Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Pathog ; 16(12): e1009096, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33315936

RESUMEN

Bacille Calmette-Guerin (BCG), an attenuated whole cell vaccine based on Mycobacterium bovis, is the only licensed vaccine against Mycobacterium tuberculosis (Mtb), but its efficacy is suboptimal and it fails to protect against pulmonary tuberculosis. We previously reported that Mtb lacking the virulence genes lprG and rv1410c (ΔLprG) was highly attenuated in immune deficient mice. In this study, we show that attenuated ΔLprG Mtb protects C57BL/6J, Balb/cJ, and C3HeB/FeJ mice against Mtb challenge and is as attenuated as BCG in SCID mice. In C3HeB/FeJ mice, ΔLprG vaccination resulted in innate peripheral cytokine production and induced high polyclonal PPD-specific cytokine-secreting CD4+ T lymphocytes in peripheral blood. The ΔLprG vaccine afforded protective efficacy in the lungs of C3H/FeJ mice following both H37Rv and Erdman aerosolized Mtb challenges. Vaccine efficacy correlated with antigen-specific PD-1-negative CD4+ T lymphocytes as well as with serum IL-17 levels after vaccination. We hypothesize that induction of Th17 cells in lung is critical for vaccine protection, and we show a serum cytokine biomarker for IL-17 shortly after vaccination may predict protective efficacy.


Asunto(s)
Vacunas contra la Tuberculosis/genética , Vacunas contra la Tuberculosis/inmunología , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Factores de Virulencia/genética , Animales , Genes Bacterianos/genética , Interleucina-17/inmunología , Ratones , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/inmunología , Células Th17/inmunología , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/prevención & control
2.
Nat Chem Biol ; 15(9): 889-899, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31427817

RESUMEN

Mycobacterium tuberculosis (Mtb) is the world's most deadly pathogen. Unlike less virulent mycobacteria, Mtb produces 1-tuberculosinyladenosine (1-TbAd), an unusual terpene nucleoside of unknown function. In the present study 1-TbAd has been shown to be a naturally evolved phagolysosome disruptor. 1-TbAd is highly prevalent among patient-derived Mtb strains, where it is among the most abundant lipids produced. Synthesis of TbAd analogs and their testing in cells demonstrate that their biological action is dependent on lipid linkage to the 1-position of adenosine, which creates a strong conjugate base. Furthermore, C20 lipid moieties confer passage through membranes. 1-TbAd selectively accumulates in acidic compartments, where it neutralizes the pH and swells lysosomes, obliterating their multilamellar structure. During macrophage infection, a 1-TbAd biosynthesis gene (Rv3378c) confers marked phagosomal swelling and intraphagosomal inclusions, demonstrating an essential role in regulating the Mtb cellular microenvironment. Although macrophages kill intracellular bacteria through phagosome acidification, Mtb coats itself abundantly with antacid.


Asunto(s)
Antiácidos/metabolismo , Lípidos/biosíntesis , Lípidos/química , Mycobacterium tuberculosis/metabolismo , Fagosomas/metabolismo , Animales , Regulación Bacteriana de la Expresión Génica , Humanos , Concentración de Iones de Hidrógeno , Lisosomas , Macrófagos/metabolismo , Ratones , Estructura Molecular , Mycobacterium kansasii/genética , Prevalencia
3.
Nat Chem Biol ; 13(9): 943-950, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28671682

RESUMEN

New antibiotics with novel targets are greatly needed. Bacteria have numerous essential functions, but only a small fraction of such processes-primarily those involved in macromolecular synthesis-are inhibited by current drugs. Targeting metabolic enzymes has been the focus of recent interest, but effective inhibitors have been difficult to identify. We describe a synthetic azetidine derivative, BRD4592, that kills Mycobacterium tuberculosis (Mtb) through allosteric inhibition of tryptophan synthase (TrpAB), a previously untargeted, highly allosterically regulated enzyme. BRD4592 binds at the TrpAB α-ß-subunit interface and affects multiple steps in the enzyme's overall reaction, resulting in inhibition not easily overcome by changes in metabolic environment. We show that TrpAB is required for the survival of Mtb and Mycobacterium marinum in vivo and that this requirement may be independent of an adaptive immune response. This work highlights the effectiveness of allosteric inhibition for targeting proteins that are naturally highly dynamic and that are essential in vivo, despite their apparent dispensability under in vitro conditions, and suggests a framework for the discovery of a next generation of allosteric inhibitors.


Asunto(s)
Antituberculosos , Azetidinas/química , Mycobacterium tuberculosis/enzimología , Bibliotecas de Moléculas Pequeñas , Triptófano Sintasa/antagonistas & inhibidores , Regulación Alostérica , Antituberculosos/síntesis química , Antituberculosos/química , Antituberculosos/farmacología , Azetidinas/farmacología , Sitios de Unión , Cristalografía por Rayos X , Sistemas de Liberación de Medicamentos , Mycobacterium tuberculosis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
4.
PLoS Pathog ; 10(2): e1003946, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586159

RESUMEN

Mycobacterium tuberculosis remains a significant threat to global health. Macrophages are the host cell for M. tuberculosis infection, and although bacteria are able to replicate intracellularly under certain conditions, it is also clear that macrophages are capable of killing M. tuberculosis if appropriately activated. The outcome of infection is determined at least in part by the host-pathogen interaction within the macrophage; however, we lack a complete understanding of which host pathways are critical for bacterial survival and replication. To add to our understanding of the molecular processes involved in intracellular infection, we performed a chemical screen using a high-content microscopic assay to identify small molecules that restrict mycobacterial growth in macrophages by targeting host functions and pathways. The identified host-targeted inhibitors restrict bacterial growth exclusively in the context of macrophage infection and predominantly fall into five categories: G-protein coupled receptor modulators, ion channel inhibitors, membrane transport proteins, anti-inflammatories, and kinase modulators. We found that fluoxetine, a selective serotonin reuptake inhibitor, enhances secretion of pro-inflammatory cytokine TNF-α and induces autophagy in infected macrophages, and gefitinib, an inhibitor of the Epidermal Growth Factor Receptor (EGFR), also activates autophagy and restricts growth. We demonstrate that during infection signaling through EGFR activates a p38 MAPK signaling pathway that prevents macrophages from effectively responding to infection. Inhibition of this pathway using gefitinib during in vivo infection reduces growth of M. tuberculosis in the lungs of infected mice. Our results support the concept that screening for inhibitors using intracellular models results in the identification of tool compounds for probing pathways during in vivo infection and may also result in the identification of new anti-tuberculosis agents that work by modulating host pathways. Given the existing experience with some of our identified compounds for other therapeutic indications, further clinically-directed study of these compounds is merited.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Macrófagos/metabolismo , Macrófagos/parasitología , Mycobacterium tuberculosis , Tuberculosis/metabolismo , Animales , Antituberculosos/farmacología , Modelos Animales de Enfermedad , Ensayos Analíticos de Alto Rendimiento , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
5.
Proc Natl Acad Sci U S A ; 110(28): 11565-70, 2013 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-23798446

RESUMEN

Infection with the bacterial pathogen Mycobacterium tuberculosis imposes an enormous burden on global public health. New antibiotics are urgently needed to combat the global tuberculosis pandemic; however, the development of new small molecules is hindered by a lack of validated drug targets. Here, we describe the identification of a 4,6-diaryl-5,7-dimethyl coumarin series that kills M. tuberculosis by inhibiting fatty acid degradation protein D32 (FadD32), an enzyme that is required for biosynthesis of cell-wall mycolic acids. These substituted coumarin inhibitors directly inhibit the acyl-acyl carrier protein synthetase activity of FadD32. They effectively block bacterial replication both in vitro and in animal models of tuberculosis, validating FadD32 as a target for antibiotic development that works in the same pathway as the established antibiotic isoniazid. Targeting new steps in well-validated biosynthetic pathways in antitubercular therapy is a powerful strategy that removes much of the usual uncertainty surrounding new targets and in vivo clinical efficacy, while circumventing existing resistance to established targets.


Asunto(s)
Proteínas Bacterianas/efectos de los fármacos , Cumarinas/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Ácidos Micólicos/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Ratones , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/metabolismo , Pez Cebra
6.
mBio ; 14(1): e0361122, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36749098

RESUMEN

Tuberculosis (TB) remains a leading cause of morbidity and mortality worldwide. To date, the mainstay of vaccination involves the use of Mycobacterium bovis bacillus Calmette-Guérin (BCG), a live-attenuated vaccine that confers protection against extrapulmonary disease in infants and children but not against lung disease. Thus, there is an urgent need for novel vaccines. Here, we show that a multicomponent acellular vaccine (TB-MAPS) induces robust antibody responses and long-lived systemic and tissue-resident memory Th1, Th17, and cytotoxic CD4+ and CD8+ T cells, and promotes trained innate immunity mediated by γδT and NKT cells in mice. When tested in a mouse aerosol infection model, TB-MAPS significantly reduced bacterial loads in the lungs and spleens to the same extent as BCG. When used in conjunction with BCG, TB-MAPS further enhanced BCG-mediated protection, especially in the lungs, further supporting this construct as a promising TB vaccine candidate. IMPORTANCE Tuberculosis (TB) remains a leading cause of morbidity and mortality worldwide. Here, we evaluate a novel vaccine which induces a broad immune response to Mycobacterium tuberculosis including robust antibody responses and long-lived systemic and tissue-resident memory Th1, Th17, and cytotoxic CD4+ and CD8+ T cells. When tested in a mouse aerosol infection model, this vaccine significantly reduced bacterial loads in the lungs and spleens to the same extent as BCG. When used in conjunction with BCG, TB-MAPS further enhanced BCG-mediated protection, especially in the lungs, further supporting this construct as a promising TB vaccine candidate.


Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Animales , Ratones , Vacuna BCG , Linfocitos T CD8-positivos , Tuberculosis/prevención & control , Antígenos Bacterianos
7.
Proc Natl Acad Sci U S A ; 106(44): 18792-7, 2009 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-19846780

RESUMEN

The Esx secretion pathway is conserved across Gram-positive bacteria. Esx-1, the best-characterized system, is required for virulence of Mycobacterium tuberculosis, although its precise function during infection remains unclear. Esx-3, a paralogous system present in all mycobacterial species, is required for growth in vitro. Here, we demonstrate that mycobacteria lacking Esx-3 are defective in acquiring iron. To compete for the limited iron available in the host and the environment, these organisms use mycobactin, high-affinity iron-binding molecules. In the absence of Esx-3, mycobacteria synthesize mycobactin but are unable to use the bound iron and are impaired severely for growth during macrophage infection. Mycobacteria thus require a specialized secretion system for acquiring iron from siderophores.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Mycobacterium/metabolismo , Oxazoles/metabolismo , Animales , Proteínas Bacterianas/genética , Genoma Bacteriano/genética , Hierro/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Ratones , Mutación/genética , Mycobacterium/genética , Mycobacterium/crecimiento & desarrollo , Infecciones por Mycobacterium/microbiología , Oxazoles/química , Unión Proteica/efectos de los fármacos , Vías Secretoras/efectos de los fármacos , Sideróforos/biosíntesis , Transcripción Genética/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
8.
Tuberculosis (Edinb) ; 86(3-4): 314-8, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16644284

RESUMEN

Recent advances in functional and comparative genomics have improved our understanding of genetic diversity among the Mycobacterium tuberculosis complex. In this study, we investigated the genetic polymorphism of M. tuberculosis using whole-genome microarray analysis. Amplified fragments of 15 M. tuberculosis strains (from two different geographical origins) and the reference strain H37Rv were produced by random amplification of polymorphic DNA (RAPD) using three different primers. The RAPD products were labeled with fluorescent dyes (Cy3 and Cy5) and hybridized to a TB DNA microarray representing nearly all open reading frames (ORFs) of H37Rv. The final results were analyzed using bioinformatic tools. Some genetic variability was found among the 16 M. tuberculosis strains. The majority of the highly polymorphic DNA sequences were observed in ORFs representing non-essential genes of the bacterium. The future use of comparative genomics based on DNA microarray technology should prove a powerful tool for understanding phenotypic variability among M. tuberculosis isolates of similar genetic composition. It is also a promising approach to provide important insights into evolution, virulence and pathogenesis of M. tuberculosis.


Asunto(s)
Variación Genética , Mycobacterium tuberculosis/genética , ADN Bacteriano/genética , Mycobacterium tuberculosis/clasificación , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Sistemas de Lectura Abierta , Polimorfismo Genético , Técnica del ADN Polimorfo Amplificado Aleatorio
9.
PLoS One ; 4(7): e6116, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19568431

RESUMEN

BACKGROUND: Tuberculosis (TB) is the largest cause of death in human immunodeficiency virus type 1 (HIV-1) infection, having claimed an estimated one third to one half of the 30 million AIDS deaths that have occurred worldwide. Different strains of Mycobacterium tuberculosis (MTb), the causative agent of TB, are known to modify the host immune response in a strain-specific manner. However, a MTb strain-specific impact upon the regulation of HIV-1 replication has not previously been established. METHODOLOGY/PRINCIPAL FINDINGS: [corrected] We isolated normal human peripheral blood mononuclear cells (PBMC) and co-infected them with HIV-1 and with either the well characterized CDC1551 or HN878 MTb clinical isolate. We show that HIV-1 co-infection with the CDC1551 MTb strain results in higher levels of virus replication relative to co-infection with the HN878 MTb strain ex vivo. Furthermore, we show that the distinct pattern of CDC1551 or HN878 induced HIV-1 replication is associated with significantly increased levels of TNF and IL-6, and of the transcription and nuclear translocation of the p65 subunit of the transcription factor NF-kappaB, by CDC1551 relative to HN878. CONCLUSIONS/SIGNIFICANCE: These results provide a precedent for TB strain-specific effects upon HIV-1 replication and thus for TB strain-specific pathogenesis in the outcome of HIV-1/TB co-infection. MTb strain-specific factors and mechanisms involved in the regulation of HIV-1 during co-infection will be of importance in understanding the basic pathogenesis of HIV-1/TB co-infection.


Asunto(s)
VIH-1/fisiología , Mycobacterium tuberculosis/fisiología , Replicación Viral/fisiología , Transporte Biológico , Núcleo Celular/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Humanos , Interleucina-6/biosíntesis , Monocitos/microbiología , Monocitos/virología , Mycobacterium tuberculosis/clasificación , Especificidad de la Especie , Transcripción Genética , Factor de Necrosis Tumoral alfa/biosíntesis
10.
Antimicrob Agents Chemother ; 49(11): 4778-80, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16251329

RESUMEN

We compared the efficacies of 17 agents against rapidly growing and starved Mycobacterium tuberculosis H37Rv. Few compounds have significant activity at attainable concentrations. However, two phenothiazine compounds at similar concentrations were bactericidal for starved and growing cells. These drugs appear to target a process important in both replicating and nonreplicating bacteria.


Asunto(s)
Antibacterianos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/crecimiento & desarrollo , Fenotiazinas/farmacología
11.
Antimicrob Agents Chemother ; 46(2): 443-50, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11796356

RESUMEN

The World Health Organization has identified India as a major hot-spot region for Mycobacterium tuberculosis infection. We have characterized the sequences of the loci associated with multidrug resistance in 126 clinical isolates of M. tuberculosis from India to identify the respective mutations. The loci selected were rpoB (rifampin), katG and the ribosomal binding site of inhA (isoniazid), gyrA and gyrB (ofloxacin), and rpsL and rrs (streptomycin). We found known as well as novel mutations at these loci. Few of the mutations at the rpoB locus could be correlated with the drug resistance levels exhibited by the M. tuberculosis isolates and occurred with frequencies different from those reported earlier. Missense mutations at codons 526 to 531 seemed to be crucial in conferring a high degree of resistance to rifampin. We identified a common Arg463Leu substitution in the katG locus and certain novel insertions and deletions. Mutations were also mapped in the ribosomal binding site of the inhA gene. A Ser95Thr substitution in the gyrA locus was the most common mutation observed in ofloxacin-resistant isolates. A few isolates showed other mutations in this locus. Seven streptomycin-resistant isolates had a silent mutation at the lysine residue at position 121. While certain mutations are widely present, pointing to the magnitude of the polymorphisms at these loci, others are not common, suggesting diversity in the multidrug-resistant M. tuberculosis strains prevalent in this region. Our results additionally have implications for the development of methods for multidrug resistance detection and are also relevant in the shaping of future clinical treatment regimens and drug design strategies.


Asunto(s)
Resistencia a Múltiples Medicamentos/genética , Genes Bacterianos , Mycobacterium tuberculosis/genética , Proteínas de Plantas/genética , Secuencia de Bases , Girasa de ADN/genética , ADN Bacteriano/análisis , ARN Polimerasas Dirigidas por ADN , Diseño de Fármacos , Humanos , India , Datos de Secuencia Molecular , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA