Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Biodivers ; 20(12): e202301268, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37843082

RESUMEN

Interstitial Cystitis (IC) is a chronic inflammatory disease that lacks effective treatment. The present study aimed to investigate the potential of aqueous ethanol extract of Cuminum cyminum (AEECC) on oxidative stress, inflammation and overactivity of urinary bladder induced by cyclophosphamide (CYP). Female Sprague-Dawley rats received intraperitoneal administration of cyclophosphamide (150 mg/kg, i. p. 1st , 4th , and 7th days). To investigate the urothelial damage, the bladder weight, nociception behavior, and Evans blue dye extravasation method was used. The antioxidants CAT, GPX and NO were measured. ELISA determined the IL-6 and TNF-α levels. The spasmolytic effect of AEECC was investigated on isolated bladder strips and its mechanisms were determined. The enhanced nociception behavior, bladder weight, vascular permeability, edema, hemorrhage, nitric oxide, IL-6 and TNF-α levels by CYP administration were significantly reduced by AEECC (250 and 500 mg/kg). A significant increase in serum antioxidant system such as CAT and GPx was also observed in AEECC-treated rats. The AEECC (3 mg/ml) significantly reduced urinary bladder tone in the strips pre-contracted with carbachol in both control and CYP-treated rats. This relaxation was demolished by atropine, nifedipine, glibenclamide, and indomethacin but not with propranolol. The plant extract showed the presence of antioxidant and anti-inflammatory phytochemicals. These results suggest that Cuminum cyminum offers uroprotective activity and can ameliorate CYP-induced bladder toxicity by modulating antioxidant parameters, pro-inflammatory cytokine levels and bladder smooth muscle overactivity. The in silico binding interactions of antioxidant 2I3Y and anti-inflammatory protein 1TNF with various ligands from Cuminum cyminum seeds revealed potential bioactive compounds with promising antioxidant and anti-inflammatory properties, providing valuable insights for drug development and nutraceutical research.


Asunto(s)
Cuminum , Cistitis , Ratas , Animales , Vejiga Urinaria , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Cistitis/inducido químicamente , Cistitis/tratamiento farmacológico , Citocinas , Factor de Necrosis Tumoral alfa , Interleucina-6 , Ratas Sprague-Dawley , Ciclofosfamida/toxicidad , Antiinflamatorios/farmacología
2.
Chem Biodivers ; 20(12): e202301190, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37963090

RESUMEN

The Epidermal Growth Factor Receptor (EGFR) is an important therapeutic target for the treatment of a variety of epithelial malignancies, including breast cancer, in which EGFR is aberrantly expressed.The fluorocyclopentenyl-purine-pyrimidines derivatives, which have previously been described as powerful compounds against breast cancer, were selected to investigate their potential against EGFR using computational tools in an effort to obtain potent inhibitors with fewer adverse effects. The molecule's chemical reactivity and stability were assessed by determining the HOMO-LUMO energy gap using density functional theory (DFT) calculations. Among all the selected compounds, PU4 displayed a HOMO-LUMO gap of 0.191 eV. Additionally, molecular docking analysis was performed to assess the binding affinities of PU4 within the active pocket of EGFR-TK. The compound PU4 showed potent interactions with EGFR exhibiting -32.3 kJ/mol binding energy which was found best as compared to gefitinib i. e., -27.4 kJ/mol which was further validated by molecular dynamics simulations and ADMET analysis. The results of these analyses indicate that the top hits obtained from the virtual screening possess the ability to act as effective EGFR inhibitor. Therefore, it is recommended to further investigate the inhibitory potential of these identified compounds using in vitro and in vivo approaches.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Receptores ErbB/metabolismo , Simulación de Dinámica Molecular , Purinas , Pirimidinas/farmacología , Pirimidinas/química
3.
AAPS PharmSciTech ; 24(6): 141, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349629

RESUMEN

Inhibition of melanogenesis by quercetin and vitamin E is extensively reported in the literature, independently, with limitations in antioxidant potential owing to less permeation, solubility, decreased bioavailability, and reduced stability. Thus, the aim of the present study was to synthesize a novel complex of metal ions (copper and zinc) with quercetin to enhance antioxidant properties which were confirmed by docking studies. Polycaprolactone-based nanoparticles of the synthesized complex (PCL-NPs, Q-PCL-NPs, Zn-Q-PCL-NPs, Cu-Q-PCL-NPs) were made later loaded with vitamin E which made the study more interesting in enhancing antioxidant profile. Nanoparticles were characterized for zeta size, charge, and polydispersity index, while physiochemical analysis of nanoparticles was strengthened by FTIR. Cu-Q-PCL-NPs-E showed maximum in vitro release of vitamin E, i.e., 80 ± 0.54%. Non-cellular antioxidant effect by 2,2-diphenyl-1-picrylhydrazyl was observed at 93 ± 0.23% in Cu-Q-PCL-NPs-E which was twofold as compared to Zn-Q-PCL-NPs-E. Michigan Cancer Foundation-7 (MCF-7) cancer cell lines were used to investigate the anticancer and cellular antioxidant profile of loaded and unloaded nanoparticles. Results revealed reactive oxygen species activity of 90 ± 0.32% with the addition of 89 ± 0.64% of its anticancer behavior shown by Cu-Q-PCL-NPs-E after 6 and 24h. Similarly, 80 ± 0.53% inhibition of melanocyte cells and 95 ± 0.54% increase of keratinocyte cells were also shown by Cu-Q-PCL-NPs-E that confirmed the tyrosinase enzyme inhibitory effect. Conclusively, the use of zinc and copper complex in unloaded and vitamin E-loaded nanoparticles can provide enhanced antioxidant properties with inhibition of melanin, which can be used for treating diseases of melanogenesis.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Antioxidantes/farmacología , Vitamina E/química , Quercetina/farmacología , Cobre , Nanopartículas/química
4.
Angew Chem Int Ed Engl ; 62(32): e202305925, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37264744

RESUMEN

It is challenging to achieve stable and efficient radical emissions under ambient conditions. Herein, we present a rational design strategy to protect photoinduced carbonyl free radical emission through electrostatic interaction and spin delocalization effects. The host-guest system is constructed from tricarbonyl-substituted benzene molecules and a series of imidazolium ionic liquids as the guest and host, respectively, whereby the carbonyl anion radical emission can be in situ generated under the light irradiation and further stabilized by electrostatic interaction. More importantly, the anion species and the alkyl chain length of imidazolium ionic liquids show a noticeable effect on luminescence efficiency, with the highest radical emission efficiency is as high as 53.3 % after optimizing the imidazole ionic liquid's structure, which is about four times higher than the polymer-protected radical system. Theoretical calculations confirm the synergistic effect of strong electrostatic interactions and that the spin delocalization effect significantly stabilizes the radical emission. Moreover, such a radical emission system also could be integrated with a fluorescent dye to induce multi-color or even white light emission with reversible temperature-responsive characteristics. The radical emission system can also be used to detect different amine compounds on the basis of the emission changes and photoactivation time.

5.
Phys Chem Chem Phys ; 24(3): 1722-1735, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34984424

RESUMEN

The design of materials with enhanced luminescence properties is a fast-developing field due to the potential applicability of these materials as light-emitting diodes or for bioimaging. A transparent way to enhance the emission properties of interesting molecular candidates is blocking competing and unproductive non-radiative relaxation pathways by the restriction of intramolecular motions. Rationalized functionalization is an important possibility to achieve such restrictions. Using time-dependent density functional theory (TD-DFT) based on the ωB97XD functional and the semiempirical tight-binding method including long-range corrections (TD-LC-DFTB), this work investigates the effect of functionalization of the paradigmatic tetraphenylethylene (TPE) on achieving restricted access to conical intersections (RACI). Photodynamical surface hopping simulations have been performed on a larger set of compounds including TPE and ten functionalized TPE compounds. Functionalization has been achieved by means of electron-withdrawing groups, bulky groups which block the relaxation channels via steric hindrance and groups capable of forming strong hydrogen bonds, which restrict the motion via the formation of hydrogen bond channels. Most of the investigated functionalized TPE candidates show ultrafast deactivation to the ground state due to their still existing structural flexibility, but two examples, one containing -CN and -CF3 groups and a second characterized by a network of hydrogen bonds, have been identified as interesting candidates for creating efficient luminescence properties in solution.

6.
Molecules ; 27(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35807227

RESUMEN

Both members of the aldo-keto reductases (AKRs) family, AKR1B1 and AKR1B10, are over-expressed in various type of cancer, making them potential targets for inflammation-mediated cancers such as colon, lung, breast, and prostate cancers. This is the first comprehensive study which focused on the identification of phenylcarbamoylazinane-1, 2,4-triazole amides (7a−o) as the inhibitors of aldo-keto reductases (AKR1B1, AKR1B10) via detailed computational analysis. Firstly, the stability and reactivity of compounds were determined by using the Guassian09 programme in which the density functional theory (DFT) calculations were performed by using the B3LYP/SVP level. Among all the derivatives, the 7d, 7e, 7f, 7h, 7j, 7k, and 7m were found chemically reactive. Then the binding interactions of the optimized compounds within the active pocket of the selected targets were carried out by using molecular docking software: AutoDock tools and Molecular operation environment (MOE) software, and during analysis, the Autodock (academic software) results were found to be reproducible, suggesting this software is best over the MOE (commercial software). The results were found in correlation with the DFT results, suggesting 7d as the best inhibitor of AKR1B1 with the energy value of −49.40 kJ/mol and 7f as the best inhibitor of AKR1B10 with the energy value of −52.84 kJ/mol. The other potent compounds also showed comparable binding energies. The best inhibitors of both targets were validated by the molecular dynamics simulation studies where the root mean square value of <2 along with the other physicochemical properties, hydrogen bond interactions, and binding energies were observed. Furthermore, the anticancer potential of the potent compounds was confirmed by cell viability (MTT) assay. The studied compounds fall into the category of drug-like properties and also supported by physicochemical and pharmacological ADMET properties. It can be suggested that the further synthesis of derivatives of 7d and 7f may lead to the potential drug-like molecules for the treatment of colon cancer associated with the aberrant expression of either AKR1B1 or AKR1B10 and other associated malignancies.


Asunto(s)
Aldo-Ceto Reductasas , Amidas , Neoplasias del Colon , Triazoles , Aldo-Ceto Reductasas/antagonistas & inhibidores , Aldo-Ceto Reductasas/metabolismo , Amidas/farmacología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/enzimología , Humanos , Simulación del Acoplamiento Molecular , Triazoles/farmacología
7.
Molecules ; 27(13)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35807344

RESUMEN

NIMA-related kinase7 (NEK7) plays a multifunctional role in cell division and NLRP3 inflammasone activation. A typical expression or any mutation in the genetic makeup of NEK7 leads to the development of cancer malignancies and fatal inflammatory disease, i.e., breast cancer, non-small cell lung cancer, gout, rheumatoid arthritis, and liver cirrhosis. Therefore, NEK7 is a promising target for drug development against various cancer malignancies. The combination of drug repurposing and structure-based virtual screening of large libraries of compounds has dramatically improved the development of anticancer drugs. The current study focused on the virtual screening of 1200 benzene sulphonamide derivatives retrieved from the PubChem database by selecting and docking validation of the crystal structure of NEK7 protein (PDB ID: 2WQN). The compounds library was subjected to virtual screening using Auto Dock Vina. The binding energies of screened compounds were compared to standard Dabrafenib. In particular, compound 762 exhibited excellent binding energy of -42.67 kJ/mol, better than Dabrafenib (-33.89 kJ/mol). Selected drug candidates showed a reactive profile that was comparable to standard Dabrafenib. To characterize the stability of protein-ligand complexes, molecular dynamic simulations were performed, providing insight into the molecular interactions. The NEK7-Dabrafenib complex showed stability throughout the simulated trajectory. In addition, binding affinities, pIC50, and ADMET profiles of drug candidates were predicted using deep learning models. Deep learning models predicted the binding affinity of compound 762 best among all derivatives, which supports the findings of virtual screening. These findings suggest that top hits can serve as potential inhibitors of NEK7. Moreover, it is recommended to explore the inhibitory potential of identified hits compounds through in-vitro and in-vivo approaches.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Aprendizaje Profundo , Neoplasias Pulmonares , Descubrimiento de Drogas , Detección Precoz del Cáncer , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Quinasas Relacionadas con NIMA
8.
Angew Chem Int Ed Engl ; 61(48): e202213051, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36208080

RESUMEN

How to utilize molecular vibration to tune triplet-involved emissions in multiple states is highly challenging. Here, star-shaped triphenylamine derivatives have been employed as model systems to understand how molecular vibration affects thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) emissions in multiple states. Nonplanar, star-shaped conformations allow molecules to generate appropriate vibrations in the solution state, facilitating vibronic coupling between their T1 and T2 states to generate effective TADF. More importantly, a relatively dispersed state can allow the molecules to efficiently vibrate in the solid state, and a crystalline environment further promotes a more efficient TADF. Lastly, by suppressing molecular vibration to inhibit the TADF, ultra-long RTP was observed upon doping these molecules into polymers. These molecules can be used in information encryption and storage as well as bioimaging.


Asunto(s)
Vibración , Fluorescencia
9.
J Phys Chem A ; 125(26): 5765-5778, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34165983

RESUMEN

3-Hydroxyflavon (3-HF) represents an interesting paradigmatic compound to study excited-state intramolecular proton transfer (ESIPT) and intermolecular (ESInterPT) processes to explain the experimentally observed dual fluorescence in solvents containing protic contamination (water) as opposed to single fluorescence in highly purified nonpolar solvents. In this work, adiabatic on-the-fly molecular dynamics simulations have been performed for isolated 3-HF in an aqueous solution using a polarizable continuum model and including explicit water molecules to represent adequately hydrogen bonding. For the calculation of the excited state, time-dependent density functional theory and the Becke-3-Lee-Yang-Parr (B3LYP) functional have been used. For the isolated 3-HF, ultrafast ESIPT from the enol group to the neighboring keto group has been observed. The calculated PT time of 48 fs agrees well with the experimental value of 39 fs. Addition of one water molecule quenches this ESIPT process but shows an intermolecular concerted or stepwise tautomerization process via the bridging water molecule. Adding a second or more water molecules inhibits this ESInterPT process to a large degree. Most of the trajectories do not show any PT, preserving the initial excited-state enol structure, which is the origin of the violet-blue fluorescence appearing in the solvents contaminated with protic components.

10.
J Phys Chem A ; 124(17): 3347-3357, 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32243162

RESUMEN

Surface hopping quantum mechanical/molecular dynamics simulations have been performed for the tetracyanoethylene-anthracene complex to investigate the evolution of charge-transfer (CT) states after excitation into a locally excited (LE) state of anthracene. The scaled opposite-spin (SOS) second-order algebraic diagrammatic construction (SOS-ADC(2)) has been used to achieve a balanced description of LE and CT states. The calculations have been performed for two media, the gas phase and water (described by molecular mechanics, MM). The two dynamics variants show strongly different behaviors. Even though in both cases the conversion from the LE state to lower-lying CT states occurs with 100 fs, in the gas phase, the system remains in the excited state for longer than 2 ps, while in water, it returns to the ground state within 0.5 ps. Moreover, while in the gas phase the original neutral equilibrium structure should be recovered, in water, the ion-pair (IPr) CT state is strongly stabilized, creating a new competing ground-state isomer. Thus, we predict that the ground state of the complex in water should be composed of two species, the original neutral state and an IPr state. The existence of an IPr ground state in strongly polar environments opens interesting possibilities for the design of efficient charge-separating organic donor-acceptor interfaces.

11.
Photochem Photobiol Sci ; 18(8): 1972-1981, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31259994

RESUMEN

Betalains are natural plant pigments found in certain plants belonging to the order Caryophyllales. This work presents theoretical calculations on the excited state properties of three betalains: betanin, an almost non-fluorescent natural betacyanin; indicaxanthin, a weakly fluorescent natural betaxanthin; and cBeet120, a synthetic betaxanthin fluorescence probe that is also weakly fluorescent. Calculations at the algebraic diagrammatic construction (ADC (2)) level of theory, combined with the conductor-like screening model (COSMO) to simulate solvent effects, predict absorption spectra in good agreement with experiment for all three of these betalains. Several distinct theoretical approaches identify torsions of the molecular geometry that can lead to conical intersections between the excited singlet (S1) and ground state (S0) potential surfaces and identify probable geometries at the minimum on the crossing seam (MXS). The present results thus emphasize the central role played by torsional modes in determining the fluorescence properties of natural betalains and of most synthetic betalain analogs as well. A direct implication of the results is that the fluorescence quantum yields of natural or synthetic betalains can potentially be enhanced by introducing structural modifications that permit the molecule to avoid these MXS geometries and/or by incorporation into a more rigid environment that hinders the specific bond rotations involved in the non-radiative relaxation of the excited state.


Asunto(s)
Betalaínas/química , Fluorescencia , Colorantes Fluorescentes/química , Betalaínas/síntesis química , Caryophyllales/química , Teoría Funcional de la Densidad , Colorantes Fluorescentes/síntesis química , Conformación Molecular
12.
Photochem Photobiol Sci ; 18(1): 45-53, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30462141

RESUMEN

There is increasing interest in using natural colorants like anthocyanins in cosmetics, food and pharmaceuticals as replacements for synthetic colorants. During the maturation of red wines, the anthocyanin pigments contained in grapes are transformed via reaction with copigments and metabolic products into pyranoanthocyanins, responsible in part for the final color of the wine. In order to understand structural effects on the absorption spectra of pyranoanthocyanins, the calculated excited state energies and spectroscopic states of a series of substitued pyranoflavylium cation analogs of pyranoanthocyanins have been compared to experimental spectroscopic data for these compounds. The vertical excitation energies, calculated by using the ADC(2) approach, gave excellent agreement with the experimental UV-Vis spectra and the nature of the lowest excited state correlates with the observed photophysical behavior in solution. The present results thus provide a basis for the design of new pyranoflavylium chromophores with the desired colors and photophysics, as well as for understanding the analogous properties of natural pyranoanthocyanin pigments in red wine.

13.
PLoS One ; 19(5): e0303060, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38723008

RESUMEN

In the current study we investigated the impact of combination of rutin and vitamin A on glycated products, the glyoxalase system, oxidative markers, and inflammation in animals fed a high-fat high-fructose (HFFD) diet. Thirty rats were randomly divided into six groups (n = 5). The treatments, metformin (120 mg/kg), rutin (100 mg/kg), vitamin A (43 IU/kg), and a combination of rutin (100 mg/kg) and vitamin A (43 IU/kg) were given to relevant groups of rats along with high-fructose high-fat diet for 42 days. HbA1c, D-lactate, Glyoxylase-1, Hexokinase 2, malondialdehyde (MDA), glutathione peroxidase (GPx), catalase (CAT), nuclear transcription factor-B (NF-κB), interleukin-6 (IL-6), interleukin-8 (IL-8) and histological examinations were performed after 42 days. The docking simulations were conducted using Auto Dock package. The combined effects of rutin and vitamin A in treated rats significantly (p < 0.001) reduced HbA1c, hexokinase 2, and D-lactate levels while preventing cellular damage. The combination dramatically (p < 0.001) decreased MDA, CAT, and GPx in treated rats and decreased the expression of inflammatory cytokines such as IL-6 andIL-8, as well as the transcription factor NF-κB. The molecular docking investigations revealed that rutin had a strong affinity for several important biomolecules, including as NF-κB, Catalase, MDA, IL-6, hexokinase 2, and GPx. The results propose beneficial impact of rutin and vitamin A as a convincing treatment strategy to treat AGE-related disorders, such as diabetes, autism, alzheimer's, atherosclerosis.


Asunto(s)
Dieta Alta en Grasa , Fructosa , Hiperglucemia , Inflamación , Estrés Oxidativo , Rutina , Vitamina A , Animales , Rutina/farmacología , Estrés Oxidativo/efectos de los fármacos , Fructosa/efectos adversos , Ratas , Dieta Alta en Grasa/efectos adversos , Vitamina A/farmacología , Vitamina A/metabolismo , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/patología , Masculino , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Hiperglucemia/inducido químicamente , Simulación del Acoplamiento Molecular , Ratas Wistar , Modelos Animales de Enfermedad , Glicosilación/efectos de los fármacos , Metformina/farmacología , Hemoglobina Glucada/metabolismo , FN-kappa B/metabolismo , Hexoquinasa/metabolismo , Catalasa/metabolismo
14.
Front Chem ; 12: 1380266, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576849

RESUMEN

Introduction: Cancer is the second most prevalent cause of mortality in the world, despite the availability of several medications for cancer treatment. Therefore, the cancer research community emphasized on computational techniques to speed up the discovery of novel anticancer drugs. Methods: In the current study, QSAR-based virtual screening was performed on the Zinc15 compound library (271 derivatives of methotrexate (MTX) and phototrexate (PTX)) to predict their inhibitory activity against dihydrofolate reductase (DHFR), a potential anticancer drug target. The deep learning-based ADMET parameters were employed to generate a 2D QSAR model using the multiple linear regression (MPL) methods with Leave-one-out cross-validated (LOO-CV) Q2 and correlation coefficient R2 values as high as 0.77 and 0.81, respectively. Results: From the QSAR model and virtual screening analysis, the top hits (09, 27, 41, 68, 74, 85, 99, 180) exhibited pIC50 ranging from 5.85 to 7.20 with a minimum binding score of -11.6 to -11.0 kcal/mol and were subjected to further investigation. The ADMET attributes using the message-passing neural network (MPNN) model demonstrated the potential of selected hits as an oral medication based on lipophilic profile Log P (0.19-2.69) and bioavailability (76.30% to 78.46%). The clinical toxicity score was 31.24% to 35.30%, with the least toxicity score (8.30%) observed with compound 180. The DFT calculations were carried out to determine the stability, physicochemical parameters and chemical reactivity of selected compounds. The docking results were further validated by 100 ns molecular dynamic simulation analysis. Conclusion: The promising lead compounds found endorsed compared to standard reference drugs MTX and PTX that are best for anticancer activity and can lead to novel therapies after experimental validations. Furthermore, it is suggested to unveil the inhibitory potential of identified hits via in-vitro and in-vivo approaches.

15.
ACS Omega ; 9(1): 1143-1155, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222658

RESUMEN

The present study was carried out to investigate the antioxidant effect of ascorbic acid on omeprazole (O.P.)-induced acute kidney infection (AKI). Design of experiment (DoE) was employed to fabricate formulations (P1-P8) by the extrusion spheronization technique, and they were evaluated using various analytical techniques. P1-P8 formulations have % drug loading ranging from 56.34 ± 1.10 to 98.67 ± 1.05%, encapsulation efficiency from 70.98 ± 0.96 to 98.67 ± 1.05%, percentage drug release varying from 36.56 ± 1.34 to 93.45 ± 1.45%, Hausner's ratio ranging from 1.026 ± 0.05 to 1.065 ± 0.02%, and Carr's index varying from 2.3 ± 0.07 to 6.1 ± 0.06 g/mL. The optimized formulation (P6) was dual-coated with Eudragit L-100 (5% w/v) and ascorbic acid (2% w/v). A smooth uniform morphology was found after coating, and particle size nonsignificantly changed from 85.31 ± 77.43 to 101.99 ± 65.56 µm. IR spectra showed omeprazole characteristic peaks confirming drug loading, and peaks at 1747.40 and 1611.51 cm-1 confirmed ascorbic acid and Eudragit L-100 coating. X-ray diffraction (XRD) analysis confirmed the crystalline nature, and thermal degradation studies until 500 °C demonstrated increased stability after coating. Cytotoxicity analysis with 97% cell viability revealed the nontoxic behavior of pellets. In vitro dissolution studies of coated pellets showed <20% drug release at pH 1.2 and 99.54% at pH 6.8. Animal studies showed that pure omeprazole showed a nonsignificant decrease in weight, urine output, and fecal output compared to rodents on ascorbic acid pellets. Increased uric acid and creatinine levels in the group on pure omeprazole indicated AKI. Histopathological studies of renal cells also supported these results. The integration of experimental pellet formulation with molecular docking simulations has unveiled the potential of ascorbic acid and omeprazole as highly promising therapeutic agents for addressing oxidative stress and inflammation.

16.
Biomed Pharmacother ; 170: 115935, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38101280

RESUMEN

Chemical kindling is broadly used experimental model to investigate novel treatments on the process of epileptogenesis and coexisting behavioral comorbidities. The current study aimed to investigate the low dose perampanel (PER) (0.125 and 0.5 mg/kg) and pregabalin (PG) (15 mg/kg) as standalone treatments and in combination on kindling-induced seizure progression with concurrent electroencephalographic alterations. Mice were subjected to pentylenetetrazole (PTZ)-induced kindling followed by neurobehavioral assessment for anxiety-like activity and cognitive deficit through behavioral experiments. The monotherapy with PER at 0.5 mg/kg and PG at 15 mg/kg delayed the kindling process but PRP+PG yielded pronounced benefits and hindered the development of seizures of higher severity. PER+PG combination relieved the animals from anxiety-like behavior in various employed anxiogenic tests. Furthermore, the kindling-associated cognitive deficit was protected by PER+PG combination as increased alteration behavior, discrimination index and latencies to enter the dark zone were noted in y-maze, object recognition and passive avoidance tests, respectively while shorter escape latencies were noted in water maze. The brain samples of kindled mice had elevated malondialdehyde and reduced catalase, superoxide dismutase and glutathione peroxidase enzymes while treatment with PER and PG combination shielded the mice from heightened kindling-associated oxidative stress. Overall, the findings of the present study illustrate that concurrent administration of PER and PG effectively hindered the process of epileptogenesis by protecting neuronal excitability and brain oxidative stress. The results predict the dominance of PER and PG combination over monotherapy which might serve as an effective novel combination to combat drug resistance and behavioral disorders in epileptic patients.


Asunto(s)
Epilepsia , Excitación Neurológica , Humanos , Ratones , Animales , Pentilenotetrazol/farmacología , Pregabalina/efectos adversos , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Epilepsia/tratamiento farmacológico , Estrés Oxidativo , Anticonvulsivantes/efectos adversos
17.
Int Immunopharmacol ; 126: 111259, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37992446

RESUMEN

Multiple studies in the literature have demonstrated that synthetic compounds containing heterocyclic rings possess a reparative potential against acute and chronic inflammation. In the present study, two novel thiosemicarbazone derivatives based on l-ethyl-6-(thiophen-2-yl)indoline-2,3-dione with different phenyl substituted thiosemicarbazides were synthesized by condensation reaction and the structures of proposed target compounds (KP-2 and KP-5) were confirmed by UV-VIS, FTIR, 1H-NMR and 13C-NMR. In-vitro anti-inflammatory behavior of KP-2 and KP-5 was confirmed by bovine serum albumin (BSA) and ovine serum albumin (OSA) analysis. Acute and chronic anti-inflammatory potential of synthesized compounds were evaluated by using carrageenan and complete Freund's adjuvant (CFA) as inflammation-inducing agents, respectively. Inhibition of pro-inflammatory mediators and prevention of protein denaturation owing to synchronization of more electronegative flouro-groups substituted on phenyl rings along with heterocyclic indoline ring provides anti-inflammatory effects and are corroborated by radiological, histopathological analysis. Additional support was provided through density functional theory (DFT) and molecular docking. KP-5 exhibited excellent lead-likeness based on its physicochemical parameters, making it a viable drug candidate. The synthesized compounds also showed promising ADMET properties, enhancing their potential as therapeutic agents. These findings emphasize the pivotal role of new compounds for drug design and development.


Asunto(s)
Tiosemicarbazonas , Animales , Ovinos , Humanos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/uso terapéutico , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , Carragenina , Estructura Molecular , Edema/inducido químicamente , Edema/tratamiento farmacológico , Inhibidores de la Ciclooxigenasa 2/farmacología
18.
J Biomol Struct Dyn ; : 1-17, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486461

RESUMEN

The presence of conditions like Alpha-1 antitrypsin deficiency, hemochromatosis, non-alcoholic fatty liver diseases and metabolic syndrome can elevate the susceptibility to hepatic cellular carcinoma (HCC). Utilizing network-based gene expression profiling via network analyst tools, presents a novel approach for drug target discovery. The significance level (p-score) obtained through Cytoscape in the intended center gene survival assessment confirms the identification of all target center genes, which play a fundamental role in disease formation and progression in HCC. A total of 1064 deferential expression genes were found. These include MCM2 with the highest degree, followed by 4917 MCM6 and MCM4 with a 3944-degree score. We investigated the regulatory kinases involved in establishing the protein-protein interactions network using X2K web tool. The docking approach yields a favorable binding affinity of -8.7 kcal/mol against the target MCM2 using Auto-Dock Vina. Interestingly after simulating the complex system via AMBER16 package, results showed that the root mean square deviation values remained within 4.74 Å for a protein and remains stable throughout the time intervals. Additionally, the ligand's fit to the protein exhibited fluctuations at some intervals but remains stable. Finally, Gibbs free energy was found to be at its lowest at 1 kcal/mol which presents the real time interactive binding of the atomic residues among inhibitor and protein. The displacement of the ligand was measured showing stable movement and displacement along the active site. These findings increased our understanding for potential biomarkers in hepatocellular carcinoma and an experimental approach will further enhance our outcomes in future.Communicated by Ramaswamy H. Sarma.

19.
Heliyon ; 10(8): e29459, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38699706

RESUMEN

The aim of this study is to explore the pharmacological properties of the essential oil derived from Ptychotis verticillata Duby (PVEO), a medicinal plant native to Morocco, focusing on its antidiabetic, anti-tyrosinase, and anti-inflammatory effects. Additionally, the study aims to characterize the phytochemical composition of PVEO and evaluate its potential as a natural therapeutic alternative for various health conditions. To achieve this, phytochemical analysis was conducted using gas chromatography-mass spectrometry (GC-MS). Furthermore, in vitro assessments were conducted to investigate PVEO's antidiabetic activity by inhibiting α-amylase, xanthine oxidase, and α-glucosidase. Tests were also undertaken to evaluate the anti-inflammatory effect of PVEO on RAW 264.7 cells stimulated by lipopolysaccharide (LPS), as well as its efficacy as an anti-tyrosinase agent and its lipoxygenase inhibition activity. The results of the phytochemical analysis revealed that PVEO is rich in terpene compounds, with percentages of 40.35 % γ-terpinene, 22.40 % carvacrol, and 19.77 % ß-cymene. Moreover, in vitro evaluations demonstrated that PVEO exhibits significant inhibitory activity against α-amylase, xanthine oxidase, and α-glucosidase, indicating promising antidiabetic, and anti-gout potential. Furthermore, PVEO showed significant anti-tyrosinase activity, with an IC50 of 27.39 ± 0.44 µg/mL, and remarkable lipoxygenase inhibition (87.33 ± 2.6 %), suggesting its candidacy for dermatoprotection. Additionally, PVEO displayed a dose-dependent capacity to attenuate the production of NO and PGE2, two inflammatory mediators implicated in various pathologies, without compromising cellular viability. The findings of this study provide a solid foundation for future research on natural therapies and the development of new drugs, highlighting the therapeutic potential of PVEO in the treatment of gout, diabetes, pigmentation disorders, and inflammation.

20.
Int J Biol Macromol ; 269(Pt 1): 132071, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705334

RESUMEN

Wound healing is a challenging clinical problem and efficient wound management is essential to prevent infection. This is best done by utilizing biocompatible materials in order to complete the healing in a rapid manner, with functional and esthetic outcomes. In this context, the zein protein fulfills the criteria of the ideal wound dressing which include non-toxicity and non-inflammatory stimulation. Zein gels containing rutin were prepared without any chemical refinement or addition of gelling agents in order to obtain a natural formulation characterized by antioxidant and anti-inflammatory properties to be proposed for the treatment of burns and sores. In vitro scratch assay showed that the proposed gel formulations promoted cell migration and a rapid gap closure within 24 h (~90 %). In addition, the in vivo activities of rutin-loaded zein gel showed a greater therapeutic efficacy in Wistar rats, with a decrease of the wound area of about 90 % at day 10 with respect to the free form of the bioactive and to DuoDERM®. The evaluation of various markers (TNF-α, IL-1ß, IL-6, IL-10) confirmed the anti-inflammatory effect of the proposed formulation. The results illustrate the feasibility of exploiting the peculiar features of rutin-loaded zein gels for wound-healing purposes.


Asunto(s)
Materiales Biocompatibles , Geles , Ratas Wistar , Rutina , Cicatrización de Heridas , Zeína , Rutina/química , Rutina/farmacología , Zeína/química , Cicatrización de Heridas/efectos de los fármacos , Animales , Geles/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ratas , Antiinflamatorios/farmacología , Antiinflamatorios/química , Masculino , Antioxidantes/farmacología , Antioxidantes/química , Tecnología Química Verde , Movimiento Celular/efectos de los fármacos , Humanos , Citocinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA