Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(12): 3039-3055.e14, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848677

RESUMEN

In the prevailing model, Lgr5+ cells are the only intestinal stem cells (ISCs) that sustain homeostatic epithelial regeneration by upward migration of progeny through elusive upper crypt transit-amplifying (TA) intermediates. Here, we identify a proliferative upper crypt population marked by Fgfbp1, in the location of putative TA cells, that is transcriptionally distinct from Lgr5+ cells. Using a kinetic reporter for time-resolved fate mapping and Fgfbp1-CreERT2 lineage tracing, we establish that Fgfbp1+ cells are multi-potent and give rise to Lgr5+ cells, consistent with their ISC function. Fgfbp1+ cells also sustain epithelial regeneration following Lgr5+ cell depletion. We demonstrate that FGFBP1, produced by the upper crypt cells, is an essential factor for crypt proliferation and epithelial homeostasis. Our findings support a model in which tissue regeneration originates from upper crypt Fgfbp1+ cells that generate progeny propagating bi-directionally along the crypt-villus axis and serve as a source of Lgr5+ cells in the crypt base.


Asunto(s)
Mucosa Intestinal , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Animales , Ratones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citología , Células Madre/metabolismo , Células Madre/citología , Linaje de la Célula , Regeneración , Proliferación Celular , Células Epiteliales/metabolismo , Células Epiteliales/citología , Ratones Endogámicos C57BL , Homeostasis
2.
Nat Immunol ; 24(2): 309-319, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36658238

RESUMEN

T lymphocytes migrate to barrier sites after exposure to pathogens, providing localized immunity and long-term protection. Here, we obtained blood and tissues from human organ donors to examine T cells across major barrier sites (skin, lung, jejunum), associated lymph nodes, lymphoid organs (spleen, bone marrow), and in circulation. By integrating single-cell protein and transcriptome profiling, we demonstrate that human barrier sites contain tissue-resident memory T (TRM) cells that exhibit site-adapted profiles for residency, homing and function distinct from circulating memory T cells. Incorporating T cell receptor and transcriptome analysis, we show that circulating memory T cells are highly expanded, display extensive overlap between sites and exhibit effector and cytolytic functional profiles, while TRM clones exhibit site-specific expansions and distinct functional capacities. Together, our findings indicate that circulating T cells are more disseminated and differentiated, while TRM cells exhibit tissue-specific adaptation and clonal segregation, suggesting that strategies to promote barrier immunity require tissue targeting.


Asunto(s)
Memoria Inmunológica , Células T de Memoria , Humanos , Ganglios Linfáticos , Células Clonales , Diferenciación Celular , Linfocitos T CD8-positivos
3.
Nat Immunol ; 24(8): 1370-1381, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37460638

RESUMEN

Infants and young children are more susceptible to common respiratory pathogens than adults but can fare better against novel pathogens like severe acute respiratory syndrome coronavirus 2. The mechanisms by which infants and young children mount effective immune responses to respiratory pathogens are unknown. Through investigation of lungs and lung-associated lymph nodes from infant and pediatric organ donors aged 0-13 years, we show that bronchus-associated lymphoid tissue (BALT), containing B cell follicles, CD4+ T cells and functionally active germinal centers, develop during infancy. BALT structures are prevalent around lung airways during the first 3 years of life, and their numbers decline through childhood coincident with the accumulation of memory T cells. Single-cell profiling and repertoire analysis reveals that early life lung B cells undergo differentiation, somatic hypermutation and immunoglobulin class switching and exhibit a more activated profile than lymph node B cells. Moreover, B cells in the lung and lung-associated lymph nodes generate biased antibody responses to multiple respiratory pathogens compared to circulating antibodies, which are mostly specific for vaccine antigens in the early years of life. Together, our findings provide evidence for BALT as an early life adaptation for mobilizing localized immune protection to the diverse respiratory challenges during this formative life stage.


Asunto(s)
COVID-19 , Tejido Linfoide , Adulto , Lactante , Humanos , Niño , Preescolar , Bronquios/patología , COVID-19/patología , Linfocitos B , Ganglios Linfáticos
4.
Immunity ; 56(8): 1894-1909.e5, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37421943

RESUMEN

Infancy and childhood are critical life stages for generating immune memory to protect against pathogens; however, the timing, location, and pathways for memory development in humans remain elusive. Here, we investigated T cells in mucosal sites, lymphoid tissues, and blood from 96 pediatric donors aged 0-10 years using phenotypic, functional, and transcriptomic profiling. Our results revealed that memory T cells preferentially localized in the intestines and lungs during infancy and accumulated more rapidly in mucosal sites compared with blood and lymphoid organs, consistent with site-specific antigen exposure. Early life mucosal memory T cells exhibit distinct functional capacities and stem-like transcriptional profiles. In later childhood, they progressively adopt proinflammatory functions and tissue-resident signatures, coincident with increased T cell receptor (TCR) clonal expansion in mucosal and lymphoid sites. Together, our findings identify staged development of memory T cells targeted to tissues during the formative years, informing how we might promote and monitor immunity in children.


Asunto(s)
Tejido Linfoide , Células T de Memoria , Niño , Humanos , Lactante , Linfocitos T CD8-positivos , Memoria Inmunológica , Tejido Linfoide/metabolismo , Membrana Mucosa , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Recién Nacido , Preescolar
5.
Immunity ; 54(4): 797-814.e6, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33765436

RESUMEN

Immune response dynamics in coronavirus disease 2019 (COVID-19) and their severe manifestations have largely been studied in circulation. Here, we examined the relationship between immune processes in the respiratory tract and circulation through longitudinal phenotypic, transcriptomic, and cytokine profiling of paired airway and blood samples from patients with severe COVID-19 relative to heathy controls. In COVID-19 airways, T cells exhibited activated, tissue-resident, and protective profiles; higher T cell frequencies correlated with survival and younger age. Myeloid cells in COVID-19 airways featured hyperinflammatory signatures, and higher frequencies of these cells correlated with mortality and older age. In COVID-19 blood, aberrant CD163+ monocytes predominated over conventional monocytes, and were found in corresponding airway samples and in damaged alveoli. High levels of myeloid chemoattractants in airways suggest recruitment of these cells through a CCL2-CCR2 chemokine axis. Our findings provide insights into immune processes driving COVID-19 lung pathology with therapeutic implications for targeting inflammation in the respiratory tract.


Asunto(s)
COVID-19/inmunología , Pulmón/inmunología , Células Mieloides/inmunología , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , COVID-19/sangre , COVID-19/mortalidad , COVID-19/patología , Citocinas/inmunología , Citocinas/metabolismo , Humanos , Inflamación , Estudios Longitudinales , Pulmón/patología , Macrófagos/inmunología , Macrófagos/patología , Persona de Mediana Edad , Monocitos/inmunología , Monocitos/patología , Células Mieloides/patología , SARS-CoV-2 , Linfocitos T/inmunología , Linfocitos T/patología , Transcriptoma , Adulto Joven
6.
Cell ; 160(1-2): 269-84, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25594183

RESUMEN

The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs).


Asunto(s)
Huesos/citología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Intestino Delgado/citología , Células Madre Mesenquimatosas/citología , Animales , Cartílago/metabolismo , Intestino Delgado/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL
7.
Nat Immunol ; 17(8): 966-75, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27270402

RESUMEN

The number of naive T cells decreases and susceptibility to new microbial infections increases with age. Here we describe a previously unknown subset of phenotypically naive human CD8(+) T cells that rapidly secreted multiple cytokines in response to persistent viral antigens but differed transcriptionally from memory and effector T cells. The frequency of these CD8(+) T cells, called 'memory T cells with a naive phenotype' (TMNP cells), increased with age and after severe acute infection and inversely correlated with the residual capacity of the immune system to respond to new infections with age. CD8(+) TMNP cells represent a potential new target for the immunotherapy of persistent infections and should be accounted for and subtracted from the naive pool if truly naive T cells are needed to respond to antigens.


Asunto(s)
Envejecimiento/inmunología , Linfocitos T CD8-positivos/fisiología , Memoria Inmunológica , Inmunosenescencia , Subgrupos de Linfocitos T/fisiología , Virosis/inmunología , Enfermedad Aguda , Adulto , Anciano , Anciano de 80 o más Años , Células Cultivadas , Humanos , Inmunofenotipificación , Activación de Linfocitos , Persona de Mediana Edad , Fenotipo , Transcriptoma , Adulto Joven
8.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33452133

RESUMEN

The harsh microenvironment of ductal carcinoma in situ (DCIS) exerts strong evolutionary selection pressures on cancer cells. We hypothesize that the poor metabolic conditions near the ductal center foment the emergence of a Warburg Effect (WE) phenotype, wherein cells rapidly ferment glucose to lactic acid, even in normoxia. To test this hypothesis, we subjected low-glycolytic breast cancer cells to different microenvironmental selection pressures using combinations of hypoxia, acidosis, low glucose, and starvation for many months and isolated single clones for metabolic and transcriptomic profiling. The two harshest conditions selected for constitutively expressed WE phenotypes. RNA sequencing analysis of WE clones identified the transcription factor KLF4 as potential inducer of the WE phenotype. In stained DCIS samples, KLF4 expression was enriched in the area with the harshest microenvironmental conditions. We simulated in vivo DCIS phenotypic evolution using a mathematical model calibrated from the in vitro results. The WE phenotype emerged in the poor metabolic conditions near the necrotic core. We propose that harsh microenvironments within DCIS select for a WE phenotype through constitutive transcriptional reprogramming, thus conferring a survival advantage and facilitating further growth and invasion.


Asunto(s)
Neoplasias de la Mama/genética , Carcinoma Intraductal no Infiltrante/genética , Factores de Transcripción de Tipo Kruppel/genética , Efecto Warburg en Oncología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinoma Intraductal no Infiltrante/metabolismo , Carcinoma Intraductal no Infiltrante/patología , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Glucólisis/genética , Humanos , Factor 4 Similar a Kruppel , Células MCF-7 , Estadificación de Neoplasias , Hipoxia Tumoral/genética , Microambiente Tumoral/genética
9.
FASEB J ; 36(2): e22136, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35032412

RESUMEN

Macrophages are resident myeloid cells in the gingival tissue which control homeostasis and play a pivotal role in orchestrating the immune response in periodontitis. Cell heterogeneity and functional phenotypes of macrophage subpopulations in periodontitis remain elusive. Here, we isolated gingival tissue from periodontitis-affected and healthy sites of patients with and without type 2 diabetes mellitus (T2DM). We then used single-cell RNA-sequencing (scRNA-seq) to define the heterogeneity of tissue-resident macrophages in gingival tissue in health vs. periodontitis. scRNA-seq demonstrated an unforeseen gene expression heterogeneity among macrophages in periodontitis and showed transcriptional and signaling heterogeneity of identified subsets in an independent cohort of patients with periodontitis and T2DM. Our bioinformatic inferences indicated divergent expression profiles in macrophages driven by transcriptional regulators CIITA, RELA, RFX5, and RUNX2. Macrophages in periodontitis expressed both pro-inflammatory and anti-inflammatory markers and their polarization was not mutually exclusive. The majority of macrophages in periodontitis expressed the monocyte lineage marker CD14, indicating their bone marrow lineage. We also found high expression and activation of RELA, a subunit of the NF-κB transcription factor complex, in gingival macrophages of periodontitis patients with T2DM. Our data suggested that heterogeneity and hyperinflammatory activation of macrophages may be relevant to the pathogenesis and outcomes of periodontitis, and may be further augmented in patients with T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Macrófagos/metabolismo , Periodontitis/genética , Periodontitis/metabolismo , ARN/genética , Anciano , Biomarcadores/metabolismo , Médula Ósea/metabolismo , Linaje de la Célula/genética , Femenino , Encía/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Receptores de Lipopolisacáridos/genética , Masculino , Persona de Mediana Edad , Monocitos/metabolismo , Células Mieloides/metabolismo , Análisis de Secuencia de ARN/métodos , Transducción de Señal/genética , Factores de Transcripción/genética , Transcripción Genética/genética , Transcriptoma/genética
10.
Brain Behav Immun ; 111: 277-291, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37100211

RESUMEN

Dysregulated inflammation within the central nervous system (CNS) contributes to neuropathology in infectious, autoimmune, and neurodegenerative disease. With the exception of microglia, major histocompatibility complex (MHC) proteins are virtually undetectable in the mature, healthy central nervous system (CNS). Neurons have generally been considered incapable of antigen presentation, and although interferon gamma (IFN-γ) can elicit neuronal MHC class I (MHC-I) expression and antigen presentation in vitro, it has been unclear whether similar responses occur in vivo. Here we directly injected IFN-γ into the ventral midbrain of mature mice and analyzed gene expression profiles of specific CNS cell types. We found that IFN-γ upregulated MHC-I and associated mRNAs in ventral midbrain microglia, astrocytes, oligodendrocytes, and GABAergic, glutamatergic, and dopaminergic neurons. The core set of IFN-γ-induced genes and their response kinetics were similar in neurons and glia, but with a lower amplitude of expression in neurons. A diverse repertoire of genes was upregulated in glia, particularly microglia, which were the only cells to undergo cellular proliferation and express MHC classII (MHC-II) and associated genes. To determine if neurons respond directly via cell-autonomous IFN-γ receptor (IFNGR) signaling, we produced mutant mice with a deletion of the IFN-γ-binding domain of IFNGR1 in dopaminergic neurons, which resulted in a complete loss of dopaminergic neuronal responses to IFN-γ. Our results demonstrate that IFN-γ induces neuronal IFNGR signaling and upregulation of MHC-I and related genes in vivo, although the expression level is low compared to oligodendrocytes, astrocytes, and microglia.


Asunto(s)
Interferón gamma , Enfermedades Neurodegenerativas , Ratones , Animales , Interferón gamma/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Sistema Nervioso Central/metabolismo , Astrocitos/metabolismo , Mesencéfalo/metabolismo
11.
Lancet Oncol ; 23(11): 1409-1418, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36243020

RESUMEN

BACKGROUND: Topotecan is cytotoxic to glioma cells but is clinically ineffective because of drug delivery limitations. Systemic delivery is limited by toxicity and insufficient brain penetrance, and, to date, convection-enhanced delivery (CED) has been restricted to a single treatment of restricted duration. To address this problem, we engineered a subcutaneously implanted catheter-pump system capable of repeated, chronic (prolonged, pulsatile) CED of topotecan into the brain and tested its safety and biological effects in patients with recurrent glioblastoma. METHODS: We did a single-centre, open-label, single-arm, phase 1b clinical trial at Columbia University Irving Medical Center (New York, NY, USA). Eligible patients were at least 18 years of age with solitary, histologically confirmed recurrent glioblastoma showing radiographic progression after surgery, radiotherapy, and chemotherapy, and a Karnofsky Performance Status of at least 70. Five patients had catheters stereotactically implanted into the glioma-infiltrated peritumoural brain and connected to subcutaneously implanted pumps that infused 146 µM topotecan 200 µL/h for 48 h, followed by a 5-7-day washout period before the next infusion, with four total infusions. After the fourth infusion, the pump was removed and the tumour was resected. The primary endpoint of the study was safety of the treatment regimen as defined by presence of serious adverse events. Analyses were done in all treated patients. The trial is closed, and is registered with ClinicalTrials.gov, NCT03154996. FINDINGS: Between Jan 22, 2018, and July 8, 2019, chronic CED of topotecan was successfully completed safely in all five patients, and was well tolerated without substantial complications. The only grade 3 adverse event related to treatment was intraoperative supplemental motor area syndrome (one [20%] of five patients in the treatment group), and there were no grade 4 adverse events. Other serious adverse events were related to surgical resection and not the study treatment. Median follow-up was 12 months (IQR 10-17) from pump explant. Post-treatment tissue analysis showed that topotecan significantly reduced proliferating tumour cells in all five patients. INTERPRETATION: In this small patient cohort, we showed that chronic CED of topotecan is a potentially safe and active therapy for recurrent glioblastoma. Our analysis provided a unique tissue-based assessment of treatment response without the need for large patient numbers. This novel delivery of topotecan overcomes limitations in delivery and treatment response assessment for patients with glioblastoma and could be applicable for other anti-glioma drugs or other CNS diseases. Further studies are warranted to determine the effect of this drug delivery approach on clinical outcomes. FUNDING: US National Institutes of Health, The William Rhodes and Louise Tilzer Rhodes Center for Glioblastoma, the Michael Weiner Glioblastoma Research Into Treatment Fund, the Gary and Yael Fegel Foundation, and The Khatib Foundation.


Asunto(s)
Glioblastoma , Glioma , Humanos , Topotecan/efectos adversos , Glioblastoma/tratamiento farmacológico , Convección , Recurrencia Local de Neoplasia/tratamiento farmacológico , Glioma/patología
12.
Am J Physiol Gastrointest Liver Physiol ; 322(6): G583-G597, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35319286

RESUMEN

Intestinal ganglionic cells in the adult enteric nervous system (ENS) are continually exposed to stimuli from the surrounding microenvironment and need at times to respond to disturbed homeostasis following acute intestinal injury. The kinase DCLK1 and intestinal Dclk1-positive cells have been reported to contribute to intestinal regeneration. Although Dclk1-positive cells are present in adult enteric ganglia, their cellular identity and response to acute injury have not been investigated in detail. Here, we reveal the presence of distinct Dclk1-tdTom+/CD49b+ glial-like and Dclk1-tdTom+/CD49b- neuronal cell types in adult myenteric ganglia. These ganglionic cells demonstrate distinct patterns of tracing over time yet show a similar expansion in response to elevated serotonergic signaling. Interestingly, Dclk1-tdTom+ glial-like and neuronal cell types appear resistant to acute irradiation injury-mediated cell death. Moreover, Dclk1-tdTom+/CD49b+ glial-like cells show prominent changes in gene expression profiles induced by injury, in contrast to Dclk1-tdTom+/CD49b- neuronal cell types. Finally, subsets of Dclk1-tdTom+/CD49b+ glial-like cells demonstrate prominent overlap with Nestin and p75NTR and strong responses to elevated serotonergic signaling or acute injury. These findings, together with their role in early development and their neural crest-like gene expression signature, suggest the presence of reserve progenitor cells in the adult Dclk1 glial cell lineage.NEW & NOTEWORTHY The kinase DCLK1 identifies glial-like and neuronal cell types in adult murine enteric ganglia, which resist acute injury-mediated cell death yet differ in their cellular response to injury. Interestingly, Dclk1-labeled glial-like cells show prominent transcriptional changes in response to injury and harbor features reminiscent of previously described enteric neural precursor cells. Our data thus add to recently emerging evidence of reserve cellular plasticity in the adult enteric nervous system.


Asunto(s)
Sistema Nervioso Entérico , Células-Madre Neurales , Animales , Sistema Nervioso Entérico/fisiología , Integrina alfa2/metabolismo , Ratones , Ratones Transgénicos , Neuroglía/metabolismo , Neuronas/metabolismo
13.
Circulation ; 142(21): 2060-2075, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-32962412

RESUMEN

BACKGROUND: Smooth muscle cells (SMCs) play significant roles in atherosclerosis via phenotypic switching, a pathological process in which SMC dedifferentiation, migration, and transdifferentiation into other cell types. Yet how SMCs contribute to the pathophysiology of atherosclerosis remains elusive. METHODS: To reveal the trajectories of SMC transdifferentiation during atherosclerosis and to identify molecular targets for disease therapy, we combined SMC fate mapping and single-cell RNA sequencing of both mouse and human atherosclerotic plaques. We also performed cell biology experiments on isolated SMC-derived cells, conducted integrative human genomics, and used pharmacological studies targeting SMC-derived cells both in vivo and in vitro. RESULTS: We found that SMCs transitioned to an intermediate cell state during atherosclerosis, which was also found in human atherosclerotic plaques of carotid and coronary arteries. SMC-derived intermediate cells, termed "SEM" cells (stem cell, endothelial cell, monocyte), were multipotent and could differentiate into macrophage-like and fibrochondrocyte-like cells, as well as return toward the SMC phenotype. Retinoic acid (RA) signaling was identified as a regulator of SMC to SEM cell transition, and RA signaling was dysregulated in symptomatic human atherosclerosis. Human genomics revealed enrichment of genome-wide association study signals for coronary artery disease in RA signaling target gene loci and correlation between coronary artery disease risk alleles and repressed expression of these genes. Activation of RA signaling by all-trans RA, an anticancer drug for acute promyelocytic leukemia, blocked SMC transition to SEM cells, reduced atherosclerotic burden, and promoted fibrous cap stability. CONCLUSIONS: Integration of cell-specific fate mapping, single-cell genomics, and human genetics adds novel insights into the complexity of SMC biology and reveals regulatory pathways for therapeutic targeting of SMC transitions in atherosclerotic cardiovascular disease.


Asunto(s)
Aterosclerosis/genética , Aterosclerosis/patología , Diferenciación Celular/fisiología , Genómica/métodos , Miocitos del Músculo Liso/patología , Fenotipo , Animales , Aterosclerosis/terapia , Desdiferenciación Celular/fisiología , Movimiento Celular/fisiología , Transdiferenciación Celular/fisiología , Células Cultivadas , Femenino , Terapia Genética/tendencias , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Miocitos del Músculo Liso/fisiología , Análisis de Secuencia de ARN/métodos
14.
Am J Physiol Gastrointest Liver Physiol ; 321(4): G413-G425, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34431400

RESUMEN

Knowledge of the development and hierarchical organization of tissues is key to understanding how they are perturbed in injury and disease, as well as how they may be therapeutically manipulated to restore homeostasis. The rapidly regenerating intestinal epithelium harbors diverse cell types and their lineage relationships have been studied using numerous approaches, from classical label-retaining and genetic lineage tracing methods to novel transcriptome-based annotations. Here, we describe the developmental trajectories that dictate differentiation and lineage specification in the intestinal epithelium. We focus on the most recent single-cell RNA-sequencing (scRNA-seq)-based strategies for understanding intestinal epithelial cell lineage relationships, underscoring how they have refined our view of the development of this tissue and highlighting their advantages and limitations. We emphasize how these technologies have been applied to understand the dynamics of intestinal epithelial cells in homeostatic and injury-induced regeneration models.


Asunto(s)
Linaje de la Célula , Mucosa Intestinal/citología , Animales , Humanos , Mucosa Intestinal/metabolismo , RNA-Seq , Análisis de la Célula Individual , Transcriptoma
15.
Mol Syst Biol ; 15(2): e8557, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30796088

RESUMEN

Common approaches to gene signature discovery in single-cell RNA-sequencing (scRNA-seq) depend upon predefined structures like clusters or pseudo-temporal order, require prior normalization, or do not account for the sparsity of single-cell data. We present single-cell hierarchical Poisson factorization (scHPF), a Bayesian factorization method that adapts hierarchical Poisson factorization (Gopalan et al, 2015, Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence, 326) for de novo discovery of both continuous and discrete expression patterns from scRNA-seq. scHPF does not require prior normalization and captures statistical properties of single-cell data better than other methods in benchmark datasets. Applied to scRNA-seq of the core and margin of a high-grade glioma, scHPF uncovers marked differences in the abundance of glioma subpopulations across tumor regions and regionally associated expression biases within glioma subpopulations. scHFP revealed an expression signature that was spatially biased toward the glioma-infiltrated margins and associated with inferior survival in glioblastoma.


Asunto(s)
Glioma/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de la Célula Individual , Transcriptoma/genética , Teorema de Bayes , Regulación Neoplásica de la Expresión Génica/genética , Glioma/patología , Humanos , Distribución de Poisson
16.
Acta Neuropathol ; 138(5): 859-876, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31317229

RESUMEN

Several morphological changes, centered in/around Purkinje cells (PCs), have been identified in the cerebellum of essential tremor (ET) patients. These changes have not been contextualized within a broader degenerative disease spectrum, limiting their interpretability. To address this, we compared the severity and patterning of degenerative changes within the cerebellar cortex in patients with ET, other neurodegenerative disorders of the cerebellum (spinocerebellar ataxias (SCAs), multiple system atrophy (MSA)], and other disorders that may involve the cerebellum [Parkinson's disease (PD), dystonia]. Using a postmortem series of 156 brains [50 ET, 23 SCA (6 SCA3; 17 SCA 1, 2 or 6), 15 MSA, 29 PD, 14 dystonia, 25 controls], we generated data on 37 quantitative morphologic metrics, which were grouped into 8 broad categories: (1) PC loss, (2) heterotopic PCs, (3) PC dendritic changes, (4) PC axonal changes (torpedoes), (5) PC axonal changes (other than torpedoes), (6) PC axonal changes (torpedo-associated), (7) basket cell axonal hypertrophy, (8) climbing fiber-PC synaptic changes. Our analyses used z scored raw data for each metric across all diagnoses (5772 total data items). Principal component analysis revealed that diagnostic groups were not uniform with respect to cerebellar pathology. Dystonia and PD each differed from controls in only 2/37 metrics, whereas ET differed in 21, SCA3 in 8, MSA in 19, and SCA1/2/6 in 26 metrics. Comparing ET with primary disorders of cerebellar degeneration (i.e., SCAs), we observed a spectrum of changes reflecting differences of degree, being generally mild in ET and SCA3 and more severe in SCA1/2/6. Comparative analyses across morphologic categories demonstrated differences in relative expression, defining distinctive patterns of changes in these groups. Thus, the degree of cerebellar degeneration in ET aligns it with a milder end in the spectrum of cerebellar degenerative disorders, and a somewhat distinctive signature of degenerative changes marks each of these disorders.


Asunto(s)
Corteza Cerebelosa/patología , Temblor Esencial/patología , Atrofia de Múltiples Sistemas/patología , Ataxias Espinocerebelosas/patología , Anciano , Anciano de 80 o más Años , Axones/patología , Trastornos Distónicos/patología , Temblor Esencial/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/patología
17.
Proc Natl Acad Sci U S A ; 113(25): E3529-37, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27261081

RESUMEN

Although immune signaling has emerged as a defining feature of the glioma microenvironment, how the underlying structure of the glioma-infiltrating T-cell population differs from that of the blood from which it originates has been difficult to measure directly in patients. High-throughput sequencing of T-cell receptor (TCR) repertoires (TCRseq) provides a population-wide statistical description of how T cells respond to disease. We have defined immunophenotypes of whole repertoires based on TCRseq of the α- and ß-chains from glioma tissue, nonneoplastic brain tissue, and peripheral blood from patients. Using information theory, we partitioned the diversity of these TCR repertoires into that from the distribution of VJ cassette combinations and diversity due to VJ-independent factors, such as selection due to antigen binding. Tumor-infiltrating lymphocytes (TILs) possessed higher VJ-independent diversity than nonneoplastic tissue, stratifying patients according to tumor grade. We found that the VJ-independent components of tumor-associated repertoires diverge more from their corresponding peripheral repertoires than T-cell populations in nonneoplastic brain tissue, particularly for low-grade gliomas. Finally, we identified a "signature" set of TCRs whose use in peripheral blood is associated with patients exhibiting low TIL divergence and is depleted in patients with highly divergent TIL repertoires. This signature is detectable in peripheral blood, and therefore accessible noninvasively. We anticipate that these immunophenotypes will be foundational to monitoring and predicting response to antiglioma vaccines and immunotherapy.


Asunto(s)
Neoplasias Encefálicas/patología , Glioma/patología , Linfocitos Infiltrantes de Tumor/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Neoplasias Encefálicas/inmunología , Glioma/inmunología , Humanos
18.
Gastroenterology ; 150(1): 218-228.e12, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26408346

RESUMEN

BACKGROUND & AIMS: Activin, a member of the transforming growth factor-ß (TGFB) family, might be involved in pancreatic tumorigenesis, similar to other members of the TGFB family. Human pancreatic ductal adenocarcinomas contain somatic mutations in the activin A receptor type IB (ACVR1B) gene, indicating that ACVR1B could be a suppressor of pancreatic tumorigenesis. METHODS: We disrupted Acvr1b specifically in pancreata of mice (Acvr1b(flox/flox);Pdx1-Cre mice) and crossed them with LSL-KRAS(G12D) mice, which express an activated form of KRAS and develop spontaneous pancreatic tumors. The resulting Acvr1b(flox/flox);LSL-KRAS(G12D);Pdx1-Cre mice were monitored; pancreatic tissues were collected and analyzed by histology and immunohistochemical analyses. We also analyzed p16(flox/flox);LSL-Kras(G12D);Pdx1-Cre mice and Cre-negative littermates (controls). Genomic DNA, total RNA, and protein were isolated from mouse tissues and primary pancreatic tumor cell lines and analyzed by reverse-transcription polymerase chain reaction, sequencing, and immunoblot analyses. Human intraductal papillary mucinous neoplasm (IPMN) specimens were analyzed by immunohistochemistry. RESULTS: Loss of ACVR1B from pancreata of mice increased the proliferation of pancreatic epithelial cells, led to formation of acinar to ductal metaplasia, and induced focal inflammatory changes compared with control mice. Disruption of Acvr1b in LSL-KRAS(G12D);Pdx1-Cre mice accelerated the growth of pancreatic IPMNs compared with LSL-KRAS(G12D);Pdx1-Cre mice, but did not alter growth of pancreatic intraepithelial neoplasias. We associated perinuclear localization of the activated NOTCH4 intracellular domain to the apical cytoplasm of neoplastic cells with the expansion of IPMN lesions in Acvr1b(flox/flox);LSL-KRAS(G12D);Pdx1-Cre mice. Loss of the gene that encodes p16 (Cdkn2a) was required for progression of IPMNs to pancreatic ductal adenocarcinomas in Acvr1b(flox/flox);LSL-Kras(G12D);Pdx1-Cre mice. We also observed progressive loss of p16 in human IPMNs of increasing grades. CONCLUSIONS: Loss of ACVR1B accelerates growth of mutant KRAS-induced pancreatic IPMNs in mice; this process appears to involve NOTCH4 and loss of p16. ACVR1B suppresses early stages of pancreatic tumorigenesis; the activin signaling pathway therefore might be a therapeutic target for pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Predisposición Genética a la Enfermedad , Proteínas de la Membrana/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Adenocarcinoma Mucinoso/genética , Adenocarcinoma Mucinoso/mortalidad , Adenocarcinoma Mucinoso/patología , Animales , Carcinogénesis/genética , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Eliminación de Gen , Genes Supresores de Tumor , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Tasa de Supervivencia
19.
Acta Neuropathol ; 133(1): 121-138, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27704282

RESUMEN

Changes in climbing fiber-Purkinje cell (CF-PC) synaptic connections have been found in the essential tremor (ET) cerebellum, and these changes are correlated with tremor severity. Whether these postmortem changes are specific to ET remains to be investigated. We assessed CF-PC synaptic pathology in the postmortem cerebellum across a range of degenerative movement disorders [10 Parkinson's disease (PD) cases, 10 multiple system atrophy (MSA) cases, 10 spinocerebellar ataxia type 1 (SCA1) cases, and 20 ET cases] and 25 controls. We observed differences in terms of CF pathological features across these disorders. Specifically, PD cases and ET cases both had more CFs extending into the parallel fiber (PF) territory, but ET cases had more complex branching and increased length of CFs in the PF territory along with decreased CF synaptic density compared to PD cases. MSA cases and SCA1 cases had the most severely reduced CF synaptic density and a marked paucity of CFs extending into the PF territory. Furthermore, CFs in a subset of MSA cases formed collateral branches parallel to the PC layer, a feature not seen in other diagnostic groups. Using unsupervised cluster analysis, the cases and controls could all be categorized into four clusters based on the CF pathology and features of PC pathology, including counts of PCs and their axonal torpedoes. ET cases and PD cases co-segregated into two clusters, whereas SCA1 cases and MSA cases formed another cluster, separate from the control cluster. Interestingly, the presence of resting tremor seemed to be the clinical feature that separated the cases into the two ET-PD clusters. In conclusion, our study demonstrates that these degenerative movement disorders seem to differ with respect to the pattern of CF synaptic pathology they exhibit. It remains to be determined how these differences contribute to the clinical presentations of these diseases.


Asunto(s)
Temblor Esencial/patología , Atrofia de Múltiples Sistemas/patología , Enfermedad de Parkinson/patología , Células de Purkinje/patología , Ataxias Espinocerebelosas/patología , Sinapsis/patología , Anciano , Anciano de 80 o más Años , Análisis por Conglomerados , Temblor Esencial/diagnóstico , Temblor Esencial/metabolismo , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Atrofia de Múltiples Sistemas/diagnóstico , Atrofia de Múltiples Sistemas/metabolismo , Vías Nerviosas/metabolismo , Vías Nerviosas/patología , Núcleo Olivar/metabolismo , Núcleo Olivar/patología , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/metabolismo , Células de Purkinje/metabolismo , Índice de Severidad de la Enfermedad , Ataxias Espinocerebelosas/diagnóstico , Ataxias Espinocerebelosas/metabolismo , Sinapsis/metabolismo , Temblor/diagnóstico , Temblor/metabolismo , Temblor/patología , Aprendizaje Automático no Supervisado , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
20.
Proc Natl Acad Sci U S A ; 111(34): 12550-5, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25114226

RESUMEN

Glioblastomas (GBMs) diffusely infiltrate the brain, making complete removal by surgical resection impossible. The mixture of neoplastic and nonneoplastic cells that remain after surgery form the biological context for adjuvant therapeutic intervention and recurrence. We performed RNA-sequencing (RNA-seq) and histological analysis on radiographically guided biopsies taken from different regions of GBM and showed that the tissue contained within the contrast-enhancing (CE) core of tumors have different cellular and molecular compositions compared with tissue from the nonenhancing (NE) margins of tumors. Comparisons with the The Cancer Genome Atlas dataset showed that the samples from CE regions resembled the proneural, classical, or mesenchymal subtypes of GBM, whereas the samples from the NE regions predominantly resembled the neural subtype. Computational deconvolution of the RNA-seq data revealed that contributions from nonneoplastic brain cells significantly influence the expression pattern in the NE samples. Gene ontology analysis showed that the cell type-specific expression patterns were functionally distinct and highly enriched in genes associated with the corresponding cell phenotypes. Comparing the RNA-seq data from the GBM samples to that of nonneoplastic brain revealed that the differentially expressed genes are distributed across multiple cell types. Notably, the patterns of cell type-specific alterations varied between the different GBM subtypes: the NE regions of proneural tumors were enriched in oligodendrocyte progenitor genes, whereas the NE regions of mesenchymal GBM were enriched in astrocytic and microglial genes. These subtype-specific patterns provide new insights into molecular and cellular composition of the infiltrative margins of GBM.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioblastoma/genética , Glioblastoma/patología , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/clasificación , Medios de Contraste , Femenino , Glioblastoma/clasificación , Humanos , Biopsia Guiada por Imagen , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , ARN Neoplásico/genética , Análisis de Secuencia de ARN , Transcriptoma , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA