Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Genet ; 14(5): e1007383, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29746474

RESUMEN

Down Syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and results in a spectrum of phenotypes including learning and memory deficits, and motor dysfunction. It has been hypothesized that an additional copy of a few Hsa21 dosage-sensitive genes causes these phenotypes, but this has been challenged by observations that aneuploidy can cause phenotypes by the mass action of large numbers of genes, with undetectable contributions from individual sequences. The motor abnormalities in DS are relatively understudied-the identity of causative dosage-sensitive genes and the mechanism underpinning the phenotypes are unknown. Using a panel of mouse strains with duplications of regions of mouse chromosomes orthologous to Hsa21 we show that increased dosage of small numbers of genes causes locomotor dysfunction and, moreover, that the Dyrk1a gene is required in three copies to cause the phenotype. Furthermore, we show for the first time a new DS phenotype: loss of motor neurons both in mouse models and, importantly, in humans with DS, that may contribute to locomotor dysfunction.


Asunto(s)
Síndrome de Down/genética , Actividad Motora/genética , Neuronas Motoras/metabolismo , Degeneración Nerviosa/genética , Adulto , Anciano , Animales , Autopsia , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Médula Espinal/metabolismo , Médula Espinal/patología , Quinasas DyrK
3.
Blood ; 115(14): 2928-37, 2010 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-20154221

RESUMEN

Trisomy of human chromosome 21 (Hsa21) results in Down syndrome (DS), a disorder that affects many aspects of physiology, including hematopoiesis. DS children have greatly increased rates of acute lymphoblastic leukemia and acute megakaryoblastic leukemia (AMKL); DS newborns present with transient myeloproliferative disorder (TMD), a preleukemic form of AMKL. TMD and DS-AMKL almost always carry an acquired mutation in GATA1 resulting in exclusive synthesis of a truncated protein (GATA1s), suggesting that both trisomy 21 and GATA1 mutations are required for leukemogenesis. To gain further understanding of how Hsa21 contributes to hematopoietic abnormalities, we examined the Tc1 mouse model of DS, which carries an almost complete freely segregating copy of Hsa21, and is the most complete model of DS available. We show that although Tc1 mice do not develop leukemia, they have macrocytic anemia and increased extramedullary hematopoiesis. Introduction of GATA1s into Tc1 mice resulted in a synergistic increase in megakaryopoiesis, but did not result in leukemia or a TMD-like phenotype, demonstrating that GATA1s and trisomy of approximately 80% of Hsa21 perturb megakaryopoiesis but are insufficient to induce leukemia.


Asunto(s)
Cromosomas Humanos Par 21/metabolismo , Síndrome de Down/metabolismo , Mielopoyesis , Anemia Macrocítica/genética , Anemia Macrocítica/metabolismo , Anemia Macrocítica/fisiopatología , Animales , Cromosomas Humanos Par 21/genética , Modelos Animales de Enfermedad , Síndrome de Down/genética , Síndrome de Down/fisiopatología , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Humanos , Leucemia Megacarioblástica Aguda/genética , Leucemia Megacarioblástica Aguda/metabolismo , Leucemia Megacarioblástica Aguda/fisiopatología , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatología
4.
Dis Model Mech ; 14(10)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34477842

RESUMEN

Down syndrome (DS), trisomy 21, results in many complex phenotypes including cognitive deficits, heart defects and craniofacial alterations. Phenotypes arise from an extra copy of human chromosome 21 (Hsa21) genes. However, these dosage-sensitive causative genes remain unknown. Animal models enable identification of genes and pathological mechanisms. The Dp1Tyb mouse model of DS has an extra copy of 63% of Hsa21-orthologous mouse genes. In order to establish whether this model recapitulates DS phenotypes, we comprehensively phenotyped Dp1Tyb mice using 28 tests of different physiological systems and found that 468 out of 1800 parameters were significantly altered. We show that Dp1Tyb mice have wide-ranging DS-like phenotypes, including aberrant erythropoiesis and megakaryopoiesis, reduced bone density, craniofacial changes, altered cardiac function, a pre-diabetic state, and deficits in memory, locomotion, hearing and sleep. Thus, Dp1Tyb mice are an excellent model for investigating complex DS phenotype-genotype relationships for this common disorder.


Asunto(s)
Síndrome de Down/patología , Péptidos beta-Amiloides/metabolismo , Anemia/complicaciones , Animales , Desarrollo Óseo , Modelos Animales de Enfermedad , Síndrome de Down/genética , Síndrome de Down/fisiopatología , Eritropoyesis , Potenciales Evocados Auditivos del Tronco Encefálico , Regulación de la Expresión Génica , Genes Duplicados , Audición , Pruebas de Función Cardíaca , Hipocampo/patología , Locomoción , Memoria/fisiología , Ratones Endogámicos C57BL , Otitis Media/complicaciones , Otitis Media/patología , Otitis Media/fisiopatología , Fenotipo , Estado Prediabético/complicaciones , Estado Prediabético/patología , Estado Prediabético/fisiopatología , Respiración , Sueño/fisiología , Bazo/patología , Esplenomegalia/complicaciones
5.
J Psychopharmacol ; 32(2): 174-190, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29215943

RESUMEN

RATIONALE: The prevalence of Alzheimer's disease is increased in people with Down syndrome. The pathology appears much earlier than in the general population, suggesting a predisposition to develop Alzheimer's disease. Down syndrome results from trisomy of human chromosome 21, leading to overexpression of possible Alzheimer's disease candidate genes, such as amyloid precursor protein gene. To better understand how the Down syndrome context results in increased vulnerability to Alzheimer's disease, we analysed amyloid-ß [25-35] peptide toxicity in the Tc1 mouse model of Down syndrome, in which ~75% of protein coding genes are functionally trisomic but, importantly, not amyloid precursor protein. RESULTS: Intracerebroventricular injection of oligomeric amyloid-ß [25-35] peptide in three-month-old wildtype mice induced learning deficits, oxidative stress, synaptic marker alterations, activation of glycogen synthase kinase-3ß, inhibition of protein kinase B (AKT), and apoptotic pathways as compared to scrambled peptide-treated wildtype mice. Scrambled peptide-treated Tc1 mice presented high levels of toxicity markers as compared to wildtype mice. Amyloid-ß [25-35] peptide injection in Tc1 mice induced significant learning deficits and enhanced glycogen synthase kinase-3ß activity in the cortex and expression of apoptotic markers in the hippocampus and cortex. Interestingly, several markers, including oxidative stress, synaptic markers, glycogen synthase kinase-3ß activity in the hippocampus and AKT activity in the hippocampus and cortex, were unaffected by amyloid-ß [25-35] peptide injection in Tc1 mice. CONCLUSIONS: Tc1 mice present several toxicity markers similar to those observed in amyloid-ß [25-35] peptide-treated wildtype mice, suggesting that developmental modifications in these mice modify their response to amyloid peptide. However, amyloid toxicity led to severe memory deficits in this Down syndrome mouse model.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/toxicidad , Síndrome de Down/fisiopatología , Trastornos de la Memoria/fisiopatología , Fragmentos de Péptidos/toxicidad , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/administración & dosificación , Animales , Biomarcadores/metabolismo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Síndrome de Down/complicaciones , Síndrome de Down/genética , Femenino , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hipocampo/metabolismo , Inyecciones Intraventriculares , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Fragmentos de Péptidos/administración & dosificación , Índice de Severidad de la Enfermedad
6.
Elife ; 52016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26765563

RESUMEN

Down syndrome (DS), caused by trisomy of human chromosome 21 (Hsa21), is the most common cause of congenital heart defects (CHD), yet the genetic and mechanistic causes of these defects remain unknown. To identify dosage-sensitive genes that cause DS phenotypes, including CHD, we used chromosome engineering to generate a mapping panel of 7 mouse strains with partial trisomies of regions of mouse chromosome 16 orthologous to Hsa21. Using high-resolution episcopic microscopy and three-dimensional modeling we show that these strains accurately model DS CHD. Systematic analysis of the 7 strains identified a minimal critical region sufficient to cause CHD when present in 3 copies, and showed that it contained at least two dosage-sensitive loci. Furthermore, two of these new strains model a specific subtype of atrio-ventricular septal defects with exclusive ventricular shunting and demonstrate that, contrary to current hypotheses, these CHD are not due to failure in formation of the dorsal mesenchymal protrusion.


Down syndrome is a condition caused by having an extra copy of one of the 46 chromosomes found inside human cells. Specifically, instead of two copies, people with Down syndrome are born with three copies of chromosome 21. This results in many different effects, including learning and memory problems, heart defects and Alzheimer's disease. Each of these different effects is caused by having a third copy of one or more of the approximately 230 genes found on chromosome 21. However, it is not known which of these genes cause any of these effects, and how an extra copy of the genes results in such changes. Now, Lana-Elola et al. have investigated which genes on chromosome 21 cause the heart defects seen in Down syndrome, and how those heart defects come about. This involved engineering a new strain of mouse that has an extra copy of 148 mouse genes that are very similar to 148 genes found on chromosome 21 in humans. Like people with Down syndrome, this mouse strain developed heart defects when it was an embryo. Using a series of six further mouse strains, Lana-Elola et al. then narrowed down the potential genes that, when in three copies, are needed to cause the heart defects, to a list of just 39 genes. Further experiments then showed that at least two genes within these 39 genes were required in three copies to cause the heart defects. The next step will be to identify the specific genes that actually cause the heart defects, and then work out how a third copy of these genes causes the developmental problems.


Asunto(s)
Síndrome de Down/patología , Cardiopatías Congénitas/genética , Animales , Mapeo Cromosómico , Modelos Animales de Enfermedad , Dosificación de Gen , Sitios Genéticos , Ratones
8.
PLoS One ; 8(10): e78561, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24205261

RESUMEN

Down Syndrome (DS) is a highly prevalent developmental disorder, affecting 1/700 births. Intellectual disability, which affects learning and memory, is present in all cases and is reflected by below average IQ. We sought to determine whether defective morphology and connectivity in neurons of the cerebral cortex may underlie the cognitive deficits that have been described in two mouse models of DS, the Tc1 and Ts1Rhr mouse lines. We utilised in utero electroporation to label a cohort of future upper layer projection neurons in the cerebral cortex of developing mouse embryos with GFP, and then examined neuronal positioning and morphology in early adulthood, which revealed no alterations in cortical layer position or morphology in either Tc1 or Ts1Rhr mouse cortex. The number of dendrites, as well as dendrite length and branching was normal in both DS models, compared with wildtype controls. The sites of projection neuron synaptic inputs, dendritic spines, were analysed in Tc1 and Ts1Rhr cortex at three weeks and three months after birth, and significant changes in spine morphology were observed in both mouse lines. Ts1Rhr mice had significantly fewer thin spines at three weeks of age. At three months of age Tc1 mice had significantly fewer mushroom spines--the morphology associated with established synaptic inputs and learning and memory. The decrease in mushroom spines was accompanied by a significant increase in the number of stubby spines. This data suggests that dendritic spine abnormalities may be a more important contributor to cognitive deficits in DS models, rather than overall neuronal architecture defects.


Asunto(s)
Corteza Cerebral/patología , Espinas Dendríticas/patología , Síndrome de Down/patología , Animales , Espinas Dendríticas/metabolismo , Modelos Animales de Enfermedad , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Fenotipo
9.
Neurobiol Aging ; 33(4): 828.e31-44, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21843906

RESUMEN

Down syndrome (DS) results from trisomy of human chromosome 21 (Hsa21) and is associated with an increased risk of Alzheimer's disease (AD). Here, using the unique transchromosomic Tc1 mouse model of DS we investigate the influence of trisomy of Hsa21 on the protein tau, which is hyperphosphorylated in Alzheimer's disease. We show that in old, but not young, Tc1 mice increased phosphorylation of tau occurs at a site suggested to be targeted by the Hsa21 encoded kinase, dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A). We show that DYRK1A is upregulated in young and old Tc1 mice, but that young trisomic mice may be protected from accumulating aberrantly phosphorylated tau. We observe that the key tau kinase, glycogen synthase kinase3-ß (GSK-3ß) is aberrantly phosphorylated at an inhibitory site in the aged Tc1 brain which may reduce total glycogen synthase kinase3-ß activity. It is possible that a similar mechanism may also occur in people with DS.


Asunto(s)
Envejecimiento , Encéfalo/metabolismo , Síndrome de Down/metabolismo , Síndrome de Down/patología , Regulación hacia Arriba/fisiología , Proteínas tau/metabolismo , Análisis de Varianza , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Síndrome de Down/genética , Femenino , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Masculino , Ratones , Ratones Transgénicos , Fosforilación/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Regulación hacia Arriba/genética , Proteínas tau/genética , Quinasas DyrK
10.
Cardiovasc Res ; 88(2): 287-95, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20558441

RESUMEN

AIMS: Cardiac malformations are prevalent in trisomies of human chromosome 21 [Down's syndrome (DS)], affecting normal chamber separation in the developing heart. Efforts to understand the aetiology of these defects have been severely hampered by the absence of an accurate mouse model. Such models have proved challenging to establish because synteny with human chromosome Hsa21 is distributed across three mouse chromosomes. None of those engineered so far accurately models the full range of DS cardiac phenotypes, in particular the profound disruptions resulting from atrioventricular septal defects (AVSDs). Here, we present analysis of the cardiac malformations exhibited by embryos of the transchromosomic mouse line Tc(Hsa21)1TybEmcf (Tc1) which contains more than 90% of chromosome Hsa21 in addition to the normal diploid mouse genome. METHODS AND RESULTS: Using high-resolution episcopic microscopy and three-dimensional (3D) modelling, we show that Tc1 embryos exhibit many of the cardiac defects found in DS, including balanced AVSD with single and separate valvar orifices, membranous and muscular ventricular septal defects along with outflow tract and valve leaflet abnormalities. Frequencies of cardiac malformations (ranging from 38 to 55%) are dependent on strain background. In contrast, no comparable cardiac defects were detected in embryos of the more limited mouse trisomy model, Dp(16Cbr1-ORF9)1Rhr (Ts1Rhr), indicating that trisomy of the region syntenic to the Down's syndrome critical region, including the candidate genes DSCAM and DYRK1A, is insufficient to yield DS cardiac abnormalities. CONCLUSION: The Tc1 mouse line provides a suitable model for studying the underlying genetic causes of the DS AVSD cardiac phenotype.


Asunto(s)
Anomalías Múltiples , Cromosomas Humanos Par 21 , Síndrome de Down/genética , Defectos de la Almohadilla Endocárdica/genética , Corazón Fetal/anomalías , Defectos del Tabique Interatrial/genética , Defectos del Tabique Interventricular/genética , Animales , Aorta/anomalías , Modelos Animales de Enfermedad , Síndrome de Down/embriología , Embrión de Mamíferos/anomalías , Defectos de la Almohadilla Endocárdica/embriología , Genotipo , Edad Gestacional , Defectos del Tabique Interatrial/embriología , Defectos del Tabique Interventricular/embriología , Humanos , Imagenología Tridimensional , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Microscopía/métodos , Morfogénesis , Fenotipo
11.
Clin Vaccine Immunol ; 17(9): 1428-38, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20631334

RESUMEN

Scabies, a parasitic skin infestation by the burrowing "itch" mite Sarcoptes scabiei, causes significant health problems for children and adults worldwide. Crusted scabies is a particularly severe form of scabies in which mites multiply into the millions, causing extensive skin crusting. The symptoms and signs of scabies suggest host immunity to the scabies mite, but the specific resistant response in humans remains largely uncharacterized. We used 4 scabies mite recombinant proteins with sequence homology to extensively studied house dust mite allergens to investigate a differential immune response between ordinary scabies and the debilitating crusted form of the disease. Subjects with either disease form showed serum IgE against recombinant S. scabiei cysteine and serine proteases and apolipoprotein, whereas naive subjects showed minimal IgE reactivity. Significantly (P < 0.05) greater serum IgE and IgG4 binding to mite apolipoprotein occurred in subjects with crusted scabies than in those with ordinary scabies. Both subject groups showed strong proliferative responses (peripheral blood mononuclear cells) to the scabies antigens, but the crusted scabies group showed increased secretion of the Th2 cytokines interleukin 5 (IL-5) and IL-13 and decreased Th1 cytokine gamma interferon (IFN-gamma) in response to the active cysteine protease. These data confirm that a nonprotective allergic response occurs in the crusted disease form and demonstrate that clinical severity is associated with differences in the type and magnitude of the antibody and cellular responses to scabies proteins. A quantitative IgE inhibition assay identified IgE immunoreactivity of scabies mite antigens distinct from that of house dust mite antigens, which is potentially important for specific scabies diagnosis and therapy.


Asunto(s)
Alérgenos/inmunología , Hipersensibilidad/patología , Sarcoptes scabiei/inmunología , Escabiosis/complicaciones , Escabiosis/inmunología , Adulto , Alérgenos/genética , Animales , Apolipoproteínas/genética , Apolipoproteínas/inmunología , Proliferación Celular , Proteasas de Cisteína/genética , Proteasas de Cisteína/inmunología , Femenino , Humanos , Inmunoglobulina E/sangre , Inmunoglobulina G/sangre , Interferón gamma/metabolismo , Interleucina-12/metabolismo , Interleucina-5/metabolismo , Leucocitos Mononucleares/inmunología , Masculino , Persona de Mediana Edad , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Escabiosis/patología , Serina Proteasas/genética , Serina Proteasas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA