for the first time a direct link between DNA damage repair and cancer metastasis and highlights the importance of DNA-PKcs as a potential target for anti-metastatic treatment.


Asunto(s)
Proteína Quinasa Activada por ADN/fisiología , Regulación Neoplásica de la Expresión Génica , Neoplasias/metabolismo , Proteínas Nucleares/fisiología , Animales , Células CHO , Movimiento Celular , Proliferación Celular , Cricetinae , Cricetulus , Medios de Cultivo Condicionados , Daño del ADN , Silenciador del Gen , Humanos , Ganglios Linfáticos/patología , Melanoma/patología , Ratones , Ratones Desnudos , Invasividad Neoplásica , Metástasis de la Neoplasia , Trasplante de Neoplasias , Neoplasias/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Interferente Pequeño/metabolismo , Espectrometría de Masas en Tándem
11.
Sci Adv ; 1(10): e1501150, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26702449

RESUMEN

Relics of ancient infections are abundant in eukaryote genomes, but little is known about how they evolve when they confer a functional benefit on their host. We show here, for the first time, that the virus-like particles shown to protect Venturia canescens eggs against host immunity are derived from a nudivirus genome incorporated by the parasitic wasp into its own genetic material. Nudivirus hijacking was also at the origin of protective particles from braconid wasps. However, we show here that the viral genes produce "liposomes" that wrap and deliver V. canescens virulence proteins, whereas the particles are used as gene transfer agents in braconid wasps. Our findings indicate that virus domestication has occurred repeatedly during parasitic wasp evolution but with different evolutionary trajectories after endogenization, resulting in different virulence molecule delivery strategies.

12.
Clin Cancer Res ; 20(16): 4314-25, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24947930

RESUMEN

PURPOSE: Patients with luminal breast cancer (LBC) often become endocrine resistant over time. We investigated the molecular changes associated with acquired hormonoresistances in patient-derived xenografts of LBC. EXPERIMENTAL DESIGN: Two LBC xenografts (HBCx22 and HBCx34) were treated with different endocrine treatments (ET) to obtain xenografts with acquired resistances to tamoxifen (TamR) and ovariectomy (OvaR). PI3K pathway activation was analyzed by Western blot analysis and IHC and responses to ET combined to everolimus were investigated in vivo. Gene expression analyses were performed by RT-PCR and Affymetrix arrays. RESULTS: HBCx22 TamR xenograft was cross-resistant to several hormonotherapies, whereas HBCx22 OvaR and HBCx34 TamR exhibited a treatment-specific resistance profile. PI3K pathway was similarly activated in parental and resistant xenografts but the addition of everolimus did not restore the response to tamoxifen in TamR xenografts. In contrast, the combination of fulvestrant and everolimus induced tumor regression in vivo in HBCx34 TamR, where we found a cross-talk between the estrogen receptor (ER) and PI3K pathways. Expression of several ER-controlled genes and ER coregulators was significantly changed in both TamR and OvaR tumors, indicating impaired ER transcriptional activity. Expression changes associated with hormonoresistance were both tumor and treatment specific and were enriched for genes involved in cell growth, cell death, and cell survival. CONCLUSIONS: PDX models of LBC with acquired resistance to endocrine therapies show a great diversity of resistance phenotype, associated with specific deregulations of ER-mediated gene transcription. These models offer a tool for developing anticancer therapies and to investigate the dynamics of resistance emerging during pharmacologic interventions. Clin Cancer Res; 20(16); 4314-25. ©2014 AACR.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos , Receptor alfa de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Receptor ErbB-2/metabolismo , Tamoxifeno/farmacología , Animales , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Western Blotting , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Receptor alfa de Estrógeno/genética , Femenino , Humanos , Técnicas para Inmunoenzimas , Ratones , Ratones Desnudos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor ErbB-2/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA