Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EJNMMI Rep ; 8(1): 17, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38872028

RESUMEN

OBJECTIVES: 3D-visualization of the segmented contacts of directional deep brain stimulation (DBS) electrodes is desirable since knowledge about the position of every segmented contact could shorten the timespan for electrode programming. CT cannot yield images fitting that purpose whereas highly resolved flat detector computed tomography (FDCT) can accurately image the inner structure of the electrode. This study aims to demonstrate the applicability of image fusion of highly resolved FDCT and CT to produce highly resolved images that preserve anatomical context for subsequent fusion to preoperative MRI for eventually displaying segmented contactswithin anatomical context in future studies. MATERIAL AND METHODS: Retrospectively collected datasets from 15 patients who underwent bilateral directional DBS electrode implantation were used. Subsequently, after image analysis, a semi-automated 3D-registration of CT and highly resolved FDCT followed by image fusion was performed. The registration accuracy was assessed by computing the target registration error. RESULTS: Our work demonstrated the feasibility of highly resolved FDCT to visualize segmented electrode contacts in 3D. Semiautomatic image registration to CT was successfully implemented in all cases. Qualitative evaluation by two experts revealed good alignment regarding intracranial osseous structures. Additionally, the average for the mean of the target registration error over all patients, based on the assessments of two raters, was computed to be 4.16 mm. CONCLUSION: Our work demonstrated the applicability of image fusion of highly resolved FDCT to CT for a potential workflow regarding subsequent fusion to MRI in the future to put the electrodes in an anatomical context.

2.
Sci Rep ; 14(1): 1579, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238459

RESUMEN

This interdisciplinary study examined the relationship between bone density and drilling forces required during trans-pedicular access to the vertebra using fresh-frozen thoraco-lumbar vertebrae from two female body donors (A, B). Before and after biomechanical examination, samples underwent high-resolution CT-quantification of total bone density followed by software-based evaluation and processing. CT density measurements (n = 4818) were calculated as gray values (GV), which were highest in T12 for both subjects (GVmaxA = 3483.24, GVmaxB = 3160.33). Trans-pedicular drilling forces F (Newton N) were highest in L3 (FmaxB = 5.67 N) and L4 (FmaxA = 5.65 N). In 12 out of 13 specimens, GVs significantly (p < 0.001) correlated with force measurements. Among these, Spearman correlations r were poor in two lumbar vertebrae, fair in five specimens, and moderately strong in another five specimens, and highest for T11 (rA = 0.721) and L5 (rB = 0.690). Our results indicate that CT-based analysis of vertebral bone density acquired in anatomical specimens is a promising approach to predict the drilling force appearance as surrogate parameter of its biomechanical properties by e.g., linear regression analysis. The study may be of value as basis for biomechanical investigations to improve planning of the optimal trajectory and to define safety margins for drilling forces during robotic-assisted trans-pedicular interventions on the spine in the future.


Asunto(s)
Anoplura , Tomografía Computarizada por Rayos X , Humanos , Femenino , Animales , Tomografía Computarizada por Rayos X/métodos , Calcificación Fisiológica , Densidad Ósea , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA