Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 76(2): 220-231, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31586545

RESUMEN

Deregulated cell proliferation is an established feature of cancer, and altered tumor metabolism has witnessed renewed interest over the past decade, including the study of how cancer cells rewire metabolic pathways to renew energy sources and "building blocks" that sustain cell division. Microenvironmental oxygen, glucose, and glutamine are regarded as principal nutrients fueling tumor growth. However, hostile tumor microenvironments render O2/nutrient supplies chronically insufficient for increased proliferation rates, forcing cancer cells to develop strategies for opportunistic modes of nutrient acquisition. Recent work shows that cancer cells overcome this nutrient scarcity by scavenging other substrates, such as proteins and lipids, or utilizing adaptive metabolic pathways. As such, reprogramming lipid metabolism plays important roles in providing energy, macromolecules for membrane synthesis, and lipid-mediated signaling during cancer progression. In this review, we highlight more recently appreciated roles for lipids, particularly cholesterol and its derivatives, in cancer cell metabolism within intrinsically harsh tumor microenvironments.


Asunto(s)
Proliferación Celular , Colesterol/metabolismo , Metabolismo Energético , Neoplasias/metabolismo , Animales , Microbioma Gastrointestinal , Humanos , Neoplasias/inmunología , Neoplasias/microbiología , Neoplasias/patología , Obesidad/metabolismo , Obesidad/patología , Transducción de Señal , Escape del Tumor , Hipoxia Tumoral , Microambiente Tumoral
2.
Nat Immunol ; 14(6): 611-8, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23644504

RESUMEN

Natural T helper 17 (nTH17) cells are a population of interleukin 17 (IL-17)-producing cells that acquire effector function in the thymus during development. Here we demonstrate that the serine/threonine kinase Akt has a critical role in regulating nTH17 cell development. Although Akt and the downstream mTORC1-ARNT-HIFα axis were required for generation of inducible TH17 (iTH17) cells, nTH17 cells developed independently of mTORC1. In contrast, mTORC2 and inhibition of Foxo proteins were critical for development of nTH17 cells. Moreover, distinct isoforms of Akt controlled the generation of TH17 cell subsets, as deletion of Akt2, but not of Akt1, led to defective generation of iTH17 cells. These findings define mechanisms regulating nTH17 cell development and reveal previously unknown roles of Akt and mTOR in shaping subsets of T cells.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt/inmunología , Transducción de Señal/inmunología , Serina-Treonina Quinasas TOR/inmunología , Células Th17/inmunología , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/inmunología , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Citometría de Flujo , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/inmunología , Factores de Transcripción Forkhead/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/inmunología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Immunoblotting , Interleucina-17/inmunología , Interleucina-17/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Complejos Multiproteicos/inmunología , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/metabolismo , Células Th17/metabolismo
3.
Neuropathology ; 39(2): 71-77, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30632221

RESUMEN

MYC amplification is common in Group 3 medulloblastoma and is associated with poor survival. Group 3 and Group 4 medulloblastomas are also known to have elevated levels of histone H3-lysine 27-tri-methylation (H3K27me3), at least in part due to high expression of the H3K27 methyltransferase enhancer of zest homologue 2 (EZH2), which can be regulated by MYC. We therefore examined whether MYC expression is associated with elevated EZH2 and H3K27me3 in medulloblastoma, and if high-MYC medulloblastomas are particularly sensitive to pharmacological EZH2 blockade. Western blot analysis of low (DAOY, UW228, CB SV40) and high (DAOY-MYC, UW228-MYC, CB-MYC, D425) MYC cell lines showed that higher levels of EZH2 and H3K27me3 were associated with elevated MYC. In fixed medulloblastoma samples examined using immunohistochemistry, most MYC positive tumors also had high H3K27me3, but many MYC negative ones did as well, and the correlation was not statistically significant. All high MYC lines tested were sensitive to the EZH2 inhibitor EPZ6438. Many low MYC lines also grew more slowly in the presence of EPZ6438, although DAOY-MYC cells responded more strongly than parent DAOY cultures with lower MYC levels. We find that higher MYC levels are associated with increased EZH2, and pharmacological blockade of EZH2 is a potential therapeutic strategy for aggressive medulloblastoma with elevated MYC.


Asunto(s)
Neoplasias Cerebelosas/enzimología , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Inhibidores Enzimáticos/administración & dosificación , Meduloblastoma/enzimología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Cerebelosas/tratamiento farmacológico , Técnicas de Silenciamiento del Gen , Humanos , Meduloblastoma/tratamiento farmacológico
4.
Development ; 142(14): 2405-12, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26153230

RESUMEN

Deeper insight into the molecular pathways that orchestrate skeletal myogenesis should enhance our understanding of, and ability to treat, human skeletal muscle disease. It is now widely appreciated that nutrients, such as molecular oxygen (O2), modulate skeletal muscle formation. During early stages of development and regeneration, skeletal muscle progenitors reside in low O2 environments before local blood vessels and differentiated muscle form. Moreover, low O2 availability (hypoxia) impedes progenitor-dependent myogenesis in vitro through multiple mechanisms, including activation of hypoxia inducible factor 1α (HIF1α). However, whether HIF1α regulates skeletal myogenesis in vivo is not known. Here, we explored the role of HIF1α during murine skeletal muscle development and regeneration. Our results demonstrate that HIF1α is dispensable during embryonic and fetal myogenesis. However, HIF1α negatively regulates adult muscle regeneration after ischemic injury, implying that it coordinates adult myogenesis with nutrient availability in vivo. Analyses of Hif1a mutant muscle and Hif1a-depleted muscle progenitors further suggest that HIF1α represses myogenesis through inhibition of canonical Wnt signaling. Our data provide the first evidence that HIF1α regulates skeletal myogenesis in vivo and establish a novel link between HIF and Wnt signaling in this context.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Desarrollo de Músculos/fisiología , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Vía de Señalización Wnt , Animales , Diferenciación Celular , Línea Celular , Eliminación de Gen , Inmunohistoquímica , Isquemia/patología , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Mutación , Oxígeno/metabolismo , Perfusión , Regeneración
5.
EMBO Rep ; 17(4): 508-18, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26964895

RESUMEN

Ku heterodimer is a DNA binding protein with a prominent role in DNA repair. Here, we investigate whether and how Ku impacts the DNA damage response by acting as a post-transcriptional regulator of gene expression. We show that Ku represses p53 protein synthesis and p53-mediated apoptosis by binding to a bulged stem-loop structure within the p53 5' UTR However, Ku-mediated translational repression of the p53 mRNA is relieved after genotoxic stress. The underlying mechanism involves Ku acetylation which disrupts Ku-p53 mRNA interactions. These results suggest that Ku-mediated repression of p53 mRNA translation constitutes a novel mechanism linking DNA repair and mRNA translation.


Asunto(s)
Daño del ADN/fisiología , Reparación del ADN , Autoantígeno Ku/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , Proteína p53 Supresora de Tumor/genética , Regiones no Traducidas 5' , Acetilación , Apoptosis , Daño del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Humanos , Autoantígeno Ku/genética , Unión Proteica , ARN Mensajero/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
6.
Proc Natl Acad Sci U S A ; 112(26): E3402-11, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26080399

RESUMEN

Genetic aberrations responsible for soft-tissue sarcoma formation in adults are largely unknown, with targeted therapies sorely needed for this complex and heterogeneous family of diseases. Here we report that that the Hippo pathway is deregulated in many soft-tissue sarcomas, resulting in elevated expression of the effector molecule Yes-Associated Protein (YAP). Based on data gathered from human sarcoma patients, a novel autochthonous mouse model, and mechanistic analyses, we determined that YAP-dependent expression of the transcription factor forkhead box M1 (FOXM1) is necessary for cell proliferation/tumorigenesis in a subset of soft-tissue sarcomas. Notably, FOXM1 directly interacts with the YAP transcriptional complex via TEAD1, resulting in coregulation of numerous critical pro-proliferation targets that enhance sarcoma progression. Finally, pharmacologic inhibition of FOXM1 decreases tumor size in vivo, making FOXM1 an attractive therapeutic target for the treatment of some sarcoma subtypes.


Asunto(s)
Carcinogénesis , Factores de Transcripción Forkhead/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Sarcoma/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular Tumoral , Proliferación Celular/fisiología , Proteína Forkhead Box M1 , Factores de Transcripción Forkhead/fisiología , Vía de Señalización Hippo , Humanos , Fosfoproteínas/metabolismo , Sarcoma/patología , Factores de Transcripción , Proteínas Señalizadoras YAP
7.
Blood ; 125(21): 3263-72, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25855602

RESUMEN

Hypoxia-inducible factors (HIFs) are master regulators of the transcriptional response to low oxygen and play essential roles in embryonic development, tissue homeostasis, and disease. Recent studies have demonstrated that hematopoietic stem cells (HSCs) within the bone marrow localize to a hypoxic niche and that HIF-1α promotes HSC adaptation to stress. Because the related factor HIF-2α is also expressed in HSCs, the combined role of HIF-1α and HIF-2α in HSC maintenance is unclear. To this end, we have conditionally deleted the HIF-α dimerization partner, the aryl hydrocarbon receptor nuclear translocator (ARNT) in the hematopoietic system to ablate activity of both HIF-1α and HIF-2α and assessed the functional consequence of ARNT deficiency on fetal liver and adult hematopoiesis. We determined that ARNT is essential for adult and fetal HSC viability and homeostasis. Importantly, conditional knockout of both Hif-1α and Hif-2α phenocopied key aspects of these HSC phenotypes, demonstrating that the impact of Arnt deletion is primarily HIF dependent. ARNT-deficient long-term HSCs underwent apoptosis, potentially because of reduced B-cell lymphoma 2 (BCL-2) and vascular endothelial growth factor A (VEGF-A) expression. Our results suggest that HIF activity may regulate HSC homeostasis through these prosurvival factors.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Supervivencia Celular , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
Proc Natl Acad Sci U S A ; 111(1): 291-6, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24368849

RESUMEN

Glioblastoma multiforme (GBM) and the mesenchymal GBM subtype in particular are highly malignant tumors that frequently exhibit regions of severe hypoxia and necrosis. Because these features correlate with poor prognosis, we investigated microRNAs whose expression might regulate hypoxic GBM cell survival and growth. We determined that the expression of microRNA-218 (miR-218) is decreased significantly in highly necrotic mesenchymal GBM, and orthotopic tumor studies revealed that reduced miR-218 levels confer GBM resistance to chemotherapy. Importantly, miR-218 targets multiple components of receptor tyrosine kinase (RTK) signaling pathways, and miR-218 repression increases the abundance and activity of multiple RTK effectors. This elevated RTK signaling also promotes the activation of hypoxia-inducible factor (HIF), most notably HIF2α. We further show that RTK-mediated HIF2α regulation is JNK dependent, via jun proto-oncogene. Collectively, our results identify an miR-218-RTK-HIF2α signaling axis that promotes GBM cell survival and tumor angiogenesis, particularly in necrotic mesenchymal tumors.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Mesodermo/metabolismo , MicroARNs/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antineoplásicos/farmacología , Supervivencia Celular , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Hipoxia , Ratones , Ratones Desnudos , Persona de Mediana Edad , Necrosis , Trasplante de Neoplasias , Neovascularización Patológica , Análisis de Secuencia por Matrices de Oligonucleótidos , Proto-Oncogenes Mas , Transducción de Señal , Adulto Joven
9.
J Cell Sci ; 127(Pt 16): 3555-67, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24951116

RESUMEN

Information from multiple signaling axes is integrated in the determination of cellular phenotypes. Here, we demonstrate this aspect of cellular decision making in glioblastoma multiforme (GBM) cells by investigating the multivariate signaling regulatory functions of the protein tyrosine phosphatase SHP2 (also known as PTPN11). Specifically, we demonstrate that the ability of SHP2 to simultaneously drive ERK1/2 and antagonize STAT3 pathway activities produces qualitatively different effects on the phenotypes of proliferation and resistance to EGFR and c-MET co-inhibition. Whereas the ERK1/2 and STAT3 pathways independently promote proliferation and resistance to EGFR and c-MET co-inhibition, SHP2-driven ERK1/2 activity is dominant in driving cellular proliferation and SHP2-mediated antagonism of STAT3 phosphorylation prevails in the promotion of GBM cell death in response to EGFR and c-MET co-inhibition. Interestingly, the extent of these SHP2 signaling regulatory functions is diminished in glioblastoma cells that express sufficiently high levels of the EGFR variant III (EGFRvIII) mutant, which is commonly expressed in GBM. In cells and tumors that express EGFRvIII, SHP2 also antagonizes the phosphorylation of EGFRvIII and c-MET and drives expression of HIF-1α and HIF-2α, adding complexity to the evolving understanding of the regulatory functions of SHP2 in GBM.


Asunto(s)
Proliferación Celular , Glioblastoma/enzimología , Sistema de Señalización de MAP Quinasas , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Animales , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Receptores ErbB/metabolismo , Femenino , Gefitinib , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/fisiopatología , Humanos , Indoles/administración & dosificación , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Desnudos , Fosforilación/efectos de los fármacos , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Quinazolinas/administración & dosificación , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Sulfonas/administración & dosificación
10.
Carcinogenesis ; 35(5): 1067-77, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24408928

RESUMEN

Hypoxia-inducible factors (HIFs) accumulate in both neoplastic and inflammatory cells within the tumor microenvironment and impact the progression of a variety of diseases, including colorectal cancer. Pharmacological HIF inhibition represents a novel therapeutic strategy for cancer treatment. We show here that acriflavine (ACF), a naturally occurring compound known to repress HIF transcriptional activity, halts the progression of an autochthonous model of established colitis-associated colon cancer (CAC) in immunocompetent mice. ACF treatment resulted in decreased tumor number, size and advancement (based on histopathological scoring) of CAC. Moreover, ACF treatment corresponded with decreased macrophage infiltration and vascularity in colorectal tumors. Importantly, ACF treatment inhibited the hypoxic induction of M-CSFR, as well as the expression of the angiogenic factor (vascular endothelial growth factor), a canonical HIF target, with little to no impact on the Nuclear factor-kappa B pathway in bone marrow-derived macrophages. These effects probably explain the observed in vivo phenotypes. Finally, an allograft tumor model further confirmed that ACF treatment inhibits tumor growth through HIF-dependent mechanisms. These results suggest pharmacological HIF inhibition in multiple cell types, including epithelial and innate immune cells, significantly limits tumor growth and progression.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Acriflavina/administración & dosificación , Acriflavina/farmacología , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/genética , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Carga Tumoral/efectos de los fármacos , Carga Tumoral/genética , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Int J Mol Sci ; 15(2): 2172-90, 2014 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-24481065

RESUMEN

Glioblastomas (GBM) are very aggressive and malignant brain tumors, with frequent relapses despite an appropriate treatment combining surgery, chemotherapy and radiotherapy. In GBM, hypoxia is a characteristic feature and activation of Hypoxia Inducible Factors (HIF-1α and HIF-2α) has been associated with resistance to anti-cancer therapeutics. Int6, also named eIF3e, is the "e" subunit of the translation initiation factor eIF3, and was identified as novel regulator of HIF-2α. Eukaryotic initiation factors (eIFs) are key factors regulating total protein synthesis, which controls cell growth, size and proliferation. The functional significance of Int6 and the effect of Int6/EIF3E gene silencing on human brain GBM has not yet been described and its role on the HIFs is unknown in glioma cells. In the present study, we show that Int6/eIF3e suppression affects cell proliferation, cell cycle and apoptosis of various GBM cells. We highlight that Int6 inhibition induces a diminution of proliferation through cell cycle arrest and increased apoptosis. Surprisingly, these phenotypes are independent of global cell translation inhibition and are accompanied by decreased HIF expression when Int6 is silenced. In conclusion, we demonstrate here that Int6/eIF3e is essential for proliferation and survival of GBM cells, presumably through modulation of the HIFs.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Factor 3 de Iniciación Eucariótica/genética , Glioblastoma/genética , Glioblastoma/mortalidad , Apoptosis/genética , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Factor 3 de Iniciación Eucariótica/metabolismo , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Modelos Biológicos , Interferencia de ARN
12.
Cancer Res ; 84(7): 977-993, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38335278

RESUMEN

Intratumoral hypoxia correlates with metastasis and poor survival in patients with sarcoma. Using an impedance sensing assay and a zebrafish intravital microinjection model, we demonstrated here that the hypoxia-inducible collagen-modifying enzyme lysyl hydroxylase PLOD2 and its substrate collagen type VI (COLVI) weaken the lung endothelial barrier and promote transendothelial migration. Mechanistically, hypoxia-induced PLOD2 in sarcoma cells modified COLVI, which was then secreted into the vasculature. Upon reaching the apical surface of lung endothelial cells, modified COLVI from tumor cells activated integrin ß1 (ITGß1). Furthermore, activated ITGß1 colocalized with Kindlin2, initiating their interaction with F-actin and prompting its polymerization. Polymerized F-actin disrupted endothelial adherens junctions and induced barrier dysfunction. Consistently, modified and secreted COLVI was required for the late stages of lung metastasis in vivo. Analysis of patient gene expression and survival data from The Cancer Genome Atlas (TCGA) revealed an association between the expression of both PLOD2 and COLVI and patient survival. Furthermore, high levels of COLVI were detected in surgically resected sarcoma metastases from patient lungs and in the blood of tumor-bearing mice. Together, these data identify a mechanism of sarcoma lung metastasis, revealing opportunities for therapeutic intervention. SIGNIFICANCE: Collagen type VI modified by hypoxia-induced PLOD2 is secreted by sarcoma cells and binds to integrin ß1 on endothelial cells to induce barrier dysfunction, which promotes sarcoma vascular dissemination and metastasis.


Asunto(s)
Neoplasias Pulmonares , Sarcoma , Humanos , Animales , Ratones , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Células Endoteliales/metabolismo , Pez Cebra/metabolismo , Actinas , Integrina beta1 , Hipoxia , Sarcoma/metabolismo , Pulmón/patología
13.
bioRxiv ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38712254

RESUMEN

Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic SRSF2P95H/+ mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator PINK1 to remove a poison intron, increasing the stability and abundance of PINK1 mRNA and protein. SRSF2P95H-induced mitochondrial dysfunction increased PINK1 expression through this mechanism, which is essential for survival of SRSF2P95H/+ cells. Inhibition of splicing with a glycogen synthase kinase 3 inhibitor promoted retention of the poison intron, impairing mitophagy and activating apoptosis in SRSF2P95H/+ cells. These data reveal a homeostatic mechanism for sensing mitochondrial stress through PINK1 splicing and identify increased mitophagy as a disease marker and a therapeutic vulnerability in SRSF2P95H mutant MDS and AML.

14.
J Clin Invest ; 134(12)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713535

RESUMEN

Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic SRSF2P95H/+ mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator PINK1 to remove a poison intron, increasing the stability and abundance of PINK1 mRNA and protein. SRSF2P95H-induced mitochondrial dysfunction increased PINK1 expression through this mechanism, which is essential for survival of SRSF2P95H/+ cells. Inhibition of splicing with a glycogen synthase kinase 3 inhibitor promoted retention of the poison intron, impairing mitophagy and activating apoptosis in SRSF2P95H/+ cells. These data reveal a homeostatic mechanism for sensing mitochondrial stress through PINK1 splicing and identify increased mitophagy as a disease marker and a therapeutic vulnerability in SRSF2P95H mutant MDS and AML.


Asunto(s)
Leucemia Mieloide Aguda , Mitocondrias , Mitofagia , Proteínas Quinasas , Factores de Empalme Serina-Arginina , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Mitofagia/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Síndromes Mielodisplásicos/metabolismo , Empalme del ARN , Línea Celular Tumoral , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Neoplasias Hematológicas/metabolismo , Mutación Missense , Ratones , Sustitución de Aminoácidos , Animales
15.
Cancer Res ; 84(10): 1570-1582, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38417134

RESUMEN

Clear cell renal cell carcinoma (ccRCC) incidence has risen steadily over the last decade. Elevated lipid uptake and storage is required for ccRCC cell viability. As stored cholesterol is the most abundant component in ccRCC intracellular lipid droplets, it may also play an important role in ccRCC cellular homeostasis. In support of this hypothesis, ccRCC cells acquire exogenous cholesterol through the high-density lipoprotein receptor SCARB1, inhibition or suppression of which induces apoptosis. Here, we showed that elevated expression of 3 beta-hydroxy steroid dehydrogenase type 7 (HSD3B7), which metabolizes cholesterol-derived oxysterols in the bile acid biosynthetic pathway, is also essential for ccRCC cell survival. Development of an HSD3B7 enzymatic assay and screening for small-molecule inhibitors uncovered the compound celastrol as a potent HSD3B7 inhibitor with low micromolar activity. Repressing HSD3B7 expression genetically or treating ccRCC cells with celastrol resulted in toxic oxysterol accumulation, impaired proliferation, and increased apoptosis in vitro and in vivo. These data demonstrate that bile acid synthesis regulates cholesterol homeostasis in ccRCC and identifies HSD3B7 as a plausible therapeutic target. SIGNIFICANCE: The bile acid biosynthetic enzyme HSD3B7 is essential for ccRCC cell survival and can be targeted to induce accumulation of cholesterol-derived oxysterols and apoptotic cell death.


Asunto(s)
Ácidos y Sales Biliares , Carcinoma de Células Renales , Colesterol , Homeostasis , Neoplasias Renales , Humanos , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/genética , Ácidos y Sales Biliares/metabolismo , Colesterol/metabolismo , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/genética , Animales , Ratones , Triterpenos Pentacíclicos , Línea Celular Tumoral , Apoptosis , Proliferación Celular , Triterpenos/farmacología , Carcinogénesis/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
16.
J Clin Invest ; 134(11)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652549

RESUMEN

CD8+ T cell dysfunction impedes antitumor immunity in solid cancers, but the underlying mechanisms are diverse and poorly understood. Extracellular matrix (ECM) composition has been linked to impaired T cell migration and enhanced tumor progression; however, impacts of individual ECM molecules on T cell function in the tumor microenvironment (TME) are only beginning to be elucidated. Upstream regulators of aberrant ECM deposition and organization in solid tumors are equally ill-defined. Therefore, we investigated how ECM composition modulates CD8+ T cell function in undifferentiated pleomorphic sarcoma (UPS), an immunologically active desmoplastic tumor. Using an autochthonous murine model of UPS and data from multiple human patient cohorts, we discovered a multifaceted mechanism wherein the transcriptional coactivator YAP1 promotes collagen VI (COLVI) deposition in the UPS TME. In turn, COLVI induces CD8+ T cell dysfunction and immune evasion by remodeling fibrillar collagen and inhibiting T cell autophagic flux. Unexpectedly, collagen I (COLI) opposed COLVI in this setting, promoting CD8+ T cell function and acting as a tumor suppressor. Thus, CD8+ T cell responses in sarcoma depend on oncogene-mediated ECM composition and remodeling.


Asunto(s)
Linfocitos T CD8-positivos , Matriz Extracelular , Sarcoma , Microambiente Tumoral , Proteínas Señalizadoras YAP , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Animales , Microambiente Tumoral/inmunología , Ratones , Proteínas Señalizadoras YAP/inmunología , Proteínas Señalizadoras YAP/genética , Humanos , Matriz Extracelular/inmunología , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Sarcoma/inmunología , Sarcoma/patología , Sarcoma/genética , Sarcoma/metabolismo , Colágeno Tipo VI/genética , Colágeno Tipo VI/inmunología , Colágeno Tipo VI/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/inmunología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/inmunología , Oncogenes , Proteínas de Neoplasias/inmunología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/inmunología
17.
bioRxiv ; 2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37745397

RESUMEN

Nuclear speckles are membrane-less bodies within the cell nucleus enriched in RNA biogenesis, processing, and export factors. In this study we investigated speckle phenotype variation in human cancer, finding a reproducible speckle signature, based on RNA expression of speckle-resident proteins, across >20 cancer types. Of these, clear cell renal cell carcinoma (ccRCC) exhibited a clear correlation between the presence of this speckle expression signature, imaging-based speckle phenotype, and clinical outcomes. ccRCC is typified by hyperactivation of the HIF-2α transcription factor, and we demonstrate here that HIF-2α drives physical association of a select subset of its target genes with nuclear speckles. Disruption of HIF-2α-driven speckle association via deletion of its speckle targeting motifs (STMs)-defined in this study-led to defective induction of speckle-associating HIF-2α target genes without impacting non-speckle-associating HIF-2α target genes. We further identify the RNA export complex, TREX, as being specifically altered in speckle signature, and knockdown of key TREX component, ALYREF, also compromises speckle-associated gene expression. By integrating tissue culture functional studies with tumor genomic and imaging analysis, we show that HIF-2α gene regulatory programs are impacted by specific manipulation of speckle phenotype and by abrogation of speckle targeting abilities of HIF-2α. These findings suggest that, in ccRCC, a key biological function of nuclear speckles is to modulate expression of a specific subset of HIF-2α-regulated target genes that, in turn, influence patient outcomes. We also identify STMs in other transcription factors, suggesting that DNA-speckle targeting may be a general mechanism of gene regulation.

18.
Cancer Metab ; 10(1): 4, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35123542

RESUMEN

BACKGROUND: Deregulated glucose metabolism is a critical component of cancer growth and survival, clinically evident via FDG-PET imaging of enhanced glucose uptake in tumor nodules. Tumor cells utilize glucose in a variety of interconnected biochemical pathways to generate energy, anabolic precursors, and other metabolites necessary for growth. Glucagon-stimulated gluconeogenesis opposes glycolysis, potentially representing a pathway-specific strategy for targeting glucose metabolism in tumor cells. Here, we test the hypothesis of whether glucagon signaling can activate gluconeogenesis to reduce tumor proliferation in models of liver cancer. METHODS: The glucagon receptor, GCGR, was overexpressed in liver cancer cell lines consisting of a range of etiologies and genetic backgrounds. Glucagon signaling transduction was measured by cAMP ELISAs, western blots of phosphorylated PKA substrates, and qPCRs of relative mRNA expression of multiple gluconeogenic enzymes. Lastly, cell proliferation and apoptosis assays were performed to quantify the biological effect of glucagon/GCGR stimulation. RESULTS: Signaling analyses in SNU398 GCGR cells treated with glucagon revealed an increase in cAMP abundance and phosphorylation of downstream PKA substrates, including CREB. qPCR data indicated that none of the three major gluconeogenic genes, G6PC, FBP1, or PCK1, exhibit significantly higher mRNA levels in SNU398 GCGR cells when treated with glucagon; however, this could be partially increased with epigenetic inhibitors. In glucagon-treated SNU398 GCGR cells, flow cytometry analyses of apoptotic markers and growth assays reproducibly measured statistically significant reductions in cell viability. Finally, proliferation experiments employing siCREB inhibition showed no reversal of cell death in SNU398 GCGR cells treated with glucagon, indicating the effects of glucagon in this setting are independent of CREB. CONCLUSIONS: For the first time, we report a potential tumor suppressive role for glucagon/GCGR in liver cancer. Specifically, we identified a novel cell line-specific phenotype, whereby glucagon signaling can induce apoptosis via an undetermined mechanism. Future studies should explore the potential effects of glucagon in diabetic liver cancer patients.

19.
Pharmaceuticals (Basel) ; 15(5)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35631452

RESUMEN

The deregulation of energetic and cellular metabolism is a signature of cancer cells. Thus, drugs targeting cancer cell metabolism may have promising therapeutic potential. Previous reports demonstrate that the widely used normoglycemic agent, metformin, can decrease the risk of cancer in type 2 diabetics and inhibit cell growth in various cancers, including pancreatic, colon, prostate, ovarian, and breast cancer. While metformin is a known adenosine monophosphate-activated protein kinase (AMPK) agonist and an inhibitor of the electron transport chain complex I, its mechanism of action in cancer cells as well as its effect on cancer metabolism is not clearly established. In this review, we will give an update on the role of metformin as an antitumoral agent and detail relevant evidence on the potential use and mechanisms of action of metformin in cancer. Analyzing antitumoral, signaling, and metabolic impacts of metformin on cancer cells may provide promising new therapeutic strategies in oncology.

20.
Cancers (Basel) ; 14(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35267591

RESUMEN

Deregulation of mRNA translation is a widespread characteristic of glioblastoma (GBM), aggressive malignant brain tumors that are resistant to conventional therapies. RNA-binding proteins (RBPs) play a critical role in translational regulation, yet the mechanisms and impact of these regulations on cancer development, progression and response to therapy remain to be fully understood. Here, we showed that hnRNP H/F RBPs are potent regulators of translation through several mechanisms that converge to modulate the expression and/or the activity of translation initiation factors. Among these, hnRNP H/F regulate the phosphorylation of eIF4E and its translational targets by controlling RNA splicing of the A-Raf kinase mRNA, which in turn modulates the MEK-ERK/MAPK signaling pathway. The underlying mechanism involves RNA G-quadruplex (RG4s), RNA structures whose modulation phenocopies hnRNP H/F translation regulation in GBM cells. Our results highlighted that hnRNP H/F are essential for key functional pathways regulating proliferation and survival of GBM, highlighting its targeting as a promising strategy for improving therapeutic outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA