Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Carbon N Y ; 2192024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38882683

RESUMEN

A significant advance in rate and precision of identifying the co-surfactant concentrations leading to differential extraction of specific single-wall carbon nanotube (SWCNT) species in aqueous two-polymer phase extraction experiments is reported. These gains are achieved through continuous titration of co-surfactant and other solution components during automated fluorescence measurements on SWCNT dispersions. The resulting fluorescence versus concentration curves display intensity and wavelength shift transitions traceable to the nature of the adsorbed surfactant layer on specific SWCNT structures at the (n,m) species and enantiomer level at high resolution. The increased precision and speed of the titration method resolve previously invisible complexity in the SWCNT fluorescence during the transition from one surfactant dominating the SWCNT interface to the other, offering insight into the fine details of the competitive exchange process. For the first time, we additionally demonstrate that the competitive process of the surfactant switch is direction independent (reversible) and hysteresis-free; the latter data effectively specifies an upper bound for the time scale of the exchange process. Titration curves are compared to literature results and initial advanced parameter variation is conducted for previously unreasonable to investigate solution conditions.

2.
Carbon N Y ; 1912022 May.
Artículo en Inglés | MEDLINE | ID: mdl-36579357

RESUMEN

Quantitative determination of the effects of surfactant chemistry and polymer chain length on the concentration conditions necessary to yield extraction of specific single-wall carbon nanotube (SWNCT) species in an aqueous two-polymer phase extraction (ATPE) separation are reported. In particular, the effects of polyethylene glycol (PEG) chain length, surfactant ratios, and systematic structural variations of alkyl surfactants and bile salts on the surfactant ratios necessary for extraction were investigated using a recently reported fluorescence-based method. Alkyl surfactant tail length was observed to strongly affect the amount of surfactant necessary to cause PEG-phase extraction of nanotube species in ATPE, while variation in the anionic sulfate/sulfonate head group chemistry has less impact on the concentration necessary for extraction. Substitution of different bile salts results in different surfactant packings on the SWCNTs, with substitution greatly affecting the alkyl surfactant concentrations required for (n,m) extraction. Finally, distinct alkyl-to-bile surfactant ratios were found to extract specific (n,m) SWCNTs across the whole effective window of absolute concentrations, supporting the hypothesized competitive adsorption mechanism model of SWCNT sorting. Altogether, these results provide valuable insights into the underlying mechanisms behind ATPE-based SWCNT separations, towards further development and optimization of the ATPE method for SWCNT chirality and handedness sorting.

3.
Anal Chem ; 91(19): 12149-12155, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31454479

RESUMEN

Caenorhabditis elegans is used extensively as a medical and toxicological model organism. However, little is known about background levels of oxidatively induced DNA damage in the nematode or how culturing methods affect DNA damage levels. The tough C. elegans cuticle makes it challenging to extract genomic DNA without harsh procedures that can artifactually increase DNA damage. Therefore, a mild extraction protocol based on enzymatic digestion of the C. elegans cuticle with high-salt phase-separation of DNA has been developed and optimized. This method allows for efficient extraction of >50 µg DNA using a minimum of 250000 nematodes grown in liquid culture. The extracted DNA exhibited acceptable RNA levels (<10% contamination), functionality in polymerase chain reaction assays, and reproducible DNA fragmentation. Gas chromatography/tandem mass spectrometry (GC-MS/MS) with isotope-dilution measured lower lesion levels in high-salt extracts than in phenol extracts. Phenolic extraction produced a statistically significant increase in 8-hydroxyguanine, a known artifact, and additional artifactual increases in 2,6-diamino-4-hydroxy-5-formamidopyrimidine, 4,6-diamino-5-formamidopyrimidine, and 8-hydroxyadenine. The high-salt DNA extraction procedure utilizes green solvents and reagents and minimizes artifactual DNA damage, making it more suitable for molecular and toxicological studies in C. elegans. This is, to our knowledge, the first use of GC-MS/MS to measure multiple 8,5'-cyclopurine-2'-deoxynucleosides in a toxicologically important terrestrial organism.


Asunto(s)
Caenorhabditis elegans/genética , Fraccionamiento Químico/métodos , Daño del ADN , ADN de Helmintos/aislamiento & purificación , Adenina/análogos & derivados , Adenina/química , Animales , Artefactos , Femenino , Cromatografía de Gases y Espectrometría de Masas/métodos , Guanina/análogos & derivados , Guanina/química , Humanos , Células MCF-7 , Oxidación-Reducción , Fenoles/química , Pirimidinas/análisis , Pirimidinas/química , Técnica de Dilución de Radioisótopos , Reproducibilidad de los Resultados , Cloruro de Sodio/química , Espectrometría de Masas en Tándem/métodos
4.
Nanotechnology ; 30(8): 085703, 2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30240366

RESUMEN

Cerium oxide nanomaterials (nanoceria, CNMs) are receiving increased attention from the research community due to their unique chemical properties, most prominent of which is their ability to alternate between the Ce3+ and Ce4+ oxidation states. While many analytical techniques and methods have been employed to characterize the amounts of Ce3+ and Ce4+ present (Ce3+/Ce4+ ratio) within nanoceria materials, to-date no studies have used multiple complementary analytical tools (orthogonal analysis) with technique-independent oxidation state controls for quantitative determinations of the Ce3+/Ce4+ ratio. Here, we describe the development of analytical methods measuring the oxidation states of nanoceria analytes using technique-independent Ce3+ (CeAlO3:Ge) and Ce4+ (CeO2) control materials, with a particular focus on x-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) approaches. The developed methods were demonstrated in characterizing a suite of commercial nanoceria products, where the two techniques (XPS and EELS) were found to be in good agreement with respect to Ce3+/Ce4+ ratio. Potential sources of artifacts and discrepancies in the measurement results were also identified and discussed, alongside suggestions for interpreting oxidation state results using the different analytical techniques. The results should be applicable towards producing more consistent and reproducible oxidation state analyses of nanoceria materials.

5.
Anal Bioanal Chem ; 410(1): 145-154, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29085987

RESUMEN

Protein corona formed on nanomaterial surfaces play an important role in the bioavailability and cellular uptake of nanomaterials. Modification of surfaces with oligoethylene glycols (OEG) are a common way to improve the resistivity of nanomaterials to protein adsorption. Short-chain ethylene oxide (EO) oligomers have been shown to improve the protein resistance of planar Au surfaces. We describe the application of these EO oligomers for improved protein resistance of 30 nm spherical gold nanoparticles (AuNPs). Functionalized AuNPs were characterized using UV-Vis spectroscopy, dynamic light scattering (DLS), and zeta potential measurements. Capillary electrophoresis (CE) was used for separation and quantitation of AuNPs and AuNP-protein mixtures. Specifically, nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) was employed for the determination of equilibrium and rate constants for binding between citrate-stabilized AuNPs and two model proteins, lysozyme and fibrinogen. Semi-quantitative CE analysis was carried out for mixtures of EO-functionalized AuNPs and proteins, and results demonstrated a 2.5-fold to 10-fold increase in protein binding resistance to lysozyme depending on the AuNP surface functionalization and a 15-fold increase in protein binding resistance to fibrinogen for both EO oligomers examined in this study. Graphical abstract Using capillary electrophoresis, the addition of short-chained oligo(ethylene oxide) ligands to gold nanoparticles was shown to improve protein binding resistance up to 15-fold.


Asunto(s)
Óxido de Etileno/química , Oro/química , Nanopartículas del Metal/química , Corona de Proteínas/análisis , Adsorción , Animales , Bovinos , Pollos , Ácido Cítrico/química , Dispersión Dinámica de Luz , Electroforesis Capilar , Fibrinógeno/análisis , Modelos Moleculares , Muramidasa/análisis , Compuestos de Sulfhidrilo/química , Propiedades de Superficie
6.
Mutagenesis ; 32(1): 215-232, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27565834

RESUMEN

The rapid development of the engineered nanomaterial (ENM) manufacturing industry has accelerated the incorporation of ENMs into a wide variety of consumer products across the globe. Unintentionally or not, some of these ENMs may be introduced into the environment or come into contact with humans or other organisms resulting in unexpected biological effects. It is thus prudent to have rapid and robust analytical metrology in place that can be used to critically assess and/or predict the cytotoxicity, as well as the potential genotoxicity of these ENMs. Many of the traditional genotoxicity test methods [e.g. unscheduled DNA synthesis assay, bacterial reverse mutation (Ames) test, etc.,] for determining the DNA damaging potential of chemical and biological compounds are not suitable for the evaluation of ENMs, due to a variety of methodological issues ranging from potential assay interferences to problems centered on low sample throughput. Recently, a number of sensitive, high-throughput genotoxicity assays/platforms (CometChip assay, flow cytometry/micronucleus assay, flow cytometry/γ-H2AX assay, automated 'Fluorimetric Detection of Alkaline DNA Unwinding' (FADU) assay, ToxTracker reporter assay) have been developed, based on substantial modifications and enhancements of traditional genotoxicity assays. These new assays have been used for the rapid measurement of DNA damage (strand breaks), chromosomal damage (micronuclei) and for detecting upregulated DNA damage signalling pathways resulting from ENM exposures. In this critical review, we describe and discuss the fundamental measurement principles and measurement endpoints of these new assays, as well as the modes of operation, analytical metrics and potential interferences, as applicable to ENM exposures. An unbiased discussion of the major technical advantages and limitations of each assay for evaluating and predicting the genotoxic potential of ENMs is also provided.


Asunto(s)
Daño del ADN , Ensayos Analíticos de Alto Rendimiento/métodos , Pruebas de Mutagenicidad/métodos , Nanoestructuras/toxicidad , Animales , Bacterias/efectos de los fármacos , Bacterias/genética , ADN/efectos de los fármacos , Humanos
7.
Artículo en Inglés | MEDLINE | ID: mdl-39444379

RESUMEN

A combination of analytical ultracentrifugation (AUC) and fluorescence spectroscopy are utilized to orthogonally probe compositions of adsorbed surfactant layers on the surface of (7,5) species single-wall carbon nanotubes (SWCNTs) under conditions known to achieve differential partitioning in aqueous two-phase extraction (ATPE) separations. Fluorescence emission intensity and AUC anhydrous particle density measurements independently probe and can discriminate between adsorbed surfactant layers on a (7,5) nanotube comprised of either of two common nanotube dispersants, the anionic surfactants sodium deoxycholate and sodium dodecyl sulfate. Measurements on dispersions containing mixtures of both surfactants indicate near total direct exchange of the dominant surfactant species adsorbed to the carbon nanotube at a critical concentration ratio consistent with the ratio leading to partitioning change in the ATPE separation. By conducting these orthogonal measurements in a complex environment reflective of an ATPE separation, including multiple surfactant and polymer solution components, the results provide direct evidence for the hypothesis that it is the nature of the adsorbed surfactant layer that primarily controls partitioning behavior in selective ATPE separations of SWCNTs.

8.
Anal Chim Acta ; 1175: 338671, 2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34330435

RESUMEN

Analytical techniques capable of determining the spatial distribution and quantity (mass and/or particle number) of engineered nanomaterials in organisms are essential for characterizing nano-bio interactions and for nanomaterial risk assessments. Here, we combine the use of dynamic secondary ion mass spectrometry (dynamic SIMS) and single particle inductively coupled mass spectrometry (spICP-MS) techniques to determine the biodistribution and quantity of gold nanoparticles (AuNPs) ingested by Caenorhabditis elegans. We report the application of SIMS in image depth profiling mode for visualizing, identifying, and characterizing the biodistribution of AuNPs ingested by nematodes in both the lateral and z (depth) dimensions. In parallel, conventional- and sp-ICP-MS quantified the mean number of AuNPs within the nematode, ranging from 2 to 36 NPs depending on the size of AuNP. The complementary data from both SIMS image depth profiling and spICP-MS provides a complete view of the uptake, translocation, and size distribution of ingested NPs within Caenorhabditis elegans.


Asunto(s)
Oro , Nanopartículas del Metal , Animales , Caenorhabditis elegans , Tamaño de la Partícula , Espectrometría de Masa de Ion Secundario , Distribución Tisular
9.
PLoS One ; 13(1): e0190907, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29324786

RESUMEN

Exposure of mammalian cells to oxidative stress can result in DNA damage that adversely affects many cell processes. Lack of dependable DNA damage reference materials and standardized measurement methods, despite many case-control studies hampers the wider recognition of the link between oxidatively degraded DNA and disease risk. We used bulk electrolysis in an electrochemical system and gas chromatographic mass spectrometric analysis (GC/MS/MS) to control and measure, respectively, the effect of electrochemically produced reactive oxygen species on calf thymus DNA (ct-DNA). DNA was electro-oxidized for 1 h at four fixed oxidizing potentials (E = 0.5 V, 1.0 V, 1.5 V and 2 V (vs Ag/AgCl)) using a high surface area boron-doped diamond (BDD) working electrode (WE) and the resulting DNA damage in the form of oxidatively-modified DNA lesions was measured using GC/MS/MS. We have shown that there are two distinct base lesion formation modes in the explored electrode potential range, corresponding to 0.5 V < E < 1.5 V and E > 1.5 V. Amounts of all four purine lesions were close to a negative control levels up to E = 1.5 V with evidence suggesting higher levels at the lowest potential of this range (E = 0.5 V). A rapid increase in all base lesion yields was measured when ct-DNA was exposed at E = 2 V, the potential at which hydroxyl radicals were efficiently produced by the BDD electrode. The present results demonstrate that controlled potential preparative electrooxidation of double-stranded DNA can be used to purposely increase the levels of oxidatively modified DNA lesions in discrete samples. It is envisioned that these DNA samples may potentially serve as analytical control or quality assurance reference materials for the determination of oxidatively induced DNA damage.


Asunto(s)
ADN/química , Animales , Boro , Bovinos , Diamante , Electrodos , Electrólisis , Cromatografía de Gases y Espectrometría de Masas , Radical Hidroxilo/química , Oxidación-Reducción , Purinas/química , Pirimidinas/química
10.
Sci Rep ; 8(1): 904, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29343752

RESUMEN

The nematode Caenorhabditis elegans is used extensively in molecular, toxicological and genetics research. However, standardized methods for counting nematodes in liquid culture do not exist despite the wide use of nematodes and need for accurate measurements. Herein, we provide a simple and affordable counting protocol developed to maximize count accuracy and minimize variability in liquid nematode culture. Sources of variability in the counting process were identified and tested in 14 separate experiments. Three variables resulted in significant effects on nematode count: shaking of the culture, priming of pipette tips, and sampling location within a microcentrifuge tube. Between-operator variability did not have a statistically significant effect on counts, even among differently-skilled operators. The protocol was used to assess population growth rates of nematodes in two different but common liquid growth media: axenic modified Caenorhabditis elegans Habitation and Reproduction medium (mCeHR) and S-basal complete. In mCeHR, nematode populations doubled daily for 10 d. S-basal complete populations initially doubled every 12 h, but slowed within 7 d. We also detected a statistically significant difference between embryo-to-hatchling incubation period of 5 d in mCeHR compared to 4 d in S-basal complete. The developed counting method for Caenorhabditis elegans reduces variability and allows for rigorous and reliable experimentation.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Animales , Medios de Cultivo/metabolismo , Nematodos/crecimiento & desarrollo , Crecimiento Demográfico , Reproducción/fisiología
11.
Nanoscale ; 9(40): 15226-15251, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28991962

RESUMEN

Nanomedicine utilizes the remarkable properties of nanomaterials for the diagnosis, treatment, and prevention of disease. Many of these nanomaterials have been shown to have robust antioxidative properties, potentially functioning as strong scavengers of reactive oxygen species. Conversely, several nanomaterials have also been shown to promote the generation of reactive oxygen species, which may precipitate the onset of oxidative stress, a state that is thought to contribute to the development of a variety of adverse conditions. As such, the impacts of nanomaterials on biological entities are often associated with and influenced by their specific redox properties. In this review, we overview several classes of nanomaterials that have been or projected to be used across a wide range of biomedical applications, with discussion focusing on their unique redox properties. Nanomaterials examined include iron, cerium, and titanium metal oxide nanoparticles, gold, silver, and selenium nanoparticles, and various nanoscale carbon allotropes such as graphene, carbon nanotubes, fullerenes, and their derivatives/variations. Principal topics of discussion include the chemical mechanisms by which the nanomaterials directly interact with biological entities and the biological cascades that are thus indirectly impacted. Selected case studies highlighting the redox properties of nanomaterials and how they affect biological responses are used to exemplify the biologically-relevant redox mechanisms for each of the described nanomaterials.


Asunto(s)
Nanomedicina , Nanoestructuras , Depuradores de Radicales Libres/farmacología , Grafito , Humanos , Nanopartículas del Metal , Nanotubos de Carbono , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
12.
Acta Biomater ; 53: 585-597, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28163237

RESUMEN

It is demonstrated that carboxylic acid-functionalized titanium dioxide (TiO2) NPs produce significantly higher levels of reactive oxygen species (ROS) after visible light irradiation (400-800nm, 1600mW/cm2) in comparison to nonfunctionalized TiO2 NPs. The level of ROS produced under these irradiation conditions was not capable of generating oxidatively induced DNA damage in a cell-free system for TiO2 concentrations of 0.5mg/L or 5mg/L. In addition, specific incorporation of the acrylic acid-functionalized TiO2 NPs into dental composites allowed us to utilize the generated ROS to enhance photopolymerization (curing and degree of vinyl conversion (DC)) of resin adhesives and create mechanically superior and biocompatible materials for dental applications. Incorporation of the TiO2 NPs into selected dental composites increased the mean DC values by ≈7%. The modified TiO2 materials and dental composite materials were extensively characterized using thermogravimetric analysis, electron microscopy, Fourier transform infrared spectroscopy, and electron paramagnetic resonance. Notably, dental adhesives incorporated with acrylic acid-functionalized TiO2 NPs produced stronger bonds to human teeth following visible light curing in comparison to traditional dental adhesives not containing NPs with an increase in the shear bond strength of ≈29%. In addition, no leaching of the incorporated NPs was detectable from the dental adhesives after 2500 thermal cycles using inductively coupled plasma-optical emission spectroscopy, indicating that biocompatibility of the adhesives was not compromised after extensive aging. These findings suggest that NP-induced ROS may be useful to produce enhanced nanocomposite materials for selected applications in the medical device field. STATEMENT OF SIGNIFICANCE: Titanium dioxide nanoparticles (TiO2 NPs) have unique photocatalytic, antibacterial and UV-absorbing properties that make them beneficial additives in adhesives and composites. However, there is concern that the reactive oxygen species (ROS) produced by photoactivated TiO2 NPs might pose toxicological risks. We demonstrate that it is possible to incorporate acid-functionalized TiO2 NPs into dental resins which can be applied as dental adhesives to human teeth. The ROS generated by these NPs through visible-light irradiation may be utilized to increase the degree of vinyl conversion of resins, leading to adhesives that have an enhanced shear-bond strength to human teeth. Investigation into the potential genotoxicity of the NPs and their potential for release from dental composites indicated a low risk of genotoxic effects.


Asunto(s)
Cementos Dentales/química , Curación por Luz de Adhesivos Dentales/métodos , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Especies Reactivas de Oxígeno/síntesis química , Titanio/química , Diente/química , Adhesividad , Cementos Dentales/efectos de la radiación , Dureza , Luz , Ensayo de Materiales , Tamaño de la Partícula
13.
ACS Nano ; 11(1): 526-540, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-27983787

RESUMEN

For environmental studies assessing uptake of orally ingested engineered nanoparticles (ENPs), a key step in ensuring accurate quantification of ingested ENPs is efficient separation of the organism from ENPs that are either nonspecifically adsorbed to the organism and/or suspended in the dispersion following exposure. Here, we measure the uptake of 30 and 60 nm gold nanoparticles (AuNPs) by the nematode, Caenorhabditis elegans, using a sucrose density gradient centrifugation protocol to remove noningested AuNPs. Both conventional inductively coupled plasma mass spectrometry (ICP-MS) and single particle (sp)ICP-MS are utilized to measure the total mass and size distribution, respectively, of ingested AuNPs. Scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS) imaging confirmed that traditional nematode washing procedures were ineffective at removing excess suspended and/or adsorbed AuNPs after exposure. Water rinsing procedures had AuNP removal efficiencies ranging from 57 to 97% and 22 to 83%, while the sucrose density gradient procedure had removal efficiencies of 100 and 93 to 98%, respectively, for the 30 and 60 nm AuNP exposure conditions. Quantification of total Au uptake was performed following acidic digestion of nonexposed and Au-exposed nematodes, whereas an alkaline digestion procedure was optimized for the liberation of ingested AuNPs for spICP-MS characterization. Size distributions and particle number concentrations were determined for AuNPs ingested by nematodes with corresponding confirmation of nematode uptake via high-pressure freezing/freeze substitution resin preparation and large-area SEM imaging. Methods for the separation and in vivo quantification of ENPs in multicellular organisms will facilitate robust studies of ENP uptake, biotransformation, and hazard assessment in the environment.


Asunto(s)
Caenorhabditis elegans/química , Oro/aislamiento & purificación , Nanopartículas del Metal/química , Imagen Óptica , Animales , Centrifugación por Gradiente de Densidad , Oro/química , Espectrometría de Masas , Tamaño de la Partícula , Sacarosa/química , Propiedades de Superficie
14.
Antioxidants (Basel) ; 5(2)2016 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-27196936

RESUMEN

Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs) have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where our experimental understanding of the antioxidant activity of CNPs can be translated into useful therapeutics in the clinic, it is necessary to evaluate the most current evidence that supports CNP antioxidant activity in biological systems. Accordingly, the aims of this review are three-fold: (1) To describe the putative reaction mechanisms and physicochemical surface properties that enable CNPs to both scavenge reactive oxygen species (ROS) and to act as antioxidant enzyme-like mimetics in solution; (2) To provide an overview, with commentary, regarding the most robust design and synthesis pathways for preparing CNPs with catalytic antioxidant activity; (3) To provide the reader with the most up-to-date in vitro and in vivo experimental evidence supporting the ROS-scavenging potential of CNPs in biology and medicine.

15.
Dalton Trans ; 44(3): 977-87, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25407994

RESUMEN

Pt and PtSn intermetallic nanoparticle (NP) catalysts were grown directly on various reduced graphene oxide (rGO) supports and were characterized by a combination of X-ray photoelectron spectroscopic (XPS), Raman microscopy, transmission electron microscopy (TEM), and powder X-ray diffraction (XRD) studies. Electrochemical CO stripping and rotating disk electrochemical (RDE) experiments showed the four rGO-PtSn catalysts to be superior to the four rGO-Pt catalysts for CO and CO-H2 electrooxidation in acidic solutions regardless of the rGO support, in agreement with earlier reports on PtSn NP electrocatalysts. For the four rGO-Pt catalysts, the rGO support causes a 70 mV spread in CO oxidation peak potential (ΔEpeak) and a 200 mV spread in CO-H2 electrooxidation onset. The more oxygenated graphenes show the lowest CO oxidation potentials and the best CO tolerance. For the four rGO-PtSn intermetallic catalysts, a ∼160 mV spread in CO-H2 electrooxidation onset is observed. With the exception of the nitrogen-doped graphene (NGO), a similar trend in enhanced CO electrooxidation properties with increasing oxygen content in the rGO support is observed. The NGO-PtSn electrocatalyst was superior to the other rGO-PtSn catalysts and showed the largest improvement in CO tolerance relative to the pure Pt system. The origin of this enhancement appears to stem from the unique rGO-PtSn support interaction in this system. These results are discussed in the context of recent theoretical and experimental studies in the literature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA