Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 10(12)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33766906

RESUMEN

Staphylococcus epidermidis is a common cause of implant-associated infections, and this is related to its ability to form biofilms. Strain-to-strain variability in biofilm formation is likely caused by genetic differences. Here, we present a draft genome of S. epidermidis AUH4567, which was isolated from a central venous catheter infection.

2.
J Med Microbiol ; 70(3)2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33492206

RESUMEN

Introduction. Staphylococcus epidermidis is predominant in implant-associated infections due to its capability to form biofilms. It can deploy several strategies for biofilm development using either polysaccharide intercellular adhesin (PIA), extracellular DNA (eDNA) and/or proteins, such as the extracellular matrix-binding protein (Embp).Hypothesis/Gap Statement. We hypothesize that the dichotomic regulation of S. epidermidis adhesins is linked to whether it is inside a host or not, and that in vitro biofilm investigations in laboratory media may not reflect actual biofilms in vivo.Aim. We address the importance of PIA and Embp in biofilm grown in 'humanized' media to understand if these components play different roles in biofilm formation under conditions where bacteria can incorporate host proteins in the biofilm matrix.Methodology. S. epidermidis 1585 WT (deficient in icaADBC), and derivative strains that either lack embp, express embp from an inducible promotor, or express icaADBC from a plasmid, were cultivated in standard laboratory media, or in media with human plasma or serum. The amount, structure, elasticity and antimicrobial penetration of biofilms was quantified to describe structural differences caused by the different matrix components and growth conditions. Finally, we quantified the initiation of biofilms as suspended aggregates in response to host factors to determine how quickly the cells aggregate in response to the host environment and reach a size that protects them from phagocytosis.Results. S. epidermidis 1585 required polysaccharides to form biofilm in laboratory media. However, these observations were not representative of the biofilm phenotype in the presence of human plasma. If human plasma were present, polysaccharides and Embp were redundant for biofilm formation. Biofilms formed in human plasma were loosely attached and existed mostly as suspended aggregates. Aggregation occurred after 2 h of exposing cells to plasma or serum. Despite stark differences in the amount and composition of biofilms formed by polysaccharide-producing and Embp-producing strains in different media, there were no differences in vancomycin penetration or susceptibility.Conclusion. We suggest that the assumed importance of polysaccharides for biofilm formation is an artefact from studying biofilms in laboratory media void of human matrix components. The cell-cell aggregation of S. epidermidis can be activated by host factors without relying on either of the major adhesins, PIA and Embp, indicating a need to revisit the basic question of how S. epidermidis deploys self-produced and host-derived matrix components to form antibiotic-tolerant biofilms in vivo.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Polisacáridos Bacterianos/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus epidermidis/fisiología , Adhesión Bacteriana , Regulación Bacteriana de la Expresión Génica , Humanos
3.
PLoS One ; 14(10): e0223647, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31600340

RESUMEN

The developmental speed of new antimicrobials does not meet the emergence of multidrug-resistant bacteria sufficiently. A potential shortcut is assessing the antimicrobial activity of already approved drugs. Intrudingly, the antibacterial action of glatiramer acetate (GA) has recently been discovered. GA is a well-known and safe immunomodulatory drug particular effective against Gram-negative bacteria, which disrupts biological membranes by resembling the activity of antimicrobial peptides. Thus, GA can potentially be included in treatment strategies used to combat infections caused by multidrug-resistant Gram-negatives. One potential application is chronic respiratory infections caused by Pseudomonas aeruginosa, however the safety of GA inhalation has never been assessed. Here, the safety of inhaling nebulized GA is evaluated in a preclinical pig model. The potential side effects, i.e., bronchoconstriction, respiratory tract symptoms and systemic- and local inflammation were assessed by ventilator monitoring, clinical observation, biochemistry, flowcytometry, and histopathology. No signs of bronchoconstriction assessed by increased airway peak pressure, Ppeak, or decreased oxygen pressure were observed. Also, there were no signs of local inflammation in the final histopathology examination of the pulmonary tissue. As we did not observe any potential pulmonary side effects of inhaled GA, our preliminary results suggest that GA inhalation is safe and potentially can be a part of the treatment strategy targeting chronic lung infections caused by multidrug-resistant Gram-negative bacteria.


Asunto(s)
Acetato de Glatiramer/administración & dosificación , Acetato de Glatiramer/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Pulmón/microbiología , Pulmón/patología , Nebulizadores y Vaporizadores , Administración por Inhalación , Animales , Bronquios/efectos de los fármacos , Bronquios/microbiología , Bronquios/patología , Broncoconstricción/efectos de los fármacos , Femenino , Recuento de Leucocitos , Pulmón/efectos de los fármacos , Manitol/administración & dosificación , Manitol/farmacología , Membrana Mucosa/efectos de los fármacos , Porcinos
4.
Acta Biomater ; 76: 46-55, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30078425

RESUMEN

Staphylococcal biofilm formation is a severe complication of medical implants, leading to high antibiotic tolerance and treatment failure. Ultra-dense poly(ethylene glycol) (udPEG) coating resists adsorption of proteins, polysaccharides and extracellular DNA. It is therefore uniquely resistant to attachment by Staphylococcus epidermidis, which remains loosely adhered to the surface. Our aim was to determine if S. epidermidis remains susceptible to antibiotics when adhering to udPEG, and if udPEG coatings can improve the treatment outcome for implant-associated infections. We tested the in vitro efficacy of vancomycin treatment on recently adhered S. epidermidis AUH4567 on udPEG, conventional PEG or titanium surfaces using live/dead staining and microscopy. udPEG was then applied to titanium implants and inserted subcutaneously in mice and inoculated with S. epidermidis to induce infection. Mice were given antibiotic prophylaxis or a short antibiotic treatment. One group was given immunosuppressive therapy. After five days, implants and surrounding tissue were harvested for CFU enumeration. Only few S. epidermidis cells adhered to udPEG compared to conventional PEG and uncoated titanium, and a much lower fraction of cells on udPEG survived antibiotic treatment in vitro. In vivo, the bacterial load on implants in mice receiving vancomycin treatment was significantly lower on udPEG-coated compared to uncoated implants, also in neutropenic mice. Our results suggest that the improved outcome results from the coating's anti-adhesive properties that leads to less biofilm and increased efficacy of antibiotic treatment. Thus, the combination of udPEG with antibiotics is a promising strategy to prevent acute implant-associated infections that arise due to perioperative contaminations. STATEMENT OF SIGNIFICANCE: Infections of medical implants is an ever-present danger. Here, bacteria develop biofilms that cannot be eradicated with antibiotics. By using an ultra-dense polymer-brush coating (udPEG), bacterial attachment and the subsequent biofilm formation can be reduced, resulting in increased antibiotic susceptibility of bacteria surrounding the implant. udPEG combined with antibiotics proved to significantly reduce bacteria on implants inserted into mice, in our animal model. As the coating is not antibacterial per se, it does not induce antimicrobial resistance and its effect is independent of the bacterial species. Our results are encouraging for the prospect of preventing and treating implant-associated infections that arise due to perioperative contaminations.


Asunto(s)
Antibacterianos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Materiales Biocompatibles Revestidos/química , Implantes Experimentales , Polietilenglicoles/química , Staphylococcus epidermidis/fisiología , Antibacterianos/química , Antibacterianos/farmacología
5.
Sci Rep ; 7(1): 15653, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29142299

RESUMEN

Classic drug development strategies have failed to meet the urgent clinical needs in treating infections with Gram-negative bacteria. Repurposing drugs can lead to timely availability of new antibiotics, accelerated by existing safety profiles. Glatiramer acetate (GA) is a widely used and safe formulation for treatment of multiple sclerosis. It contains a large diversity of essentially isomeric polypeptides with the cationic and amphiphilic character of many antimicrobial peptides (AMP). Here, we report that GA is antibacterial, targeting Gram-negative organisms with higher activity towards Pseudomonas aeruginosa than the naturally-occurring AMP LL-37 in human plasma. As judged from flow cytometric assays, bacterial killing by GA occurred within minutes. Laboratory strains of Escherichia coli and P. aeruginosa were killed by a process of condensing intracellular contents. Efficient killing by GA was also demonstrated in Acinetobacter baumannii clinical isolates and approximately 50% of clinical isolates of P. aeruginosa from chronic airway infection in CF patients. By contrast, the Gram-positive Staphylococcus aureus cells appeared to be protected from GA by an increased formation of nm-scale particulates. Our data identify GA as an attractive drug repurposing candidate to treat infections with Gram-negative bacteria.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Acetato de Glatiramer/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/patogenicidad , Antibacterianos/farmacología , Antiinfecciosos/química , Antiinfecciosos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Bacterias Gramnegativas/patogenicidad , Humanos , Factores Inmunológicos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Infecciones Estafilocócicas/microbiología
6.
Pathog Dis ; 74(4): ftw019, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27036412

RESUMEN

Susceptibility to antibiotics is dramatically reduced when bacteria form biofilms. In clinical settings this has a profound impact on treatment of implant-associated infections, as these are characterized by biofilm formation. Current routine susceptibility testing of microorganisms from infected implants does not reflect the actual susceptibility, and the optimal antibiotic strategy for treating implant-associated infections is not established. In this study of biofilm formation in implant-associated osteomyelitis, we compared thein vitroandin vivoefficacy of selected antibiotics alone and in combination againstStaphylococcus aureus.We tested vancomycin, linezolid, daptomycin and tigecycline alone and in combination with rifampicin, vancomycin, linezolid and daptomycin againstS. aureusIn vitro, biofilm formation dramatically reduced susceptibility by a factor of 500-2000.In vivo, antibiotic combinations were tested in a murine model of implant-associated osteomyelitis. Mice were infected by inserting implants colonized withS. aureustrough their tibia. After 11 days, the animals were divided into different groups (five animals/group) and given 14 days of antibiotic therapy. All antibiotics resulted in a reduced bacterial load in the infected bone surrounding the implant. Overall, the most effective antibiotic combinations contained rifampicin. Combinations containing two non-rifampicin antibiotics were not more active than single drugs.


Asunto(s)
Biopelículas/efectos de los fármacos , Daptomicina/farmacología , Linezolid/farmacología , Rifampin/farmacología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Vancomicina/farmacología , Animales , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Daptomicina/administración & dosificación , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana , Sinergismo Farmacológico , Quimioterapia Combinada , Femenino , Linezolid/administración & dosificación , Ratones , Pruebas de Sensibilidad Microbiana , Osteomielitis/tratamiento farmacológico , Osteomielitis/microbiología , Prótesis e Implantes/microbiología , Rifampin/administración & dosificación , Infecciones Estafilocócicas/tratamiento farmacológico , Resultado del Tratamiento , Vancomicina/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA