Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 163(3): 656-69, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26478179

RESUMEN

While isolated motor actions can be correlated with activities of neuronal networks, an unresolved problem is how the brain assembles these activities into organized behaviors like action sequences. Using brain-wide calcium imaging in Caenorhabditis elegans, we show that a large proportion of neurons across the brain share information by engaging in coordinated, dynamical network activity. This brain state evolves on a cycle, each segment of which recruits the activities of different neuronal sub-populations and can be explicitly mapped, on a single trial basis, to the animals' major motor commands. This organization defines the assembly of motor commands into a string of run-and-turn action sequence cycles, including decisions between alternative behaviors. These dynamics serve as a robust scaffold for action selection in response to sensory input. This study shows that the coordination of neuronal activity patterns into global brain dynamics underlies the high-level organization of behavior.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/fisiología , Animales , Encéfalo/citología , Encéfalo/fisiología , Fenómenos Electrofisiológicos , Neuronas Motoras/citología , Neuronas Motoras/fisiología , Red Nerviosa , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/fisiología , Transducción de Señal
3.
Cell Rep ; 22(4): 953-966, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29386137

RESUMEN

Neural information processing entails a high energetic cost, but its maintenance is crucial for animal survival. However, the brain's energy conservation strategies are incompletely understood. Employing functional brain-wide imaging and quantitative behavioral assays, we describe a neuronal strategy in Caenorhabditis elegans that balances energy availability and expenditure. Upon acute food deprivation, animals exhibit a transiently elevated state of arousal, indicated by foraging behaviors and increased responsiveness to food-related cues. In contrast, long-term starvation suppresses these behaviors and biases animals to intermittent sleep episodes. Brain-wide neuronal population dynamics, which are likely energetically costly but important for behavior, are robust to starvation while animals are awake. However, during starvation-induced sleep, brain dynamics are systemically downregulated. Neuromodulation via insulin-like signaling is required to transiently maintain the animals' arousal state upon acute food deprivation. Our data suggest that the regulation of sleep and wakefulness supports optimal energy allocation.


Asunto(s)
Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Sueño/fisiología , Animales , Transducción de Señal
4.
Cell Rep ; 14(7): 1641-1654, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26876168

RESUMEN

It is known that internal physiological state, or interoception, influences CNS function and behavior. However, the neurons and mechanisms that integrate sensory information with internal physiological state remain largely unknown. Here, we identify C. elegans body cavity neurons called URX(L/R) as central homeostatic sensors that integrate fluctuations in oxygen availability with internal metabolic state. We show that depletion of internal body fat reserves increases the tonic activity of URX neurons, which influences the magnitude of the evoked sensory response to oxygen. These responses are integrated via intracellular cGMP and Ca(2+). The extent of neuronal activity thus reflects the balance between the perception of oxygen and available fat reserves. The URX homeostatic sensor ensures that neural signals that stimulate fat loss are only deployed when there are sufficient fat reserves to do so. Our results uncover an interoceptive neuroendocrine axis that relays internal state information to the nervous system.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Homeostasis/efectos de los fármacos , Oxígeno/farmacología , Células Receptoras Sensoriales/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Dióxido de Carbono/farmacología , GMP Cíclico/metabolismo , Potenciales Evocados Somatosensoriales/genética , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Regulación de la Expresión Génica , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Homeostasis/genética , Interocepción/efectos de los fármacos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Lipasa/antagonistas & inhibidores , Lipasa/genética , Lipasa/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Células Receptoras Sensoriales/metabolismo , Transducción de Señal
5.
Endocrinology ; 153(10): 4600-7, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22869346

RESUMEN

The action of peripherally released leptin at long-form leptin receptors (LepRb) within the brain represents a fundamental axis in the regulation of energy homeostasis and body weight. Efforts to delineate the neuronal mediators of leptin action have recently focused on extrahypothalamic populations and have revealed that leptin action within the nucleus of the solitary tract (NTS) is critical for normal appetite and body weight regulation. To elucidate the neuronal circuits that mediate leptin action within the NTS, we employed multiple transgenic reporter lines to characterize the neurochemical identity of LepRb-expressing NTS neurons. LepRb expression was not detected in energy balance-associated NTS neurons that express cocaine- and amphetamine-regulated transcript, brain-derived neurotrophic factor, neuropeptide Y, nesfatin, catecholamines, γ-aminobutyric acid, prolactin-releasing peptide, or nitric oxide synthase. The population of LepRb-expressing NTS neurons was comprised of subpopulations marked by a proopiomelanocortin-enhanced green fluorescent protein (EGFP) transgene and distinct populations that express proglucagon and/or cholecystokinin. The significance of leptin action on these three populations of NTS neurons was assessed in leptin-deficient Ob/Ob mice, revealing increased NTS proglucagon and cholecystokinin, but not proopiomelanocortin, expression. These data provide new insight into the appetitive brainstem circuits engaged by leptin.


Asunto(s)
Peso Corporal/fisiología , Neuronas/metabolismo , Receptores de Leptina/metabolismo , Núcleo Solitario/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Colecistoquinina/metabolismo , Metabolismo Energético/fisiología , Leptina/metabolismo , Ratones , Ratones Transgénicos , Neuropéptido Y/metabolismo , Fosforilación , Proopiomelanocortina/metabolismo , Proglucagón/metabolismo , Hormona Liberadora de Prolactina/metabolismo , Factor de Transcripción STAT3/metabolismo , Núcleo Solitario/citología , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA