Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 11(8): 809-15, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24973947

RESUMEN

MicroRNAs are important negative regulators of protein-coding gene expression and have been studied intensively over the past years. Several measurement platforms have been developed to determine relative miRNA abundance in biological samples using different technologies such as small RNA sequencing, reverse transcription-quantitative PCR (RT-qPCR) and (microarray) hybridization. In this study, we systematically compared 12 commercially available platforms for analysis of microRNA expression. We measured an identical set of 20 standardized positive and negative control samples, including human universal reference RNA, human brain RNA and titrations thereof, human serum samples and synthetic spikes from microRNA family members with varying homology. We developed robust quality metrics to objectively assess platform performance in terms of reproducibility, sensitivity, accuracy, specificity and concordance of differential expression. The results indicate that each method has its strengths and weaknesses, which help to guide informed selection of a quantitative microRNA gene expression platform for particular study goals.


Asunto(s)
MicroARNs/genética , Control de Calidad , Reproducibilidad de los Resultados
2.
J Biomol Screen ; 7(6): 507-14, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14599348

RESUMEN

A novel competitive binding assay for protein kinase inhibitors has been developed for high-throughput screening (HTS). Unlike functional kinase assays, which are based on detection of substrate phosphorylation by the enzyme, this novel method directly measures the binding potency of compounds to the kinase ATP binding site through competition with a conjugated binding probe. The binding interaction is coupled to a signal amplification system based on complementation of beta-galactosidase enzyme fragments, a homogeneous, nonisotopic assay technology platform developed by DiscoveRx Corp. In the present study, staurosporine, a potent, nonselective kinase inhibitor, was chemically conjugated to a small fragment of beta-galactosidase (termed ED-SS). This was used as the binding probe to the kinase ATP binding pocket. The binding potencies of several inhibitors with diverse structures were assessed by displacement of ED-SS from the kinase. The assay format was specifically evaluated with GSK3alpha, an enzyme previously screened in a radioactive kinase assay (i.e., measurement of [(33)P]-gamma-ATP incorporation into the kinase peptide substrate). Under optimized assay conditions, nonconjugated staurosporine inhibited ED-SS binding in a concentration-dependent manner with an apparent potency (IC(50)) of 11 nM, which was similar to the IC(50) value determined in a radioactive assay. Furthermore, 9 kinase inhibitors with diverse structures, previously identified from chemical compound library screening, were screened using the competitive binding assay. The potencies in the binding assay were in very good agreement with those obtained previously in the isotopic functional activity assay. The binding assay was adapted for automated HTS using selected compound libraries in a 384-well microtiter plate format. The HTS assay was observed to be highly robust and reproducible (Z' factors > 0.7) with high interassay precision (R(2) > 0.96). Interference of compounds with the beta-galactosidase signal readout was negligible. In conclusion, the DiscoveRx competitive kinase binding assay, termed ED-NSIP trade mark, provides a novel method for screening kinase inhibitors. The format is homogeneous, robust, and amenable to automation. Because there is no requirement for substrate-specific antibodies, the assay is particularly applicable to Ser/Thr kinase assay, in which difficulties in identifying a suitable substrate and antibody preclude development of nonisotopic assays. Although the nonselective kinase inhibitor, staurosporine, was used here, chemically conjugating the ED fragment to other small molecule enzyme inhibitors is also feasible, suggesting that the format is generally applicable to other enzyme systems.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , Biología Molecular/métodos , Inhibidores de Proteínas Quinasas , Proteínas Quinasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Unión Competitiva , Técnicas Químicas Combinatorias/métodos , Dimetilsulfóxido/química , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Isótopos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reproducibilidad de los Resultados , Estaurosporina/química , Estaurosporina/metabolismo , beta-Galactosidasa/química , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA