Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Bacteriol ; 188(2): 745-58, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16385064

RESUMEN

ColV plasmids have long been associated with the virulence of Escherichia coli, despite the fact that their namesake trait, ColV production, does not appear to contribute to virulence. Such plasmids or their associated sequences appear to be quite common among avian pathogenic E. coli (APEC) and are strongly linked to the virulence of these organisms. In the present study, a 180-kb ColV plasmid was sequenced and analyzed. This plasmid, pAPEC-O2-ColV, possesses a 93-kb region containing several putative virulence traits, including iss, tsh, and four putative iron acquisition and transport systems. The iron acquisition and transport systems include those encoding aerobactin and salmochelin, the sit ABC iron transport system, and a putative iron transport system novel to APEC, eit. In order to determine the prevalence of the virulence-associated genes within this region among avian E. coli strains, 595 APEC and 199 avian commensal E. coli isolates were examined for genes of this region using PCR. Results indicate that genes contained within a portion of this putative virulence region are highly conserved among APEC and that the genes of this region occur significantly more often in APEC than in avian commensal E. coli. The region of pAPEC-O2-ColV containing genes that are highly prevalent among APEC appears to be a distinguishing trait of APEC strains.


Asunto(s)
ADN Bacteriano/genética , Escherichia coli/genética , Genes Bacterianos , Plásmidos/genética , Factores de Virulencia/genética , Animales , Portador Sano/microbiología , Pollos/microbiología , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Hierro/metabolismo , Enfermedades de las Aves de Corral/microbiología
2.
Antimicrob Agents Chemother ; 49(11): 4681-8, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16251312

RESUMEN

In this study, a 101-kb IncF plasmid from an avian pathogenic Escherichia coli (APEC) strain (APEC O2) was sequenced and analyzed, providing the first completed APEC plasmid sequence. This plasmid, pAPEC-O2-R, has functional transfer and antimicrobial resistance-encoding regions. The resistance-encoding region encodes resistance to eight groups of antimicrobial agents, including silver and other heavy metals, quaternary ammonium compounds, tetracycline, sulfonamides, aminoglycosides, trimethoprim, and beta-lactam antimicrobial agents. This region of the plasmid is unique among previously described IncF plasmids in that it possesses a class 1 integron that harbors three gene cassettes and a heavy metal resistance operon. This region spans 33 kb and is flanked by the RepFII plasmid replicon and an assortment of plasmid maintenance genes. pAPEC-O2-R also contains a 32-kb transfer region that is nearly identical to that found in the E. coli F plasmid, rendering it transferable by conjugation to plasmid-less strains of bacteria, including an APEC strain, a fecal E. coli strain from an apparently healthy bird, a Salmonella enterica serovar Typhimurium strain, and a uropathogenic E. coli strain from humans. Differences in the G+C contents of individual open reading frames suggest that various regions of pAPEC-O2-R had dissimilar origins. The presence of pAPEC-O2-R-like plasmids that encode resistance to multiple antimicrobial agents and that are readily transmissible from APEC to other bacteria suggests the possibility that such plasmids may serve as a reservoir of resistance genes for other bacteria of animal and human health significance.


Asunto(s)
Pollos/microbiología , Escherichia coli/genética , Factores R , Animales , Composición de Base , Escherichia coli/efectos de los fármacos , Genoma Bacteriano , Pruebas de Sensibilidad Microbiana , Análisis de Secuencia de ADN
3.
Vet Res ; 36(2): 241-56, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15720976

RESUMEN

The purpose of this study was to compare avian pathogenic Escherichia coli (APEC) isolates to fecal isolates of apparently healthy poultry (avian fecal E. coli or AFEC) by their possession of various traits in order to ascertain whether APEC and AFEC are distinct and if the APEC strains constitute a distinct pathotype. Four hundred and fifty-one APEC and one hundred and four AFEC isolates were examined for possession of traits associated with the virulence of human extraintestinal pathogenic E. coli (ExPEC) as well as APEC. Several of the genes occurred in the majority of APEC and only infrequently in AFEC, including cvaC, iroN, iss, iutA, sitA, tsh, fyuA, irp2, and ompT. Of these genes, several have been found on large plasmids in APEC. Other genes occurred in significantly more APEC than AFEC but did not occur in the majority of APEC. Isolates were also evaluated by serogroup, lactose utilization, and hemolytic reaction. Twenty-nine and a half percent of the APEC and forty-two and three tenths percent of the AFEC were not serogrouped because they were not typeable with standard antisera, typed to multiple serogroups, were rough, autoagglutinated, or were not done. Around 65% of the typeable APEC (205 isolates) and AFEC (41 isolates) were classified into shared serogroups, and about a third of both fell into APEC- (113 isolates) or AFEC- (19 isolates) unique serogroups. Most were able to use lactose. No isolate was hemolytic. Overall, the majority of the APEC isolates surveyed shared a common set of putative virulence genes, many of which have been localized to an APEC plasmid known as pTJ100. This common set of genes may prove useful in defining an APEC pathotype.


Asunto(s)
Enfermedades de las Aves/microbiología , Escherichia coli/genética , Escherichia coli/patogenicidad , Animales , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Aves/microbiología , Escherichia coli/clasificación , Heces/microbiología , Genes Bacterianos , Genotipo , Lactosa/metabolismo , Serotipificación , Virulencia/genética
4.
Microbiology (Reading) ; 151(Pt 6): 2097-2110, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15942016

RESUMEN

Since avian pathogenic Escherichia coli (APEC) and human uropathogenic E. coli (UPEC) may encounter similar challenges when establishing infection in extraintestinal locations, they may share a similar content of virulence genes and capacity to cause disease. In the present study, 524 APEC and 200 UPEC isolates were compared by their content of virulence genes, phylogenetic group, and other traits. The two groups showed substantial overlap in terms of their serogroups, phylogenetic groups and virulence genotypes, including their possession of certain genes associated with large transmissible plasmids of APEC. Based on these results, the propensity of both groups to cause extraintestinal infections, and a well-documented ability of avian E. coli to spread to human beings, the potential for APEC to act as human UPEC or as a reservoir of virulence genes for UPEC should be considered. However, significant differences in the prevalence of the traits occurred across the two groups, suggesting that if APEC are involved in human urinary tract infections, they are not involved in all of them.


Asunto(s)
Enfermedades de las Aves/microbiología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Escherichia coli/genética , Escherichia coli/patogenicidad , Infecciones Urinarias/microbiología , Animales , Aves , Escherichia coli/aislamiento & purificación , Genes Bacterianos , Genotipo , Hemólisis , Humanos , Lactosa/metabolismo , Filogenia , Plásmidos , Serotipificación , Virulencia , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA