Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
PLoS Biol ; 18(5): e3000669, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32428004

RESUMEN

With exciting new NASA plans for a sustainable return to the moon, astronauts will once again leave Earth's protective magnetosphere only to endure higher levels of radiation from galactic cosmic radiation (GCR) and the possibility of a large solar particle event (SPE). Gateway, lunar landers, and surface habitats will be designed to protect crew against SPEs with vehicle optimization, storm shelter concepts, and/or active dosimetry; however, the ever penetrating GCR will continue to pose the most significant health risks especially as lunar missions increase in duration and as NASA sets its aspirations on Mars. The primary risks of concern include carcinogenesis, central nervous system (CNS) effects resulting in potential in-mission cognitive or behavioral impairment and/or late neurological disorders, degenerative tissue effects including circulatory and heart disease, as well as potential immune system decrements impacting multiple aspects of crew health. Characterization and mitigation of these risks requires a significant reduction in the large biological uncertainties of chronic (low-dose rate) heavy-ion exposures and the validation of countermeasures in a relevant space environment. Historically, most research on understanding space radiation-induced health risks has been performed using acute exposures of monoenergetic single-ion beams. However, the space radiation environment consists of a wide variety of ion species over a broad energy range. Using the fast beam switching and controls systems technology recently developed at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory, a new era in radiobiological research is possible. NASA has developed the "GCR Simulator" to generate a spectrum of ion beams that approximates the primary and secondary GCR field experienced at human organ locations within a deep-space vehicle. The majority of the dose is delivered from protons (approximately 65%-75%) and helium ions (approximately 10%-20%) with heavier ions (Z ≥ 3) contributing the remainder. The GCR simulator exposes state-of-the art cellular and animal model systems to 33 sequential beams including 4 proton energies plus degrader, 4 helium energies plus degrader, and the 5 heavy ions of C, O, Si, Ti, and Fe. A polyethylene degrader system is used with the 100 MeV/n H and He beams to provide a nearly continuous distribution of low-energy particles. A 500 mGy exposure, delivering doses from each of the 33 beams, requires approximately 75 minutes. To more closely simulate the low-dose rates found in space, sequential field exposures can be divided into daily fractions over 2 to 6 weeks, with individual beam fractions as low as 0.1 to 0.2 mGy. In the large beam configuration (60 × 60 cm2), 54 special housing cages can accommodate 2 to 3 mice each for an approximately 75 min duration or 15 individually housed rats. On June 15, 2018, the NSRL made a significant achievement by completing the first operational run using the new GCR simulator. This paper discusses NASA's innovative technology solution for a ground-based GCR simulator at the NSRL to accelerate our understanding and mitigation of health risks faced by astronauts. Ultimately, the GCR simulator will require validation across multiple radiogenic risks, endpoints, doses, and dose rates.


Asunto(s)
Radiación Cósmica , Radiobiología/instrumentación , Simulación del Espacio , Animales , Humanos , Ratones , Ratas , Vuelo Espacial
2.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35955776

RESUMEN

Ionizing radiation causes chromosome aberrations, which are possible biomarkers to assess space radiation cancer risks. Using the Monte Carlo codes Relativistic Ion Tracks (RITRACKS) and Radiation-Induced Tracks, Chromosome Aberrations, Repair and Damage (RITCARD), we investigated how geometrical properties of the cell nucleus, irradiated with ion beams of linear energy transfer (LET) ranging from 0.22 keV/µm to 195 keV/µm, influence the yield of simple and complex exchanges. We focused on the effect of (1) nuclear volume by considering spherical nuclei of varying radii; (2) nuclear shape by considering ellipsoidal nuclei of varying thicknesses; (3) beam orientation; and (4) chromosome intermingling by constraining or not constraining chromosomes in non-overlapping domains. In general, small nuclear volumes yield a higher number of complex exchanges, as compared to larger nuclear volumes, and a higher number of simple exchanges for LET < 40 keV/µm. Nuclear flattening reduces complex exchanges for high-LET beams when irradiated along the flattened axis. The beam orientation also affects yields for ellipsoidal nuclei. Reducing chromosome intermingling decreases both simple and complex exchanges. Our results suggest that the beam orientation, the geometry of the cell nucleus, and the organization of the chromosomes within are important parameters for the formation of aberrations that must be considered to model and translate in vitro results to in vivo risks.


Asunto(s)
Aberraciones Cromosómicas , Cromosomas , Núcleo Celular/genética , Núcleo Celular/efectos de la radiación , Cromosomas/genética , Humanos , Transferencia Lineal de Energía , Método de Montecarlo
3.
Life Sci Space Res (Amst) ; 36: 90-104, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36682835

RESUMEN

For missions beyond low Earth orbit to the moon or Mars, space explorers will encounter a complex radiation field composed of various ion species with a broad range of energies. Such missions pose significant radiation protection challenges that need to be solved in order to minimize exposures and associated health risks. An innovative galactic cosmic ray simulator (GCRsim) was recently developed at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). The GCRsim technology is intended to represent major components of the space radiation environment in a ground analog laboratory setting where it can be used to improve understanding of biological risks and serve as a testbed for countermeasure development and validation. The current GCRsim consists of 33 energetic ion beams that collectively simulate the primary and secondary GCR field encountered by humans in space over the broad range of particle types, energies, and linear energy transfer (LET) of interest to health effects. A virtual workshop was held in December 2020 to assess the status of the NASA baseline GCRsim. Workshop attendees examined various aspects of simulator design, with a particular emphasis on beam selection strategies. Experimental results, modeling approaches, areas of consensus, and questions of concern were also discussed in detail. This report includes a summary of the GCRsim workshop and a description of the current status of the GCRsim. This information is important for future advancements and applications in space radiobiology.


Asunto(s)
Radiación Cósmica , Protección Radiológica , Vuelo Espacial , Estados Unidos , Humanos , United States National Aeronautics and Space Administration , Radiobiología , Carmustina
4.
Health Phys ; 123(2): 116-127, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35551137

RESUMEN

ABSTRACT: The space radiation environment consists of a complex mixture of ionizing particles that pose significant health risks to crew members. NASA currently requires that an astronaut's career Risk of Exposure Induced Death (REID) for cancer mortality should not exceed 3% at the upper 95% confidence level. This career radiation limit is likely to be exceeded for even the shortest round-trip mission scenario to Mars. As such, NASA has begun to pursue more vigorously approaches to directly reduce radiation risks, despite the large uncertainties associated with such projections. A recent study considered cohort studies of aspirin and warfarin as possible medical countermeasures (MCMs) acting to reduce background cancer mortality rates used in astronaut risk projections. It was shown that such MCMs can reduce the REID for specific tissues in restricted time intervals over which the drugs were administered; however, the cumulative effect on total lifetime REID was minimal. As an extension, the present work addresses more general MCM requirements that would be needed to meet current NASA radiation limits for a Mars mission scenario. A sensitivity analysis is performed within the major components of the NASA cancer risk model that would likely be modified by MCM interventions. This includes the background cancer incidence and mortality rates, epidemiologically based hazard rates derived from acute terrestrial exposures, and radiation quality factors used to translate terrestrial exposures to space radiation. Relationships between possible MCMs and each of these components are discussed. Results from this study provide important information regarding MCM requirements needed to meet NASA limits for planned Mars missions. Insight into the types of countermeasures expected to yield greatest reductions in crew risk is also gained.


Asunto(s)
Radiación Cósmica , Marte , Contramedidas Médicas , Vuelo Espacial , Astronautas , Radiación Cósmica/efectos adversos , Humanos , Dosis de Radiación , Medición de Riesgo/métodos , Estados Unidos , United States National Aeronautics and Space Administration
5.
Sci Rep ; 12(1): 1453, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35087104

RESUMEN

The space radiation environment is qualitatively different from Earth, and its radiation hazard is generally quantified relative to photons using quality factors that allow assessment of biologically-effective dose. Two approaches exist for estimating radiation quality factors in complex low/intermediate-dose radiation environments: one is a fluence-based risk cross-section approach, which requires very detailed in silico characterization of the radiation field and biological cross sections, and thus cannot realistically be used for in situ monitoring. By contrast, the microdosimetric approach, using measured (or calculated) distributions of microdosimetric energy deposition together with empirical biological weighting functions, is conceptually and practically simpler. To demonstrate feasibility of the microdosimetric approach, we estimated a biological weighting function for one specific endpoint, heavy-ion-induced tumorigenesis in APC1638N/+ mice, which was unfolded from experimental results after a variety of heavy ion exposures together with corresponding calculated heavy ion microdosimetric energy deposition spectra. Separate biological weighting functions were unfolded for targeted and non-targeted effects, and these differed substantially. We folded these biological weighting functions with microdosimetric energy deposition spectra for different space radiation environments, and conclude that the microdosimetric approach is indeed practical and, in conjunction with in-situ measurements of microdosimetric spectra, can allow continuous readout of biologically-effective dose during space flight.

6.
iScience ; 25(4): 104086, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35378858

RESUMEN

The complex and inaccessible space radiation environment poses an unresolved risk to astronaut cardiovascular health during long-term space exploration missions. To model this risk, healthy male c57BL/6 mice aged six months (corresponding to an astronaut of 34 years) were exposed to simplified galactic cosmic ray (GCR5-ion; 5-ion sim) irradiation at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratories (BNL). Multi-modal cardiovascular functional assessments performed longitudinally and terminally revealed significant impairment in cardiac function in mice exposed to GCR5-ion compared to unirradiated controls, gamma irradiation, or single mono-energetic ions (56Fe or 16O). GCR5-ion-treated mice exhibited increased arterial elastance likely mediated by disruption of elastin fibers. This study suggests that a single exposure to GCR5-ion is associated with deterioration in cardiac structure and function that becomes apparent long after exposure, likely associated with increased morbidity and mortality. These findings represent important health considerations when preparing for successful space exploration.

7.
Life Sci Space Res (Amst) ; 31: 14-28, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34689946

RESUMEN

A new approach to NASA space radiation risk modeling has successfully extended the current NASA probabilistic cancer risk model to an ensemble framework able to consider sub-model parameter uncertainty as well as model-form uncertainty associated with differing theoretical or empirical formalisms. Ensemble methodologies are already widely used in weather prediction, modeling of infectious disease outbreaks, and certain terrestrial radiation protection applications to better understand how uncertainty may influence risk decision-making. Applying ensemble methodologies to space radiation risk projections offers the potential to efficiently incorporate emerging research results, allow for the incorporation of future models, improve uncertainty quantification, and reduce the impact of subjective bias. Moreover, risk forecasting across an ensemble of multiple predictive models can provide stakeholders additional information on risk acceptance if current health/medical standards cannot be met for future space exploration missions, such as human missions to Mars. In this work, ensemble risk projections implementing multiple sub-models of radiation quality, dose and dose-rate effectiveness factors, excess risk, and latency are presented. Initial consensus methods for ensemble model weights and correlations to account for individual model bias are discussed. In these analyses, the ensemble forecast compares well to results from NASA's current operational cancer risk projection model used to assess permissible mission durations for astronauts. However, a large range of projected risk values are obtained at the upper 95th confidence level where models must extrapolate beyond available biological data sets. Closer agreement is seen at the median ± one sigma due to the inherent similarities in available models. Identification of potential new models, epidemiological data, and methods for statistical correlation between predictive ensemble members are discussed. Alternate ways of communicating risk and acceptable uncertainty with respect to NASA's current permissible exposure limits are explored.


Asunto(s)
Radiación Cósmica , Neoplasias , Vuelo Espacial , Astronautas , Humanos , Dosis de Radiación , Medición de Riesgo
8.
Radiat Res ; 194(3): 246-258, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32942302

RESUMEN

To better study biological effects of space radiation using ground-based facilities, the NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory has been upgraded to rapidly switch ions and energies. This has allowed investigators to design irradiation protocols comprising a mixture of ions and energies more indicative of the galactic cosmic ray (GCR) environment. Despite these advancements, beam selection and delivery schemes should be optimized against facility and experimental constraints and validated to ensure such irradiations are a suitable representation of the space environment. Importantly, since experiments are time consuming and expensive, models capable of predicting biological outcomes over a range of irradiation conditions (single ion, sequential multi ion or mixed fields) are needed to support such efforts. In this work, human fibroblasts were placed behind 20 g/cm2 aluminum and 10.345 g/cm2 polyethylene and irradiated separately by 344 MeV hydrogen, 344 MeV/n helium, 450 MeV/n oxygen and 950 MeV/n iron ions at various doses. The fluorescence in situ hybridization (FISH) whole chromosome painting technique was then used to assess the cells for chromosome aberrations (CAs), notably simple exchanges. A multi-scale modeling approach was also developed to predict the formation of chromosome aberrations in these experiments. The Geant4 simulation toolkit was used to determine the spectra of particles and energies produced by interactions between the incident beams and shielding. The simulated mixed field generated by shielding was then transferred into the track structure code, RITRACKS (relativistic ion tracks), to generate three-dimensional (3D) voxelized dose maps at the nanometer scale. Finally, these voxel dose maps were input into the new damage and repair model, RITCARD (radiation-induced tracks, chromosome aberrations, repair and damage), to predict the formation of various CAs. The multi-scale model described herein is a significant advancement for the computational tools used to predict biological outcomes in cells exposed to highly complex, mixed ion fields related to the GCR environment. Results show that the simulation and experimental data are in good agreement for the complex radiation fields generated by all ions incident on shielding for most data points. The differences between model predictions and measurements are discussed. Although improvements are needed, the model extends current capabilities for evaluating beam selection and delivery schemes at the NSRL ground-based GCR simulator and for informing NASA risk projection models in the future.


Asunto(s)
Aberraciones Cromosómicas/efectos de la radiación , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Protección Radiológica , Radiación Cósmica/efectos adversos , Humanos , Hibridación Fluorescente in Situ
9.
Life Sci Space Res (Amst) ; 26: 149-162, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32718681

RESUMEN

Prolonged exposure to the galactic cosmic ray (GCR) environment is a potentially limiting factor for manned missions in deep space. Evaluating the risk associated with the expected GCR environment is an essential step in planning a deep space mission. This requires an understanding of how the local interstellar spectrum is modulated by the heliospheric magnetic field (HMF) and how observed solar activity is manifested in the HMF over time. While current GCR models agree reasonably well with measured observations of GCR flux on the first matter, they must rely on imperfect or loose correlations to describe the latter. It is more accurate to use dose rates directly measured by instruments in deep space to quantify the GCR condition for a given period of time. In this work, dose rates observed by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument are used to obtain the local GCR intensity and composition as a function of time. A response function is constructed that relates observed dose rates to solar modulation potential using a series of Monte Carlo radiation transport calculations. The record of observed solar modulation potential vs. time is then used to calculate a recent historical record of permissible mission duration (PMD) according to NASA's permissible exposure limits (PEL). Tables are provided for extreme values of PMD. Additional tables include risk of exposure-induced death (at upper 95% confidence interval) accrual rates and NASA effective dose rates as a function of solar modulation potential, astronaut age, sex, and shielding thickness. The significance of the PMD values reported in relation to likely transit duration requirements for future exploration missions is discussed. There is general agreement between CRaTER observations and the prescription of solar modulation vs. time given by the Badhwar-O'Neill 2014 GCR model. However, CRaTER observations do capture the effects of significant heliospheric transients, among other features, that are missing from the prescription of solar modulation potential vs. time.


Asunto(s)
Astronautas/estadística & datos numéricos , Radiación Cósmica , Dosis de Radiación , Protección Radiológica , Actividad Solar , Vuelo Espacial/estadística & datos numéricos , Radiación Cósmica/efectos adversos , Telescopios
10.
Life Sci Space Res (Amst) ; 22: 76-88, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31421851

RESUMEN

Galactic cosmic rays (GCR) are a constant source of radiation that constitutes one of the major hazards during deep space exploration missions for both astronauts and hardware. In this work, GCR models commonly used by the space radiation protection community are compared with recently published high-precision, high-resolution measurements of cosmic ray lithium, beryllium, boron, carbon, nitrogen, and oxygen fluxes along with their ratios (Li/B, Li/C, Li/O, Be/B, Be/C, Be/O, B/C, B/O, C/O, N/B, N/O) from the Alpha Magnetic Spectrometer (AMS). All of the models were developed and calibrated prior to the publication of this AMS data, therefore this is an opportunity to validate the models against an independent data set. This paper is a compliment to the previously published comparison of GCR models with AMS hydrogen, helium, and the boron-to-carbon ratio (Norbury et al., 2018).


Asunto(s)
Radiación Cósmica , Medio Ambiente Extraterrestre , Modelos Teóricos , Astronautas , Humanos , Vuelo Espacial , Análisis Espectral
11.
Life Sci Space Res (Amst) ; 22: 98-124, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31421854

RESUMEN

The space radiation environment is a complex mixture of particle types and energies originating from sources inside and outside of the galaxy. These environments may be modified by the heliospheric and geomagnetic conditions as well as planetary bodies and vehicle or habitat mass shielding. In low Earth orbit (LEO), the geomagnetic field deflects a portion of the galactic cosmic rays (GCR) and all but the most intense solar particle events (SPE). There are also dynamic belts of trapped electrons and protons with low to medium energy and intense particle count rates. In deep space, the GCR exposure is more severe than in LEO and varies inversely with solar activity. Unpredictable solar storms also present an acute risk to astronauts if adequate shielding is not provided. Near planetary surfaces such as the Earth, moon or Mars, secondary particles are produced when the ambient deep space radiation environment interacts with these surfaces and/or atmospheres. These secondary particles further complicate the local radiation environment and modify the associated health risks. Characterizing the radiation fields in this vast array of scenarios and environments is a challenging task and is currently accomplished with a combination of computational models and dosimetry. The computational tools include models for the ambient space radiation environment, mass shielding geometry, and atomic and nuclear interaction parameters. These models are then coupled to a radiation transport code to describe the radiation field at the location of interest within a vehicle or habitat. Many new advances in these models have been made in the last decade, and the present review article focuses on the progress and contributions made by workers and collaborators at NASA Langley Research Center in the same time frame. Although great progress has been made, and models continue to improve, significant gaps remain and are discussed in the context of planned future missions. Of particular interest is the juxtaposition of various review committee findings regarding the accuracy and gaps of combined space radiation environment, physics, and transport models with the progress achieved over the past decade. While current models are now fully capable of characterizing radiation environments in the broad range of forecasted mission scenarios, it should be remembered that uncertainties still remain and need to be addressed.


Asunto(s)
Radiación Cósmica , Modelos Teóricos , Astronautas , Humanos , Física Nuclear , Actividad Solar , Vuelo Espacial , Nave Espacial , Estados Unidos , United States National Aeronautics and Space Administration
12.
Life Sci Space Res (Amst) ; 18: 64-71, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30100149

RESUMEN

This paper is the third in a series of comparisons of American (NASA) and Russian (ROSCOSMOS) space radiation calculations. The present work focuses on calculation of fluxes of galactic cosmic rays (GCR), which are a constant source of radiation that constitutes one of the major hazards during deep space exploration missions for both astronauts/cosmonauts and hardware. In this work, commonly used GCR models are compared with recently published measurements of cosmic ray Hydrogen, Helium, and the Boron-to-Carbon ratio from the Alpha Magnetic Spectrometer (AMS). All of the models were developed and calibrated prior to the publication of the AMS data; therefore this an opportunity to validate the models against an independent data set.


Asunto(s)
Radiación Cósmica , Magnetismo/instrumentación , Modelos Teóricos , Monitoreo de Radiación/instrumentación , Humanos , Dosis de Radiación , Vuelo Espacial
13.
Life Sci Space Res (Amst) ; 14: 29-35, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28887940

RESUMEN

The Mars Science Laboratory Radiation Assessment Detector (MSLRAD) is providing continuous measurements of dose, dose equivalent, and particle flux on the surface of Mars. These measurements have been highly useful in validating environmental and radiation transport models that will be heavily relied upon for future deep space missions. In this work, the HZETRN code is utilized to estimate radiation quantities of interest on the Martian surface. A description of the modeling approach used with HZETRN is given along with the various input models and parameters used to define the galactic cosmic ray (GCR) environment and Martian geometry. Sensitivity tests are performed to gauge the impact of varying several input factors on quantities being compared to MSLRAD data. Results from these tests provide context for inter-code comparisons presented in a companion paper within this issue. It is found that details of the regolith and atmospheric composition have a minimal impact on surface flux, dose, and dose equivalent. Details of the density variation within the atmosphere and uncertainties associated with specifying the vertical atmospheric thickness are also found to have minimal impact. Two widely used GCR models are used as input into HZETRN and it is found that the associated surface quantities are within several percent of each other.


Asunto(s)
Radiación Cósmica , Exposición a Riesgos Ambientales/análisis , Medio Ambiente Extraterrestre , Marte , Modelos Teóricos , Monitoreo de Radiación/métodos , Protección Radiológica , Humanos
14.
Life Sci Space Res (Amst) ; 14: 64-73, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28887946

RESUMEN

For the first time, the American (NASA) and Russian (ROSCOSMOS) space radiation transport codes, HZETRN and SHIELD respectively, are directly compared to each other. Calculations are presented for Galactic Cosmic Ray (GCR) minimum Hydrogen, Oxygen and Iron projectiles incident on a uniform Aluminum cylinder of varying thickness. Comparisons are made for the flux spectra of neutrons, light ions (Z≤ 2), heavy ions (Z> 2) and pions emitted from the back of the Aluminum cylinder. In order to provide more benchmark comparisons, some calculations with the GEANT and FLUKA transport codes are also shown.


Asunto(s)
Radiación Cósmica , Partículas Elementales , Marte , Modelos Teóricos , Monitoreo de Radiación/métodos , Protección Radiológica/métodos , Humanos , Dosis de Radiación
15.
Life Sci Space Res (Amst) ; 12: 1-15, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28212703

RESUMEN

Models have been extensively used in the past to evaluate and develop material optimization and shield design strategies for astronauts exposed to galactic cosmic rays (GCR) on long duration missions. A persistent conclusion from many of these studies was that passive shielding strategies are inefficient at reducing astronaut exposure levels and the mass required to significantly reduce the exposure is infeasible, given launch and associated cost constraints. An important assumption of this paradigm is that adding shielding mass does not substantially increase astronaut exposure levels. Recent studies with HZETRN have suggested, however, that dose equivalent values actually increase beyond ∼20g/cm2 of aluminum shielding, primarily as a result of neutron build-up in the shielding geometry. In this work, various Monte Carlo (MC) codes and 3DHZETRN are evaluated in slab geometry to verify the existence of a local minimum in the dose equivalent versus aluminum thickness curve near 20g/cm2. The same codes are also evaluated in polyethylene shielding, where no local minimum is observed, to provide a comparison between the two materials. Results are presented so that the physical interactions driving build-up in dose equivalent values can be easily observed and explained. Variation of transport model results for light ions (Z ≤ 2) and neutron-induced target fragments, which contribute significantly to dose equivalent for thick shielding, is also highlighted and indicates that significant uncertainties are still present in the models for some particles. The 3DHZETRN code is then further evaluated over a range of related slab geometries to draw closer connection to more realistic scenarios. Future work will examine these related geometries in more detail.


Asunto(s)
Astronautas , Radiación Cósmica/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Neutrones , Traumatismos por Radiación/prevención & control , Protección Radiológica/normas , Simulación por Computador , Humanos , Dosis de Radiación , Traumatismos por Radiación/etiología , Vuelo Espacial
16.
Life Sci Space Res (Amst) ; 14: 18-28, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28887939

RESUMEN

The radiation environment at the Martian surface is, apart from occasional solar energetic particle events, dominated by galactic cosmic radiation, secondary particles produced in their interaction with the Martian atmosphere and albedo particles from the Martian regolith. The highly energetic primary cosmic radiation consists mainly of fully ionized nuclei creating a complex radiation field at the Martian surface. This complex field, its formation and its potential health risk posed to astronauts on future manned missions to Mars can only be fully understood using a combination of measurements and model calculations. In this work the outcome of a workshop held in June 2016 in Boulder, CO, USA is presented: experimental results from the Radiation Assessment Detector of the Mars Science Laboratory are compared to model results from GEANT4, HETC-HEDS, HZETRN, MCNP6, and PHITS. Charged and neutral particle spectra and dose rates measured between 15 November 2015 and 15 January 2016 and model results calculated for this time period are investigated.


Asunto(s)
Radiación Cósmica , Medio Ambiente Extraterrestre , Marte , Modelos Teóricos , Exposición a la Radiación/análisis , Monitoreo de Radiación/métodos , Astronautas , Rayos gamma , Humanos , Neutrones , Protección Radiológica
17.
Life Sci Space Res (Amst) ; 8: 52-67, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26948013

RESUMEN

The galactic cosmic ray (GCR) simulator at the NASA Space Radiation Laboratory (NSRL) is intended to deliver the broad spectrum of particles and energies encountered in deep space to biological targets in a controlled laboratory setting. In this work, certain aspects of simulating the GCR environment in the laboratory are discussed. Reference field specification and beam selection strategies at NSRL are the main focus, but the analysis presented herein may be modified for other facilities and possible biological considerations. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is likely within the uncertainty associated with representing any GCR reference field with discrete ion beams in the laboratory, given current facility constraints. A single reference field for deep space missions is subsequently identified. Third, a preliminary approach for selecting beams at NSRL to simulate the designated reference field is presented. This approach is not a final design for the GCR simulator, but rather a single step within a broader design strategy. It is shown that the beam selection methodology is tied directly to the reference environment, allows facility constraints to be incorporated, and may be adjusted to account for additional constraints imposed by biological or animal care considerations. The major biology questions are not addressed herein but are discussed in a companion paper published in the present issue of this journal. Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies.


Asunto(s)
Vuelo Espacial , Animales , Radiación Cósmica , Medio Ambiente Extraterrestre , Protección Radiológica , Actividad Solar
18.
Life Sci Space Res (Amst) ; 9: 77-83, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27345204

RESUMEN

A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z ≤ 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency.


Asunto(s)
Modelos Teóricos , Método de Montecarlo , Protones , Exposición a la Radiación , Protección Radiológica , Actividad Solar , Algoritmos , Simulación por Computador , Dosis de Radiación
19.
Life Sci Space Res (Amst) ; 9: 69-76, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27345203

RESUMEN

The 3DHZETRN code, with improved neutron and light ion (Z≤2) transport procedures, was recently developed and compared to Monte Carlo (MC) simulations using simplified spherical geometries. It was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in general combinatorial geometry. A more complex shielding structure with internal parts surrounding a tissue sphere is considered and compared against MC simulations. It is shown that even in the more complex geometry, 3DHZETRN agrees well with the MC codes and maintains a high degree of computational efficiency.


Asunto(s)
Modelos Teóricos , Método de Montecarlo , Protones , Exposición a la Radiación , Actividad Solar , Algoritmos , Simulación por Computador , Dosis de Radiación
20.
Life Sci Space Res (Amst) ; 8: 38-51, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26948012

RESUMEN

Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation.


Asunto(s)
Radiación Cósmica , Laboratorios , Radiobiología , Investigación , Estados Unidos , United States National Aeronautics and Space Administration
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA